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Abstract

A novel surface normal estimator is introduced using

affine-invariant features extracted and tracked across mul-

tiple views. Normal estimation is robustified and integrated

into our reconstruction pipeline that has increased accu-

racy compared to the State-of-the-Art. Parameters of the

views and the obtained spatial model, including surface

normals, are refined by a novel bundle adjustment-like nu-

merical optimization. The process is an alternation with a

novel robust view-dependent consistency check for surface

normals, removing normals inconsistent with the multiple-

view track. Our algorithms are quantitatively validated on

the reverse engineering of geometrical elements such as

planes, spheres, or cylinders. It is shown here that the accu-

racy of the estimated surface properties is appropriate for

object detection. The pipeline is also tested on the recon-

struction of man-made and free-form objects.

1. Introduction

One of the fundamental goals of image-based 3D com-

puter vision [17] is to extract spatial geometry using cor-

respondences tracked through at least two images. The re-

constructed geometry may have a number of different rep-

resentations: points clouds, oriented point clouds, triangu-

lated meshes with/without texture, continuous surfaces, etc.

However, frequently used reconstruction pipelines [9, 15,

2, 26] deal only with the reconstruction of dense or semi-

dense point clouds. These methods include Structure from

Motion (SfM) algorithms [17] for which the input are 2D

coordinates of corresponding feature points in the images.

These feature points used to be detected and matched by

classical algorithms such as the one proposed by Kanade-

Lucas-Tomasi [34, 5], but nowadays affine-covariant fea-

ture [21, 7, 36] or region [22] detectors are frequently used

due to their robustness to viewpoint changes. These detec-

tors provide not only the locations of the features, but the

shapes of those can be retrieved as well. The features are

usually represented by locations and small patches com-

posed of the neighboring pixels. The retrieved shapes deter-

mine the warping parameters of the corresponding patches

between the images. The first order approximation of a

warping is an affinity [24], there are techniques such as

ASIFT [25] that can efficiently compute the affinity. Affine-

covariant feature detectors [21, 7, 36] are invariant to trans-

lation, rotation, and scaling. Therefore, features and patches

can be matched between images very accurately.

State-of-the-art 3D reconstruction methods usually re-

sort only to the location of the region centers. The main

purpose of this paper is to show that Affine Correspon-

dences (ACs) can significantly enhance the quality of the

reconstruction compared to the case when only 2D loca-

tions are considered. However, the application of ACs

does not count as a novelty in computer vision. Matas et

al. [23] showed that image rectification is possible if the

affine transformation is known between two patches, then

the rectification can aid further patch matching. Köser &

Koch [19] proved that camera pose estimation is possible

if only the affine transformation between two correspond-

ing patches is known. Epipolar geometry of a stereo image

pair can also be determined from affine transformations of

multiple corresponding patches. This is possible if at least

two correspondences are taken as it was demonstrated by

Perdoch et al. [28]. Bentolila et al. [8] proved that three

affine transformations give sufficient information to esti-

mate the epipole in stereo images. Lakemond et al. [20]

discussed that an affine transformation gives additional in-

formation for feature correspondence matching, useful for

wide-baseline stereo reconstruction.

Theoretically, this work is inspired by the recent study of

Molnar et al. [24] and Barath et al. [6]. They showed that

the affine transformation between corresponding patches of

a stereo image pair can be expressed using the camera pa-

rameters and the related normal vector. The main theo-

retical value in their works is the deduction of a general

relationship between camera parameters, surface normals
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and spatial coordinates. Moreover, they proposed several

surface normal estimators for the two-view case in [6], in-

cluding an L2-optimal one. In our paper, their work is ex-

tended to the multi-view case, with robust view-dependent

geometric filtering, removing normals inconsistent with the

multiple-view track.

Our research is also inspired by multi-view image-based

algorithms such as Furukawa & Ponce [16] and Delaunoy &

Pollefeys [11]. The former one, similarly to our work, also

has a way to estimate surface normals, however, Bundle Ad-

justment [4] (BA) is not applied after their reconstruction,

and the normal estimation is based on photometric similar-

ity using normalized cross correlation. The latter study ex-

tends the point-based BA with a photometric error term. In

this paper, we propose a complex reconstruction pipeline

including surface point and normal estimation followed by

robust BA.

One field of applications of accurate 3D reconstruction is

Reverse Engineering [30] (RE)1, the proposed reconstruc-

tion pipeline is validated on the RE of geometrical ele-

ments. RE algorithms are usually based on non-contact

scanners such as laser or structured-light equipments, but

there are cases when the object to be scanned is not avail-

able at hand, only images of it. Software to reconstruct pla-

nar surfaces using solely camera images already exist, e.g.

Insight3D [1]2, however, ours is the first study, to the best of

our knowledge, that deals with the reconstruction of spheres

and cylinders based on images.

The contributions of our paper are as follows:

• A novel multi-view normal estimator is proposed. To

the best of our knowledge, only stereo algorithms [6,

19] exist to estimate surface normals.

• A novel Bundle Adjustment (BA) algorithm is intro-

duced that simultaneously optimizes the camera pa-

rameters, with an alternating step that removes outly-

ing surface normals.

• It is showed that the quality of the surface points and

normals resulted by the proposed AC-based recon-

struction is satisfactory for object fitting algorithms. In

other words, image-based reconstruction and reverse

engineering can be integrated.

• The proposed algorithm can cope with arbitrary central

projective cameras, not only perspective ones are con-

sidered, providing surface normals using a wide range

of cameras.

1Reverse engineering, also called back engineering, is the processes of

extracting knowledge or design information from anything man-made and

re-producing it or re-producing anything based on the extracted informa-

tion. Definition by Wikipedia.
2Insight3D is an open-source images-based 3D modeling software.

S(u,v)

Figure 1: Illustration of cameras represented by projection

functions pi, i = 1, 2. Ai is the local mapping between

parametric surface S(u, v) and its projection onto image i.
Relative affine transformation between images is denoted

by matrix A.

2. Surface Normal Estimation.

An Affine Correspondence (AC) is a triplet (A,x1,x2)
of a 2 × 2 relative affine transformation matrix A and the

corresponding point pair x1,x2. A is a mapping between

the infinitesimally small environments of x1 and x2 on the

image planes. ACs can be extracted from an image pair

using affine-covariant feature detectors [21, 7, 25, 36].

Let us consider S (u, v) ∈ R
3, a continuously differen-

tiable parametric surface and function pi : R3 → R
2, the

camera model, projecting points of S in 3D onto image ‘i’:

xi
.
= pi (S (u0, v0)) , (1)

for a point (u0, v0) ∈ dom (S). Assume that the pose of

view i is included in the projection function pi. The Jaco-

bian of the right hand side of Eq. (1) is obtained using the

chain rule as follows:

Ai
.
= ∇u,v [xi] = ∇pi (X0) ∇S (u0, v0) , (2)

where X0 = S (u0, v0) is a point of the surface. Ai can be

interpreted as a local relative affine transformation between

small environments of the surface S at the point (u0, v0)
and its projection at the point xi. Remark that the size of

matrices ∇pi (X0) and ∇S (u0, v0) are 2 × 3 and 3 × 2.

See Fig. 1 for the explanation of the parameters.

Matrix A, the relative transformation part of ACs, can

also be expressed using the Jacobians defined in Eq. (2) as

follows

A2A
−1
1 = A =

[

a11 a12
a21 a22

]

. (3)

Two-view Surface Normal Estimation The relation-

ship [6] of the surface normals and affine transformations

are as follows:

A2A
−1
1 ∼ [wij · n]i,j =

[

w11 · n w12 · n
w21 · n w22 · n

]

, (4)
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where

wij
.
= δj

(

a
T
2−j+1 × b

T
i

)

,

δj =

{

1, if (j = 1)

−1, if (j = 2),
[

a1

a2

]

= ∇p1 (X0) ,

[

b1

b2

]

= ∇p2 (X0) ,

[

Su Sv

]

= ∇S (u0, v0) .

Operator ∼ denotes equality up to a scale.

The above relation in Eq. (4) is deduced through a se-

ries of equivalent and up-to-a-scale transformations, us-

ing a property [24] of differential geometry [n]
×

∼
(

SvS
T
u − SvS

T
u

)

with ‖n‖ = 1:

A =A2A
−1
1 ∼ A2 adj (A1) =

= · · · =

=

[

b1

b2

]

(

SvS
T
u − SvS

T
u

) [

a
T
2 −a

T
1

]

∼

∼

[

b1

b2

]

[n]
×

[

a
T
2 −a

T
1

]

=

=
[

δj
(

a
T
2−j+1 × b

T
i

)]

i,j
=

= [wij · n]i,j . (5)

The relation between the measured relative transformation

A and the formulation (4) is as follows:

a11 ∼ w11 · n,

a12 ∼ w12 · n,

a21 ∼ w21 · n,

a22 ∼ w22 · n. (6)

To remove the common scale ambiguity we divide these up-

to-a-scale equations in all possible combinations:

a11
a12

=
w11 · n

w12 · n
,
a11
a21

=
w11 · n

w21 · n
,
a11
a22

=
w11 · n

w22 · n
,

a12
a21

=
w12 · n

w21 · n
,
a12
a22

=
w12 · n

w22 · n
,
a21
a22

=
w21 · n

w22 · n
. (7)

The surface normal n can be estimated by solving the fol-

lowing homogeneous system of linear equations:

















a11w12 − a12w11

a11w21 − a21w11

a11w22 − a22w11

a12w21 − a21w12

a12w22 − a22w12

a21w22 − a22w21

















n = 0, s. t. ‖n‖ = 1. (8)

3. Proposed Reconstruction Pipeline

In this section, we describe our novel reconstruction

pipeline that provides a sparse oriented point cloud as a re-

construction from photos shot from several views.

Our approach to surface normal estimation is a novel

multiple-view extension of a previous work [6], combined

with a robust approach to estimate surface normals con-

sistent with all the views available for the observed tan-

gent plane. The reconstruction is finalized by a bundle-

adjustment-like numerical method, for the integrated refine-

ment of all projection parameters, 3D positions and surface

normals. Our approach is able to estimate normals of sur-

faces viewed by arbitrary central-projective cameras.

Multiple-view Surface Normal Estimation The two-

view surface normal estimator (see Sec. 2) is extended to

multiple views and arbitrary central projective cameras: if

more than two images are given, multiple ACs may be es-

tablished between pairs of views that multiplies the number

of equations. The surface normal is the solution of the fol-

lowing problem:






















































a
(1)
11 w

(1)
12 − a

(1)
12 w

(1)
11

a
(1)
11 w

(1)
21 − a

(1)
21 w

(1)
11

a
(1)
11 w

(1)
22 − a

(1)
22 w

(1)
11

a
(1)
12 w

(1)
21 − a

(1)
21 w

(1)
12

a
(1)
12 w

(1)
22 − a

(1)
22 w

(1)
12

a
(1)
21 w

(1)
22 − a

(1)
22 w

(1)
21

...

a
(k)
11 w

(k)
12 − a

(k)
12 w

(k)
11

a
(k)
11 w

(k)
21 − a

(k)
21 w

(k)
11

a
(k)
11 w

(k)
22 − a

(k)
22 w

(k)
11

a
(k)
12 w

(k)
21 − a

(k)
21 w

(k)
12

a
(k)
12 w

(k)
22 − a

(k)
22 w

(k)
12

a
(k)
21 w

(k)
22 − a

(k)
22 w

(k)
21























































n = 0, s. t. ‖n‖ = 1, (9)

where (1) . . . (k) are indices of AC-s (i.e., pairs of views).

Eliminating Dependence on Triangulation Consid-

ering central-projective views, X0 can be replaced by

p−1
i (xi), that is the direction vector of the ray projecting

X0 to the 2D image point xi. In this case, dependence

on prior triangulation of the 3D point X0, with a possible

source of error vanishes, as the equivalent (=) and up-to-

scale (∼) transformations in Eq. (5) still hold. In Eq. (4) a1,

a2, b1 and b2, thus wij are redefined as follows:
[

a1

a2

]

.
= ∇p1

(

p−1
1 (x1)

)

,

[

b1

b2

]

.
= ∇p2

(

p−1
2 (x2)

)

, (10)

since the statement ∇pi (X0) ∼ ∇pi
(

p−1
i (xi)

)

is valid for

all central projective cameras.
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Bundle Adjustment using Affine Correspondences Let

us consider all observed surface points with corresponding

surface normals as the set ‘Surflets’. An element of this set

is a pair S = (XS , nS) of a 3D point and a surface nor-

mal, has multiple-view observations constructed from ACs

as follows: corresponding image points xk ∈ Obs0 (S) of

the k-th view and relative affine transformations Ak1, k2
∈

Obs1 (S) between the k1-st and the k2-nd views, k1 6= k2.

Our novel bundle adjustment scheme minimizes the fol-

lowing cost, refining structure (surface points and normals)

and motion (intrinsic and extrinsic camera parameters):

∑

S∈Surflets





∑

xk∈Obs0(S)

costkXS
(xk)+ (11)

λ
∑

Ak1, k2
∈Obs1(S)

costk1,k2

nS
(Ak1, k2

)



 ,

where the following cost functions based on equations (1)

and (3) ensure that the reconstruction remains faithful to

point observations and ACs as follows:

costk1,k2

nS
(A) =

∥

∥A−Ak2
A

−1
k1

∥

∥ ,

costkXS
(xk) = ‖xk − pk (XS)‖ .

(12)

Note that if λ is set to zero in Eq. (12) the problem re-

duces to the original point-based bundle adjustment prob-

lem, without the additional affine correspondences. In our

tests λ is always set to 1. Ceres-Solver [3] is used to solve

the optimization problem. The Huber and Soft-L1 norms

are applied as loss functions for costk1,k2

nS
and costkXS

, re-

spectively.

Bundle adjustment is followed by, in an alternating

scheme, a geometric outlier filtering step described below,

removing surface normals inconsistent with the multiple-

view track. See Fig. 2 as an overview of the successive

steps in the pipeline.

Geometric Outlier Filtering This step removes all sur-

face normals that do not fulfill multiple-view geometric re-

quirements. Suppose that the 3D center of a tangent plane

(S) is observed from multiple views. It is clear that this

surface cannot be observed ‘from behind’ from any of the

views so the estimated surface is removed from the recon-

struction if the following is satisfied:

nS is an outlier,

if ∃xi,xj ∈ Obs0 (S) , i 6= j : 〈n,vi〉 · 〈n,vj〉 < 0, (13)

where vk is the direction of the ray projecting the observed

3D point on the image plane of the k-th view.

Outlier filtering is always followed by a BA-step, if more

than 10 surface normals were removed in the process.

Overview of the Pipeline Our reconstruction pipeline

(see Fig. 2) is the modified version of OpenMVG [26, 27],

the reconstructed scene, using the proposed approach, is en-

hanced by surface normals, and additional steps for robus-

tification are included. At first, we extracted Affine Corre-

spondences using TBMR [35] and further refined them by a

simple gradient-based method, similarly to [31]. Multiple-

view matching resulted in sets ‘Obs0’ and ‘Obs1’, as de-

scribed above. An incremental reconstruction pipeline [26]

provides camera poses and an initial point cloud without

surface normals. Our approach now proceeds by multiple-

view surface normal estimation as presented in Sec. 2.

The obtained oriented point cloud and the camera pa-

rameters can be further refined by our bundle adjustment

approach. Since some of the estimated surface normals may

be outliers, we apply an iterative method which has two in-

ner steps: (i) bundle adjustment and (ii) outlier filtering.

The latter discards surflets not facing all of the cameras.

The process is repeated until no outlying surface normals

are left in the point cloud.

4. Fitting Geometrical Elements to 3D Data

This section shows how standard geometrical elements

can be fitted on oriented point clouds obtained by our

image-based reconstruction pipeline.

Plane. For plane fitting, only the spatial coordinates are

used. Considering its implicit form, the plane is param-

eterized by four scalars P = [a, b, c, d]T . Then a spa-

tial point x given in homogeneous form is on the plane if

P
T
x = 0. Moreover, if the plane parameters are normal-

ized as a2 + b2 + c2 = 1, formula P
T
x is the Euclidean

distance of the point w.r.t the plane. The estimation of a

plane by minimizing the plane-point distances is relatively

simple. It is well-known in geometry [13] that the center of

gravity c of spatial points x : i = 0, i ∈ [1 . . . N ], is the

optimal choice: c =
∑

i xi/N , where N denotes the num-

ber of points. The normal n of the plane can be optimally

estimated as the eigenvector of matrix A
T
A correspond-

ing to the least eigenvalue, where matrix A is generated as

A =
∑

i (xi − c) (xi − c)
T

.

Sphere. Fitting sphere is a more challenging task since

there is no closed-form solution when the square of the L2-

norm (Euclidean distance) is minimized. Therefore, itera-

tive algorithms [13] can be applied for the fitting task. How-

ever, if alternative norms are introduced [29], the problem

becomes simpler.

In our implementation, a simple trick is used in order to

get a closed-form estimation: the center of the sphere is es-

timated first, then two points of the sphere are selected and

connected, and a line section is obtained. The perpendic-

ular bisector of this section is a 3D plane. If the point se-

lection and bisector forming is repeated, the common point
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Figure 2: Reconstruction pipeline.

of these planes gives the center of the sphere. However,

the measured coordinates are noisy, therefore there is no

common point of all the planes. If the j-th plane is de-

noted by Pj and the circle center by C, the latter is ob-

tained as C = argminC
∑

j Pj
T
x. The radius of the circle

is yielded as the square root of the average of the squared

distances of the points and the center C.

Cylinder. The estimation of a cylinder is a real challenge.

The cylinder itself can be represented by a center point C,

the unit vector w representing the direction of the axis, and

the radius r. The cost function of the cylinder fitting is

as follows:
∑

i

(

u2
i + v2i − r2

)2
, where the unit vectors

u, v, and w form an orthonormal system, and the scalar

values ui and vi are obtained as ui = u
T
i (xi −C) and

vi = v
T
i (xi −C). This problem is nonlinear, therefore

a closed-form solution does not exist to the best of our

knowledge. However, it can be solved by alternating three

steps [12]. It is assumed that the parameters of the cylinder

are initialized.

1. Radius. It is trivial that the radius of the cylinder is

yielded as the root of the mean squared of the distances

between the points and the cylinder axis.

2. Axis point. The axis point C is updated as Cnew =
Cold + k1u + k2v, where the vectors u, v, and the

axis form an orthonormal system. The parameters k1
and k2 are obtained by solving the following inhomo-

geneous system of linear equations:

2
∑

i

[

u2
i uivi

ui v2i

] [

k1
k2

]

=
∑

i

[

(

u2
i + v2i

)2
ui

(

u2
i + v2i

)2
vi

]

.

3. Axis direction. It is given by a unit vector w repre-

sented by two parameters. The estimation of those are

obtained by a simple exhaustive search.

Before running the alternation, initial values are re-

quired. If the surface normals ni are known at the measured

locations xi, then the axis w of the cylinder can be com-

puted as the vector perpendicular to the normals. Thus all

normal vectors are stacked in the matrix N, and the perpen-

dicular direction is given by the nullvector of the matrix. As

the normals are noisy, the eigenvector of NT
N correspond-

ing to the least eigenvalue is selected as the estimation for

the nullvector. The other two direction vectors u and v are

given by the other two eigenvectors of matrix N
T
N. The

initial value for the axis point is simply initialized as the

center of gravity of the points.

5. Experimental Results

The proposed reconstruction pipeline is tested on 3D re-

construction using real images. Firstly, the quality of the

reconstructed point cloud and surface normals are quantita-

tively tested. High-quality 3D reconstruction is presented in

the second part of this section.

5.1. Quantitative Comparison of Reconstructed
Models

In the first test, the quality of the obtained surfaces are

compared. Three test sequences are taken as it is visual-

ized in Fig. 3: a plane, a sphere, and a cylinder. Our recon-

struction pipeline is applied to compute the 3D model of the

observed scenes including point clouds and corresponding

normals. Then the fitting algorithms discussed in Sec. 4 are

applied. First, the fitting is combined with a RANSAC [14]-

like robust model selection by minimal point sampling3 to

detect the most dominant object in the scene. Object fitting

is then ran only on the inliers corresponding to the dominant

object. Results are visualized in Fig. 4.

The quantitative results are listed in Tab. 1. The er-

rors are computed for both 3D positions and surface nor-

mals except for the reconstruction of the plane where the

point fitting is very low and there is no significant differ-

ence between the methods. The ground truth values are

3At least three points are required for plane fitting, four points are

needed for cylinders and spheres.
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Figure 3: Test objects for quantitative comparison of surface points and normals. Top: One out of many input images used

for 3D reconstruction. Middle: Reconstructed point cloud returned by proposed pipeline. Bottom: Same models with surface

normals visualized by blue line sections. Best viewed in color.

provided by the fitted 3D geometric model. The angular

errors are given in degrees. The least squared (LSQ), mean,

and median values are calculated for both types of errors.

Three surflet-based methods are compared: the PMVS al-

gorithm4 [16] and the proposed one with and without the

BA refinement. The proposed pipeline outperforms the ri-

val PMVS algorithm, with and without the additional BA

step of our pipeline: the initial 3D point locations are more

accurate than the result of PMVS. The difference is signif-

icant especially for the cylinder fitting: PMVS is unable to

find the correct solution in this case. This example is the

only one where the surface normals are required for the ob-

ject fitting, the quality of the resulting normals of PMVS do

not reach the desired level contrary to ours.

The proposed method and PMVS estimate surface nor-

mals at distinct points in space, however, surface normals

can also be estimated by fitting tangent planes to the sur-

rounding points. This is a standard technique in RE [30],

a possible algorithm is written in Sec. 4. We used Mesh-

Lab [10] to estimate the normals given the raw point cloud.

Two variants are considered: tangent planes are computed

using 10 and 50 Nearest Neighboring (NN) points. The

latter yields surface normals of better quality: our method

computing for a distinct point in space is always outper-

formed by the 50 NNs-based algorithm. However, our ap-

proach outperforms the result provided by MeshLab for

4The implementation of PMVS included in VisualSFM library is ap-

plied. See http://ccwu.me/vsfm/.

10NNs for the cylinder. Moreover, the returned point lo-

cations are more accurate when the proposed method is ap-

plied. A possible future work is to estimate the normals

using nearby surflets. This is out of the scope of this pa-

per. Note that our method has the upper hand over all spa-

tial neighborhood-based approaches for isolated points (i.e.,

neighboring 3D points are distant in a non-uniform point

cloud).

To conclude the tests, one can state that the proposed al-

gorithm is more accurate than the rival PMVS method [16].

Image-based RE of geometrical elements is possible by ap-

plying our reconstruction pipeline. Median of the angular

errors are typically between 5 and 10 degrees.

5.2. 3D Reconstruction of Real­world Objects.

Our reconstruction pipeline is qualitatively tested on im-

ages taken of real-world objects.

Reconstruction of Buildings. The first qualitative test is

based on images taken of buildings. The final goal is to

compute the textured 3D model of the object planes. The

novel BA method is successfully applied on two test se-

quences of the database of the University of Szeged [33].

This database contains images and the intrinsic parameters

of the cameras. For the sake of the quality, the planar re-

gions are manually segmented in the images. Results can

be seen in Fig. 5.
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Figure 4: Reconstructed sphere (left) and two views of the cylinder (middle and right). Inliers, outliers, and fitted models are

denoted by red, gray, and green, respectively. In the case of cylinder fitting, blue color denotes the initial model computed by

RANSAC [14]. Inliers correspond to the RANSAC minimal model. Best viewed in color.

Table 1: Point (Pts.) and angular (Ang.) error of reconstructed surface normals for plane, sphere, and cylinder. Ground truth

normals computed by robust sphere fitting based on methods described in Sec. 4. DNF: Did Not Find correct model.

Metrics PMVS [16] Ours Ours+BA MeshLab (10NNs) MeshLab (50NNs)

P
la

n
e Ang. Error (LSQ) 19.85 14.54 13.86 11.23 1.98

Ang. Error (Mean) 13.14 9.39 9.16 7.43 1.71

Ang. Error (Median) 6.72 5.91 5.90 5.07 1.55

S
p

h
er

e

Pts Error (LSQ) 0.38 (DNF) 0.03 0.010 0.029 0.011

Pts Error (Mean) 0.31 (DNF) 0.0083 0.0076 0.0095 0.0079

Pts Error (Median) 0.3 (DNF) 0.0056 0.0062 0.0068 0.0062

Ang. Error (LSQ) 84.1 (DNF) 19.43 18.41 12.50 2.18

Ang. Error (Mean) 77.09 (DNF) 14.54 13.72 7.66 2.36

Ang. Error (Median) 79.58 (DNF) 11.74 10.83 5.50 1.75

C
y

li
n

d
er

Pts Error (LSQ) 0.70 0.69 0.77 0.76 0.77

Pts Error (Mean) 0.53 0.51 0.57 0.56 0.57

Pts Error (Median) 0.42 0.37 0.42 0.41 0.42

Ang. Error (LSQ) 29.76 22.48 18.41 22.01 4.23

Ang. Error (Mean) 23.15 14.39 13.72 14.89 3.22

Ang. Error (Median) 17.62 7.33 5.68 9.13 2.60

Free-form Surface Reconstruction. The proposed BA

method is also applied to the dense 3D reconstruction of

free-form surfaces as it is visualized in Figures 6 and 7. The

first two examples come from the dense multi-view stereo

database [32] of CVLAB5. The reconstruction of a painted

plastic bear also demonstrates the applicability of our re-

construction pipeline as well as a reconstructed face model

with surface normals in Fig. 7.

Finally, our 3D reconstruction method is qualitatively

compared to PMVS of Furukawa et al. [16]. The Foun-

tain dataset is reconstructed both by PMVS and our method.

Then from the 3D point cloud with surface normals the

scene is obtained using the Screened Poisson surface recon-

struction [18] for both methods. The comparison can be

seen in Fig. 8. The proposed method extracts significantly

finer details as it is visualized. As a consequence, walls and

objects of the scene form a continuous surface, and the re-

sult of our method does not contain holes.

5http://cvlabwww.epfl.ch/data/multiview/denseMVS.html

6. Conclusions and Future Work

Two novel algorithms are presented in this paper: (i) a

closed-form multiple-view surface normal estimator and a

(ii) bundle adjustment-like numerical refinement scheme,

with a robust multi-view outlier filtering step. Both ap-

proaches are based on ACs detected in image pairs of a

multi-view set. The proposed estimator, to the best of our

knowledge, is the first multiple-view method for computing

surface normal using ACs. It is validated that the accuracy

of the resulting oriented point cloud is satisfactory for re-

verse engineering even if the normals are estimated based

on distinct points in space.

A possible future work is to enhance the reconstruction

accuracy by considering the spatial coherence of the sur-

flets.
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Figure 5: Reconstruction of real buildings. From left to right: selected regions in first image; regions with reconstructed

normals; two different views of the reconstructed and textured 3D scene.

Figure 6: Reconstruction of real-world free-form objects.
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