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Abstract

In this paper, we address the problem of estimating the
absolute pose of a multiview calibrated perspective cam-
era system from 3D - 2D line correspondences. We assume,
that the vertical direction is known, which is often the case
when the camera system is coupled with an IMU sensor, but
it can also be obtained from vanishing points constructed in
the images. Herein, we propose two solutions, both can be
used as a minimal solver as well as a least squares solver
without reformulation. The first solution consists of a sin-
gle linear system of equations, while the second solution
yields a polynomial equation of degree three in one variable
and one systems of linear equations which can be efficiently
solved in closed-form. The proposed algorithms have been
evaluated on various synthetic datasets as well as on real
data. FExperimental results confirm state of the art perfor-
mance both in terms of quality and computing time.

1. Introduction

Absolute pose estimation consists in determining the po-
sition and orientation of a camera with respect to a 3D world
coordinate frame. It is a fundamental building block in var-
ious computer vision applications, such as visual odometry,
simultaneous localization and mapping (SLAM), image-
based localization and navigation, augmented reality. The
problem has been extensively studied yielding various for-
mulations and solutions. Most of the approaches focus on a
single camera pose estimation using point correspondences.
However, modern applications, especially in vision-based
localization and navigation for robotics and autonomous
vehicles, it is often desirable to use multi-camera systems
which covers large field of views and provides direct 3D
measurements. This problem is known as non-perspective
absolute pose estimation as such a camera system may be
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modeled as a virtual camera with many projection centers.

The absolute pose estimation of a perspective camera
from n 2D-3D point correspondences is known in the lit-
erature as the Perspective n Point (PnP) problem, which has
been widely studied in the last few decades [0, 13, 14, &].
Various solutions have been developed for both large n as
well as for the n = 3 minimal case (see [&] for a recent
overview).

The use of line correspondences, known as the Perspec-
tive n Line (PnL) problem, has also been investigated in
the last two decades, yielding robust and efficient solutions
(see [24] for a detailed overview). Mirzaei et al. [17] con-
struct a polynomial system of equations from line corre-
spondences to solve for the camera orientation. The system
consists of three 5*" order equations and one cubic equation
with four unknowns, which yields 40 candidate solutions.
They also develop an algorithm for perspective pose esti-
mation from three or more line correspondences [ 1 6], where
the problem is formulated as a non-linear least-squares and
solved as an eigenvalue problem using the Macaulay matrix
without a need for initialization. Unfortunately, this algo-
rithm yields 27 solutions, which makes it difficult to iden-
tify the correct solution in practical applications.

The minimal case of n = 3 line correspondences is par-
ticularly important as its solution is the basis for dealing
with the general PnL problem. It has been shown in [5], that
P3L leads to an 8t" order polynomial, which is higher than
the 4! order polynomial of a P3P problem. While the use
of point and line correspondences are widespread, there are
pose estimation methods relying on other type of correspon-
dences, e.g. set of regions [21, 20] or silhouettes. However,
such approaches are typically computationally more expen-
sive hence they cannot be used as real-time solvers.

Recently, due to increasing popularity of multi-camera
systems in e.g. autonomous driving [11] and UAVs, the
problem of multiview perspective pose estimation has been



addressed. Solutions to the PnP or PnL problem cover only
single-view perspective cameras, hence new methods are
needed to efficiently deal with the multiview PnP (NPnP)
problem [3, 8, 11, 12].

In this work, we deal with multiview absolute pose esti-
mation from 3D-2D perspective line correspondences (also
known as the NPnL problem) with known vertical direc-
tion. While several point-based methods exist [3, &], little
work has been done on using line correspondences. One no-
table work is the minimal NP3L solver of Lee [ 10], which
deals with 6 DOF pose parameter estimation. Today, the
vast majority of modern cameras, smart phones, UAVs, and
camera mounted mobile platforms are equiped with cheap
and precise inertial measurement unit (IMU). Such devices
provide the vertical direction from which one can calculate
2 rotation angles, thus reducing the free parameters from 6
to 4. The accuracy of this up-vector is typically between
0.5° — 0.02° [1]. While robust minimal solutions based on
point correspondences exist [1, 9, 12], none of these meth-
ods work for line correspondences.

In this paper, we propose two new solutions to the NPnL
problem with known vertical direction. Both algorithms
can be used as a minimal NP3L solver with 3 line corre-
spondences suitable for hypothesis testing like RANSAC.
Furthermore, the same algorithms can be used without re-
formulation for n > 3 lines as well as for classical single-
view PnL problems. The performance and robustness of the
proposed methods have been evaluated on large synthetic
datasets as well as on real data.

2. Perspective Projection of Lines

Given a calibrated camera P and 3D lines L; in the
world coordinate frame, the projection of the lines are 2D
lines [; in the image plane. The perspective camera ma-
trix P = K[R|t] consists of the internal calibration matrix
K and the camera pose [R|t] w.r.t. the world coordinate
frame. A homogeneous 3D point X is mapped by P into a
homogeneous 2D image point x’ as [7]

x' =2 PX = K[R[t|X, (1)
where "2’ denotes the equivalence of homogeneous coordi-
nates, i.e. equality up to a non-zero scale factor. Since we
assume a calibrated camera, we can multiply both sides of
(1) by K~ and work with the equivalent normalized image

)

The above equation is the starting point of absolute perspec-
tive pose estimation [8, 14, 13, 9]: given a set of 3D-2D
point correspondences (x; <> X;), one can recover the 3D
rigid body transformation (R, t) : W — C acting between
the world coordinate frame )V and the camera coordinate
frame C.

x =K 'x' 2 K'PX = [R[t]X.
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Unlike points, 3D lines may have various representations
in the projective space [18, 2]. Plicker line coordinates are
popular as they are complete (i.e. every 3D line can be rep-
resented) and allow for a linear projection model similar to
2)[7,2,10, 19,25, 15]. However, Pliicker coordinates are
not minimal because a 3D line has 4 degrees of freedom
but its Pliicker coordinate is a homogeneous 6-vector. Fur-
thermore, transforming a Pliicker line between coordinate
frames using a standard homogeneous 4 x 4 rigid motion

matrix
R t

M- ]
is indirect, i.e. two points of the line have to be transformed
and then form their Pliicker coordinates again. In[2],a6x 6
3D line motion matrix representation is proposed for the
transformation, which allows for a direct and linear trans-
formation at the price of a larger matrix. This approach is
also used in [ 10, 19] for absolute pose estimation.

Herein, 3D lines are represented as L = (V, X), where
V is the unit direction vector of the line and X is a point on
the line (see Fig. 1) [22]. The projection of L in a central
perspective camera is a line [ in the image plane, which can
also be represented as [ = (v,x). Note that the point x is
not necessarily the image of the 3D point X! Both L and
[ lie on the projection plane 7 passing through the camera
projection center C. The unit normal to the plane 7 in the
camera coordinate system C is denoted by n, which can be
computed from the image line [ = (v,x) asn = (v X
x)/||v x x||. Since L lies also on , its direction vector V
is perpendicular to n. Hence

€)

n'RV=n"V¢=0, (4)

where R is the rotation matrix from the world W to the
camera C frame and V¢ denotes the unit direction vector of
L in the camera coordinate frame. Furthermore, the vector
from the camera center C to the point X on line L is also
lying on 7, thus it is also perpendicular to n:

n"(RX+t)=n'X"=0, (5)

where t is the translation from the world W to the camera
C frame and X€ denotes the point X on L in the camera
coordinate frame.

3. Multi-view Projection

Let us now investigate the case when the 3D lines are
viewed by N perspective cameras. We assume that the cam-
eras are fully calibrated, i.e. their intrinsics K’ as well as
their relative pose (R?,t%) : C* — C with respect to a com-
mon camera coordinate frame C are known. The common
coordinate frame C is often attached to one of the cam-
eras (e.g. the left camera in a stereo setup), but a multi-
camera system may have a coordinate frame detached from



Figure 1: Perspective projection of a 3D line L — [.

the cameras (e.g. the centroid of the mounting frame, or the
IMU device). Therefore the absolute pose of the camera
system (R, t) is defined as the rigid transformation acting
between W and C, while individual camera frames C* are
related to the world coordinate frame via the sequence of

rigid transformations
R ¢t
or 1|°

In fact, the whole camera system can be regarded as a gener-
alized non-perspective camera with N projection center [3].
In such a non-central camera, each 3D line L has up to N
images [°,i = 1... N, where N is the number of cameras
(or projection centers). Given a pair of corresponding image
lines (I%,17) and their projection plane normals (n‘, n?), the
unit direction vector V¢ of L can be expressed in the cam-
era frame C as

ti
1

Rz’

Vi MWV = {oT (6)

R'"n’ x R/ "n/

Vl=
IRiTn* x R/ Tni||’ ™
which yields the following relation
VE=RV=(RV)x (R''n'xR"n/) =0 (8)

Thus a natural approach to our absolute pose estimation
problem would be to reconstruct 3D line directions in the
camera frame using e.g. (7) and then solving (8) for R.
While this is a very attractive, simple, and geometrically
intuitive approach, the quality of such a pose estimate
would be critically dependent on the reconstruction accu-
racy, which is known to be quite poor for practically im-
portant setups like narrow baseline stereo [4]. In general,
(8) becomes numerically unstable whenever R*"'n’ and
R7 "n’ are nearly parallel, which is often the case for nar-
row baseline and near-parallel principal axes. Furthermore,
having a noisy estimate of the normals would severely dete-
riorate the accuracy of their cross product introducing large
errors in a system of equations constructed from (8).
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Essentially (8) states that V¢ is perpendicular to both n*
and n’, yielding the multi-view form of (4):

Vi where L is visible: n’T R'V¢ =n’TR'RV =0 (9)

While this equation is mathematically equivalent to (8), it
is numerically more favorable as it provides separate equa-
tions for each normal thus avoiding multiplication of noisy
n’ measurements. Similarly, (5) can be written for the
multi-camera case as:

Vi where L is visible: n’" (R'XC + t') =
n'"(RIRX +t)+t') =0 (10)
3.1. Using the Vertical Direction

Let us now have a closer look at the parameterization
of R assuming that the vertical direction is available. This
knowledge can be obtained from e.g. an inertial measure-
ment unit (IMU), which mainly consists of accelerometers
capable to measure the earths gravity vector. Alternatively,
one can obtain the same information from a calibrated im-
age by detecting a vanishing point (in a man-made envi-
ronment, we can get the vertical vanishing point, but the
knowledge of any other direction would also do) [7]. In
the following, we discuss the mathematical representation
of this information in R.

Assuming that the camera coordinate system is a stan-
dard right-handed system with the X axis pointing up (see
Fig. 1), the coordinates of the world vector (1,0,0) " are
known in the camera coordinate frame C. Given this up-
vector, we can compute rotation R, around Y and Z axes,
which aligns the world X axis with the camera X axis:

R, =Rz(7)Ry(B) =

cos(y) —sin(y) 0 cos(8) 0 sin(B)
sin(y) cos(y) O 0 1 0 (11)
0 0 1| |—sin(8) 0 cos(B)

The only unknown parameter in the rotation matrix R is the
rotation R x () around the vertical X axis:

1 0 0
Rx(a)= |0 cos(e) —sin(«) (12)
0 sin(a) cos(e)
thus the W — C rotation R has the following form:
R =R,Rx(q) (13)

With this parameterization, the equations (9) and (10) have
the form for all camera ¢ where L is visible:

n'"R'R,Rx(a)V
n'" (R'(R,Rx ()X + t) + t%)

0 (14

(15)



4, Efficient Solutions

We aim to compute R x («¢) and t using the equations in
(14) - (15). We have 4 unknowns: the rotation angle « and
the translation components t1,to,t3. Although each 3D—
2D line correspondence L <> [ provides 2 equations, only
one contains t. Therefore we need at least 3 line correspon-
dences. In the following, we propose two solutions. Both of
them use the fact that the images are normalized (i.e. image
points are multiplied by the inverse of K* as in (2)); the rel-
ative pose (R, t?) of each camera is known w.r.t. the com-
mon camera frame C; and the vertical direction is known,
i.e. the rotation matrix R, of (11) is available.

4.1. Linear Solution: NPnLupL

The equations (14) - (15) are linear in t, but Rx (&)
is defined in terms of cos(«) and sin(c). Letting these
trigonometric functions of o to be two separate unknowns ¢

and s [14, 24, 26], respectively, one can linearize (14) - (15)
by substituting
. T11 Ti12 T13 1 0 0
(R'Ry)Rx () = [ro1 722 T23| [0 ¢ —s| (16)
Ts1 T32 T33 0 s C

into (14) - (15). Stacking these pairs of equations for n
correspondences, we get 2n homogeneous linear equations
with unknowns p = (c, s,t1,t2,t3,1) ". Hence we have to
solve an Ap = 0 system of equations in the least squares
sense, which is straightforward using SVD of A. Note that
the elements of the 2n x 6 matrix A are expressed in terms
of n’, R'R,,, V, X, and t* using (14) and (15). Since c and
s are estimated as separate unknowns, they may not satisfy
the trigonometric constraint ¢ + s2 = 1. Thus they should
be normalized before constructing R yx (o):

C S

At the price of higher computational complexity, a some-
what more sophisticated normalization involves an addi-
tional 3D registration step [ 14, 24, 26], which aligns the 3D
world {X;} and camera {X¢} point sets using a standard
3D registration scheme [23].

A major drawback of this linear solution is that orthonor-
mality constraint on Ry () has been ignored, thus the so-
lution can be quite far from a rigid body transformation for
noisy input data. In spite of this, experiments show that our
linear solver represents a good tradeoff between accuracy
and computing time, yielding quite stable pose estimates
under moderate noise levels.

4.2. Cubic Polynomial Solution: NPnLupC

cos(a) = and sin(a) = (17)

Another way to eliminate cos(«) and sin(c) is to use
the substitution ¢ = tan(c/2) [9, 1], for which cos(«)
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(1 —¢*)/(1+ ¢?) and sin(a) = 2q/(1 + ¢?). Therefore

1+¢* 0 0
(1+¢)Rx(g)=| 0 1-¢ -2 (18)
0 2q 1—¢?

Substituting R x (¢) into (14) yields a quadratic equation in
the single unknown ¢q. Since we have n. > 3 line correspon-
dences, we obtain n quadratic equations in g:

a,-q2—|—b,-q—|—c,-=0, i=1.. (19)

where the coefficients a;, b;, c; are computed in terms of
n’, R'R,, and V using (14). We will solve this nonlinear
system of equations in terms of least square residual. The
squared error of the equations is a quartic function in ¢

.n,

Z (aq" + 2a;b;¢> + (2a;¢; + b7)q* + 2bciq + ¢},
i=1
(20)
whose minima is found by computing the roots of'its deriva-
tive

Z (4@?(]3 + 6a;biq* + (4aic; + 207)q + 2b,-c,-) =0

=1 (21)
Such a third order polynomial equation can be solved in a
closed form and results in maximum 3 solutions, at least
one of them being real. For each real root, we have to de-
termine a t by back substituting each possible R x (g) into
(15), which yields a simple linear system of equations in t:

n'" (X' + Rt) =0, (22)
with X? = R‘R,Rx (¢)X + t’. The final solution is se-
lected by checking that lines are in front of the camera sys-
tem, or simply by evaluating the reprojection error of each
solution and selecting the one with minimal error. In the
non-perspective case, the reprojection error characterizes
the difference between the observed image line I* and the
reprojected image line {* for all cameras [22]:

N n

e=> > T (ATBA)A;, with
i=1 j=1

151

1

0.5
0.5

_ (& _
A—{bz},andB— 1

} (23)
where |I%] denotes the length of the image line with the
2D homogeneous endpoints a) = (a},,ai,,1)" and bl
(b%y,b%,,1) "5 0l is the reprojection plane normal in camera
i computed from the corresponding 3D line L; = (X;, V)
as

n) = (R'(RX; +t) +t') x (R'RV;). (24



0.259 — NPnLupL, 1-view, m=0.0464
--- NPnLupC, 1-view, m=0.1012 /’
— NPnLupL, b=0.1, m=0.0332 v

--- NPnLupC, b=0.1, m=0.0826
— NPnLupL, b=0.8, m=0.0286
--- NPnLupC, b=0.8, m=0.0784
— NPnLupL, b=1.5, m=0.0283
-+ NPnLupC, b=1.5, m=0.0839

0.20

0.15

0.10

0.05

Rotation error (degrees)

T T T J
400 600 800 1000

Samples

Figure 2: Comparison of the rotational errors w.r.t. the base-
line for 30 lines in case of a single-view and stereo system
configurations.

n lines NPnLupL | NPnLupC | RPnL

Run time (s) | 0.0009 0.0013 0.0088
3 lines NP3LupL | NP3LupC | UP3P | NP3L
Run time (s) | 0.0004 0.0005 0.0063 | 0.0298

Table 1: Comparison of the run times of different methods
w.r.t number of lines.

The main advantage of this solution is that the trigonomet-
ric constraint on « is explicitly taken into account, thus we
expect an increased robustness under noisy observations.
However, the estimation of o and t is decoupled, which
may lead to slightly less accurate solutions as any error in «
is directly propagated into the linear system of t. Further-
more, computational complexity is slightly higher than the
purely linear solver.

Finally, Table 1 shows the typical runtime for all tested
methods in case of 3 and n lines.

5. Experimental Results

For the quantitative evaluation of our non-perspective
pose estimation algorithm with line correspondences, we
generated various benchmark datasets of 3D-2D line pairs.
3D lines were generated by placing three 2D planes in the
3D Euclidean space and about 10 lines were placed on each
of these planes, whose size was normalized into a 1m? cube.
Then the planes were placed relative to each other with a
random translation of 0 — lunit and rotation of 0°,. .., 45°
around the Z axis and 20°,...,60° around the vertical X
axis. This arrangement of the 3D lines was motivated by
common urban structural properties, in which environment
the real data experiments were performed too.
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Figure 3: Upper plot shows the translation errors in case of
3 camera for both n and 3 lines. The plot below shows the
mean re-projection errors e of the proposed algorithms for
n lines.
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Figure 4: Comparison of two possible minimal case scenar-
ios in a 3-camera system. Dashed lines: one 3D line and its
corresponding 2D lines from each camera; connected lines:
a different 3D-2D line pair for each camera.

The synthetic 2D images of the 3D lines were gener-
ated with a camera system being rotated in the range of
—20°,...,20° around all three axis and random displace-
ment of Yunits. All cameras had identical intrinsic param-
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Figure 5: Comparison of the effect of various noise types (2D and 3D) and levels (5% and 8%) in a 3-camera system
configuration. The first figure shows a sample of our noisy synthetic data with 5% (up) and 8% noise level (down). Red lines
are the originals while blue ones are the noisy lines. The middle figure compares various state-of-the-art solvers’ rotation
errors w.r.t. different 2D noise levels. The last figure presents the same experiments with different 3D noise levels.

eters K: focal length f, = 800, f, = 800, and the princi-
pal point o was set to the center of the 1024 x 768 image
plane. Thus random 2D projections were obtained with the
so defined random camera matrix P = K[R|t]. Separate
datasets were generated for single camera, standard stereo,
and multi-camera systems emulated with 3 cameras. In case
of the standard stereo setup, where the right camera is only
horizontally translated, we used three different baselines
of 0.1, 0.8 and 1.5. For the three-camera setup, datasets
were generated with random translations corresponding to
0.05, 0.15, and 0.4 baselines and random relative rotation
between the cameras around the Y and Z axis in range of
—5°,...,5%, and around the X axis 15°,...,25°. Our al-
gorithms were implemented in Matlab and run on a standard
desktop computer.

The evaluation of the algorithms were done in two sce-
narios: either all of the 3D-2D line pairs are used (about 30
line pairs per sample - this will be denoted by n) or only the
minimum number line pairs are used (3 line pairs - this will
be denoted by 3). We also compare our results with state of
the art methods. Since to the best of our knowledge, there
is no prior method for non-perspective pose estimation from
line correspondences and known vertical direction, we com-
pare our method with the line-based single view RPnL algo-
rithm [26] of Zhang et al.; the point-based non-perspective
UPnP [8] of Kneip ef al.; and the line-based non-perspective
minimal solver NP3L [10] of Lee.

First, we evaluate the sensitivity of our algorithms with
n lines for the baseline in case of the standard stereo setup
(parallel optical axes, only horizontal translation between
cameras), which is the most challenging configuration as
projections planes are nearly parallel for narrow baselines.
Fig. 2 shows, that for n lines, the linear solver is more accu-
rate, but overall both methods perform quite well indepen-
dently of the baseline length, having a median rotation error
less than 0.11° in all samples.
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Next, we compare the performance in the minimal and
n-line cases. Fig. 3 shows the translation error in case of n
lines as well as 3 lines. Obviously, the algorithms perform
better for n lines, but overall the estimates are quite accu-
rate. Note also that the cubic solver outperforms the linear
one in the minimal case. In Fig. 4, we compare two possi-
ble minimal case scenarios in a 3-camera system: 1) one 3D
line and its corresponding 2D lines from each camera; 2) a
different 3D-2D line pair for each camera. The first case is
useful when 3D lines are limited but there is no occlusion.
The second scenario corresponds to occlusions, when not
all 3D lines are visible form all cameras. The accuracy of
our algorithms are not influenced by these differences.

5.1. Robustness

In order to evaluate the sensitivity of our algorithms to
line measurement noise, we add random noise to the gen-
erated test cases in the following way: The 2D lines are
corrupted with additive random noise on one endpoint of
the line and the direction vector of the line. The amount
of noise is 5% and 8%, meaning that a random number is
added to each coordinate up to the specified percentage of
the actual coordinate value. This corresponds to a quite high
noise rate: [—20, +20] pixels (4 pixels mean and 12 pixels
standard deviation) for the 5% case and [—30, +30] pixels
(4 pixels mean and 20 pixels standard deviation) for the 8%
case.

In Fig. 5, we compared the robustness of the proposed
algorithms in a 3-camera system. NPnLupL outperforms
NPnLupC and RPnL at 0% and for all 3D noise levels,
but for 2D noise NPnLupC performs better than the other
two. RPnL is consistently outperformed by our solvers in
all cases. Of course, we know the vertical direction, hence
RPnL has to solve a more difficult task. However, if an
IMU is available, then it is clearly worth to use this vertical
information instead of relying on purely visual data.
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Figure 6: Comparison of various configurations and meth-
ods w.r.t varying line numbers and varying noise levels(2D:
5% 2D noise, 2Dv: 5% 2D noise with 0.5° vertical noise,
3D: 5% 3D noise, 3Dv: 5% 3D noise with 0.5° vertical
noise, m:median error value). The plot on the top indicates
the efficiency of our minimal solutions (n = 3) in standard
stereo configuration. The middle plot compares the NP3L
minimal solver with three cameras. The last plot compares
the UPnP and our least square solvers with three cameras.

To have a fair comparison with the other methods, we
also added a +0.5° random noise to the vertical direction
(this is a typical noise level of a low quality IMU), and then
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Fig. 7 NPnLupL | NPnLupC | UPnP
Rotation error (deg) 0.0177 0.0191 0.0694
Translation error 0.0356 0.0262 0.0141
Fig. 8 NPnLupL | NPnLupC | UPnP
Rotation error (deg) 0.0166 0.0176 0.0498
Translation error 0.0402 0.0319 0.0119

Table 2: Comparison of the maximal rotational and transla-
tional error of various methods on the real data.

run our algorithms on the 5% noisy datasets. The com-
parative results of these experiments are shown in Fig. 6,
where we show error plots for the standard stereo setup min-
imal case, 3-camera system minimal case (compared with
NP3L [10]), as well as 3-camera case with n-lines (com-
pared with UPnP [8]. NP3L [10] is consistently outper-
formed by our methods, while for UPnP [&] our NPnLupC
outperforms it in the noisy cases. Note, however, that in the
maximal case when we have 3 cameras this algorithm has
more than 150 point pairs to work with (we used 2 points
per line).

5.2. Real Data

In Fig. 7 and Fig. 8, we show two real datasets. 2D im-
ages were captured with a standard Canon DSLR camera
while the 3D point cloud was captured with a Riegl VZ400
Lidar scanner with an angular resolution of 0.05°. Each
camera location is shown in the Lidar coordinate system
as well as the 3D lines used for pose estimation. The cor-
responding 3D-2D lines are shown with the same color as
the camera. Pose estimation errors are shown in Table 2 in
comparison with UPnP [8].

RPnL is not included in these tests because it works
only for a single camera while in these test cases we had
a multiview camera system of three and four cameras. As
for NP3L, we used the Matlab implementation provided
by the author of [10], which implemented only three cam-
eras with the minimal three line correspondences, hence we
could not run it neither with n-lines nor on the 4-camera
test case. Evaluation on synthetic data already shown the
performance of our method compared to RPnL and NP3L.
The purpose of this test was to show that our line-based
method is able to provide state-of-the-art estimates under
real conditions, just like the point-based UPnP. Although
our translation error is approximately two times larger than
for UPnP, its rotation error is almost four times bigger than
ours. Furthermore, UPnP was using two times more corre-
spondences (two endpoints of each line) than our method.
It is thus fair to say, that both methods perform pretty well,
as the errors are almost negligible (see Table 2).



Figure 7: Lidar laser scan for testing our pose estimation algorithms with 4-camera system. 2D detected lines are shown next
to the 3D point cloud which colors are the same to their corresponding camera.

Figure 8: Lidar laser scan for testing our pose estimation algorithms with 3-camera system. 2D detected lines are shown next
to the 3D point cloud which colors are the same to their corresponding camera.

6. Conclusion

We proposed a linear and a cubic solutions to the NPnL
problem from line correspondences with known vertical di-
rection. Both method can be used as a minimal solver (e.g.
within RANSAC) as well as a general least squares solver.
The methods work for single- and multi-view camera sys-
tems without reformulation. The minimal number of line
correspondences has been discussed for various common
camera configurations. The proposed methods have been
evaluated on synthetic and real datasets. While the linear
solver is computationally more efficient, it is more sensi-
tive to noise and low number of correspondences, while the
cubic solver is much more robust at the price of a slightly
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increased CPU time. Both methods compare favorably to
state of the art approaches.
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