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Abstract

With the recent development of high-end LiDARs, more

and more systems are able to continuously map the environ-

ment while moving and producing spatially redundant in-

formation. However, none of the previous approaches were

able to effectively exploit this redundancy in a dense LiDAR

mapping problem. In this paper, we present a new approach

for dense LiDAR mapping using probabilistic surfel fusion.

The proposed system is capable of reconstructing a high-

quality dense surface element (surfel) map from spatially

redundant multiple views. This is achieved by a proposed

probabilistic surfel fusion along with a geometry consid-

ered data association. The proposed surfel data associa-

tion method considers surface resolution as well as high

measurement uncertainty along its beam direction which

enables the mapping system to be able to control surface

resolution without introducing spatial digitization. The pro-

posed fusion method successfully suppresses the map noise

level by considering measurement noise caused by laser

beam incident angle and depth distance in a Bayesian fil-

tering framework. Experimental results with simulated and

real data for the dense surfel mapping prove the ability of

the proposed method to accurately find the canonical form

of the environment without further post-processing.

1. Introduction

In recent years, LiDAR-based Simultaneous Localiza-

tion and Mapping (SLAM) has reached a significant level of

maturity in many applications such as autonomous vehicles

[6], UAVs (Unmanned Aerial Vehicles) [17] and 3D mo-

bile mapping devices [24]. However, most of the LiDAR-

based SLAM methods focus on trajectory estimation, and

thus produce point clouds by aggregating LiDAR points.

Due to the noise in measurements and errors in trajectory

estimation, those point clouds suffer from the blurring ef-

fects and require batch post-processing to obtain consistent

point clouds.

In this paper, we propose a new on-the-fly approach to

align LiDAR scans from multiple views and merge point

clouds using probabilistic surfel fusion. We model un-

certainties of surfels based on incident angles, ranges and

neighboring points and use them to find and merge corre-

spondences. Moreover, the proposed data association that

considers geometrical relationship between surfels offers a

way to increase map surficial resolution without introducing

further noise to the map. For the map presentation, we pro-

pose dual surfel maps, a sparse ESM (ellipsoid surfel map)

and a dense DSM (disk surfel map) to take advantage of

both surfel representations. ESM is a sparse 3D surfel map

for localization, while DSM is a dense 3D surfel map to

build accurate, much higher quality point clouds. We eval-

uate the performance of our method on both simulated and

real data, and show that our method produces more accu-

rate point clouds compared with the current state-of-the-art

work.

The rest of the paper is organized as follows. In Section

2, we review related work on map generation and fusion

methods. In Section 3 and 4, we describe the overview of

our approach and details of our surfel extraction, matching

and fusion method. We demonstrate our proposed method

on simulated and real datasets in Section 5, and conclude

the paper with future work in Section 6.

2. Related Work

Since the very beginning of SLAM [20], feature-based

SLAM has been the dominant player in the community for

the sake of simplicity and relatively lower computational

complexity. Initial SLAM approaches in early 2000s uti-

lized geometrical features of 2D LiDAR scanning such as

corners and edges [13] which are tracked and updated as
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map elements. This concept was soon extended to 3D fea-

tures [21]. However, despite the advantages of distinctive

features, the feature-based SLAM approaches were limited

to trajectory estimation as the features are too sparse to rep-

resent the 3D environment.

On the other hand, dense point clouds have also been

popular with the advent of affordable 3D range sensors.

They are useful not only for 3D reconstruction of the en-

vironment, but also to be used for dynamic object handling

[10] and obstacle avoidance [8]. For building dense maps,

batch optimization [3, 15] has been the most common ap-

proach for LiDAR-based mapping systems. However, those

approaches just focused on the registration quality between

local maps, ignoring the advantages of multiple observa-

tions in different view points, which is the key to reduce the

noise in the maps and local deformations. Moreover, batch

optimization has a limitation on life-long mapping. Thus,

the introduction of on-the-fly dense map fusion is necessary

for the next generation of LiDAR mapping systems.

Data association is one of the most important compo-

nents in map fusion. In conventional 2D or 3D Extended

Kalman Filtering (EKF) SLAM, finding the closest points

with the Mahalanobis distances based on the sensor uncer-

tainty is the most common approach for the data association

[4, 13]. However, when it comes to dense maps, determin-

ing the object surface resolution is not obvious. Thus, most

of the previous approaches opted to discretize the space into

voxels [7].

Once matching is established, the next is to fuse the mea-

surements for updated estimation. The conventional EKF-

SLAM [13, 21] augments landmark positions into the state

vector and updates the mean and covariance for every iter-

ation. However, its cost increases quadratically whenever

new features are added to the map. Thus, this approach

could not be extended to the dense SLAM problem. Keller

et al. [10] proposed a dense fusion method by simplifying

the Bayesian estimation from 3D to 1D. In their approach,

each map elements are independently updated, making its

computation much simpler than the EKF case. They also

utilized radial distortion as an initial uncertainty parame-

ter and reduced the uncertainty whenever the surfel is ob-

served again. ElasticFusion [22] further extended the un-

certainty as a function of sensor motion to consider the un-

certainty caused by motion blur. However, those simplified

Bayesian models are not appropriate for dense LiDAR map-

ping where the existence of degeneracy in map elements of-

ten causes slower convergence.

3. Map Representation and Alignment

In this section, we first explain our dual surfel map rep-

resentation, and utilizing sparse ellipsoid surfel map for lo-

calization. The proposed dual map representation not only

let the system localize the current pose robust and fast but

(a) ESM (b) DSM

Figure 1. (a) Example of a 3D ellipsoid surfel map (ESM) with a

60 cm resolution and (b) a 2D disk surfel map (DSM) with a 1 cm

resolution. Both are color-coded by normal directions. Recognize

the ceiling and the floor in blue, and objects and walls in orange

and green.

also construct a dense surfel map. The pose estimation re-

sult from this stage is utilized to align and merge local disk

surfels using Bayesian filtering in the following section.

3.1. Dual Surfel Maps

We build two types of global surfel maps, ellipsoid surfel

map (ESM) Sg and disk surfel map (DSM) Mg. Each surfel

map is individually updated with their local maps Sl and Ml

which are extracted from the current laser scan. We assume

that 3D point clouds without motion distortion are given

by a 2D spinning laser [2] or multi-beam LiDAR such as

Velodyne [14].

ESM consists of 3D ellipsoids extracted from laser

points using multi-resolution voxel hashing [2]. Each el-

lipsoid is defined with a centroid c ∈ R
3 and a covariance

matrix Σc ∈ R
3×3 which represent the distribution of points

within the voxel. On the other hand, DSM is composed

of 2D disk surfels ϕ ∈ M of which positions p ∈ R
3 are

uniformly sampled from the laser points, and normal vec-

tors n̂ ∈ R
3 are extracted from their neighboring points. In

contrast to conventional surfels [10,22], we associate uncer-

tainties Σp,Σn̂ ∈ R
3×3 with the position and normal vector

of each disk surfel, which are later used to merge surfels

based on Bayesian filtering. Figure 1 depicts an example of

ESM and DSM. Note that 3D ellipsoid surfels are expressed

with ellipsoids of their covariance matrices, while 2D disk

surfels are expressed with disks with normal direction.

First, we utilize the multi-resolution ellipsoid surfel fea-

tures [2] for localization in ESM. Note that in general ESM

is too sparse to represent the environment [5,19]. Thus, one

might generate a point cloud by transforming all the laser

points with estimated laser trajectories [2]. However, this

method often produces blurred point clouds due to the noise

in observations and errors in trajectory estimation. That is

the reason we employ another surfel map, DSM [10, 22],

which is much denser than ESM. While we localize the in-

put point clouds with ESM, we sequentially update DSM to
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eliminate the noise and produce more accurate point clouds.

In summary, ESM is faster and more robust to run local-

ization, and DSM is denser and more accurate to 3D recon-

struct the environment.

3.2. Localization

We apply the point-to-plane ICP (Iterative Closest Point)

to align local maps Sl , Ml with respect to the global maps

Sg, Mg. After finding the correspondences between local

and global ESMs Sl , Sg as in [2], we register the current

local map Sl by minimizing the point-to-plane distances,

e =
n

∑
i=1

e2
i , ei = n̂⊤i (p

g
i − (Rpl

i + t)) (1)

where R ∈ SO(3) and t ∈ R
3 are the rotation matrix and

translation vector, (pg
i , n̂

g
i ) ∈ Sg and (pl

i , n̂
l
i) ∈ Sl denote

positions and normal vectors of the i-th correspondences

among n surfel matches, and n̂i = (n̂g
i + n̂l

i)/|n̂
g
i + n̂l

i |. We

apply the Gaussian-Newton method that iteratively updates

the rotation matrix and translation vector as

R′ = e[δr]×R, t′ = t+δ t (2)

where δr,δ t ∈ R
3, and [·]× denotes a skew-symmetric

matrix. We also utilize a pose prior from the local tra-

jectory estimation in a canonical form, ξ ∼ N (µξ , Σξ ),

where ξ ,µξ ∈ R
6, Σξ ∈ R

6×6. Finally, we apply itera-

tively reweighted least squares with a t-distribution weight

on residuals as in [1, 11]. Then, the normal equations can

be written as
(

n

∑
i=1

wi

λi

H⊤i Hi +Σ−1
ξ

)

δξ =−
n

∑
i=1

wi

λi

H⊤i ei−Σ−1
ξ
(ξ̄ −µξ )

(3)

where δξ = (δr⊤,δ t⊤)⊤, ξ̄ denotes the pose in the pre-

vious iteration, Hi = ∂ei/∂δξ ∈ R
1×6 is the Jacobian ma-

trix, wi = (ν + 1)/(ν + (ei/σ)2) denotes the M-estimator

weight, and ν and σ2 are the number of degrees of freedom

and variance of the t-distribution, respectively. Note that

λ−1
i is introduced to penalize non-planar surfels, where λi

represents the smallest eigenvalue of Σ
g
i +Σl

i +Σ0, and Σ0

denotes the system noise. As the registration between lo-

cal ESM Sl and global ESM Sg is based on point-to-plain

ICP, we put more importance on the planer ellipsoid sur-

fels. Thus, ellipsoid surfels integration between Sl and Sg

after the optimization is simply defined by switching the

global surfel with a new surfel when the new surfel has

larger λ1, λ2 and smaller λ3. The localization result is also

applied to DSM Ml for a fusion in the next section.

4. Dense Surfel Matching and Fusion

When building the dense surfel map, there are two main

issues with surfels extracted from LiDAR point clouds,

(a)Normal

(b)Degenerate

Figure 2. Example of LiDAR point clouds (right). Degenerate nor-

mal vector issue (left) when the normal (axis in green) is calcu-

lated from its neighboring points (black dots). (a) Desired shape

of neighboring points. (b) Example of degenerate configuration

which often occurs when scanned object is relatively far from the

sensor. Estimated normal vector from this points set is not reliable.

r2

r1
Uncertainty

Figure 3. Conventional approaches to find point correspondences.

Red lines denote rays and black dots depicts laser hit points. [left]

Search by radius. [right] Search in the ray direction, considering

the uncertainty in measurement.

compared with surfels generated from RGB-D point clouds.

The first issue is surfel degeneracy. In the case of RGB-D

data, it is obvious to find neighboring points in the image

space. However, in the case of LiDAR data, neighboring

points should be found in a 3D space based on distance

(Figure2(a)), and thus the chance of getting degenerate sur-

fels is relatively high as shown in Figure 2(b). This occurs

quite often when objects are far from the sensor, and the

scanning line pattern appears on surface. To address this is-

sue, we model uncertainties in positions and normal vectors

for each surfel in Section 4.1.

The other issue is that surfel matching is not straightfor-

ward. In the case of RGB-D surfels, projective data associ-

ation [22] is readily applicable. However, it is not the case

with LiDAR surfels because there is no projection plane.

The simplest way is to find the one with the closest dis-

tance [15] as shown in the left of Figure 3. However, if

the search radius is smaller than the sensor noise (e.g. r1 in

the left of Figure 3), the matching accuracy drops, whereas

in the opposites case (e.g. r2 in the left of Figure 3), we

get a lower map resolution. Considering that the depth un-

certainty of a moderate LiDAR is high along its beam di-

rection, the radius search method severely reduces the map
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σφ

σθ

n

Figure 4. An example of a degenerate surfel normal (green line)

which is estimated from the neighbouring points along an edge

(blue dots). The uncertainty in the normal vector is described with

end tip points of random samples (red dots) and represented with

an ellipse (magenta circle) on its tangential space.

resolution. One might consider uncertainty in measurement

as shown in the right of Figure 3 which is common in the

filtering-based SLAM [4]. However, in this case it is tricky

to control the map resolution without discretizing the envi-

ronment [7]. To address this issue, we propose a new algo-

rithm for surfel matching that preserves the map resolution

in Section 4.2.

4.1. Surfel Uncertainty Modeling

Uncertainty in Position For surfel centroid uncertainty,

we utilize the sensor noise model proposed in [18]. As the

LiDAR point clouds are directly used as surfel centroids,

they have the same uncertainty characteristics as LiDAR

measurement which are governed by incident angle, am-

bient temperature and humidity [12]. As depicted in the

right of Figure 3, the positional uncertainty of a surfel is

high along the beam direction. We model this uncertainty

in the surfel position with an ellipsoid with three principal

axes. The amount of uncertainty along the beam direction is

defined by the sum of the distance uncertainty σ2
r and addi-

tional uncertainty σ2
i caused by the incident angle [12,16].

Thus, the complete uncertainty of each surfel position in the

world coordinate is given as

Σp = wRl
lRbΣb(

wRl
lRb)

⊤ (4)

where wRl and lRb are rotation matrices from laser to world

coordinates, and from beam to laser coordinates, respec-

tively. The uncertainties in the beam coordinates Σb =
diag(σ2

x ,σ
2
y ,σ

2
z ) is modeled as in [18] with additional un-

certainties σ2
i ,σ

2
r added to σ2

z . Note that each surfel cen-

troid has independent uncertainty according to the beam

source and different sensor locations.

Uncertainty in Normal Vector The uncertainty of the

normal vector is directly related to the three eigenvalues

(λ1 ≥ λ2 ≥ λ3) of the covariance matrix calculated from its

neighboring points. The following cases yield unstable or

incorrect normal vectors; (1) λ1 and λ2 are too small (parti-

cles), (2) λ1≫ λ2 (edges), (3) λ3 is too large (blobs).

Note that the tip of a normal vector moves on a unit

sphere. Thus, its uncertainty has only two degrees of free-

dom. As the uncertainty propagation on a manifold space

is not easy to define, we propose an approximation model

which defines two degrees of freedom uncertainty in a tan-

gential space at the tip of the normal vector as shown in

Figure 4.

To reflect the relationship between the shape and un-

certainty, we define the uncertainty of the normal direction

diag(σθ ,σφ ) on the tangential space in R
2 as a function of

eigenvalues. We start with defining uncertainty attributes:

αθ = aλ−1
1 −0.5, αφ = bλ−1

2 −0.5, αz1 = log(λ 3/λ 1)c+
0.5, αz2 = dλ 3− 0.5. Note that αθ and αφ penalize too

small variances along the first two principal axes, while αz1

and αz2 penalize too large relative and absolute variances

along the third axis, respectively. Here, a,b,c,d are scal-

ing coefficients and are determined statistically. As a result,

we model the uncertainty in a normal vector on a tangential

space by integrating the attributes in a sigmoid function as

σθ = (1+ e−w(αθ+αz1+αz2))−1 (5)

σφ = (1+ e−w(αφ+αz1+αz2))−1 (6)

where w is a scaling factor for the sigmoid function. Finally,

the uncertainty in a normal vector in the world coordinates

is defined as

Σn = vdiag(σθ ,σφ ,ε)v
⊤ (7)

where ε is added to prevent a singularity problem in matrix

inversion. The Eigen vector matrix v is utilized to align the

normal uncertainty direction with the underlying neighbor-

ing points shape in the world coordinate frame.

4.2. Surfel Matching

This section describes our method for finding matched

surfels between the global DSM Mg and local DSM Ml for

surfel fusion in the following section. Once the transforma-

tion is decided by ICP, the local surfels Ml are transformed

into the world coordinates and ready to find the matched

surfels in the global dense surfel map Mg. The matching

process begins with finding a set of candidate surfels Ag for

each surfel ϕ l ∈Ml . For efficient matching, initial matching

candidates are selected by an octree-based nearest neighbor

search algorithm. Then, the resolutional distance r between

each source and destination pair in Figure 5 is compared

with a resolution threshold θr to decide if their projections

are close enough on the surface. If so, we check the depth
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Figure 5. Illustration of the resolutional distance r and the depth

distance d in surfel matching. Blue bars represent the side view

of surfels, while red arrows denote normal vectors. The resolution

threshold θr to which r is compared decides the map surface res-

olution whereas the projective matching distance threshold θd to

which d is compared is related to how deep it will search for the

matching.

Algorithm 1 Finding Surfel Matches

Input: Global DSM Mg and a surfel ϕ l ∈Ml

Output: A set of matched surfels Bg ⊆Mg

Ag← OctreeSearch(ϕ l ,Mg)
foreach ϕg ∈ Ag do

[ r,d ]← Point2PlaneDist(ϕg,ϕ l)

if r < θr then

σ2 = n̂⊤s Σsn̂s + n̂⊤d Σd n̂d

if d/σ < θd then
Bg← Bg∪ϕg

end

end

end

distance d in the Mahalanobis distance. To consider the un-

certainty only along the normal direction, we propagate the

positional 3D uncertainties of source and destination surfel

Σd , Σs into 1D along each normal direction by σ2 = n̂⊤Σn̂.

Finally, if the 1D Mahalanobis distance along the surface

normal direction is less than a threshold θd , we assume that

they are correspondences, and put the matched surfel into

Bg. Note that the resolutional distance d is compared in

Euclidean space to preserve the desired surface resolution

in Euclidean space. Algorithm 1 summarizes this surfel

matching process. Note that our matching method enables

the matching process to search more along the beam direc-

tion while effectively maintaining the desired surface reso-

lution without a voxel grid.

4.3. Surfel Fusion

In this section, we describe our method of fusing sur-

fel matches. We start by defining the position and normal

vector of a surfel ϕ as random variables p ∼N (µp, Σp),
n̂ ∼N (µ n̂, Σn̂). Given a surfel observation ϕ l ∈Ml and

Figure 6. Normal direction uncertainties of two surfel normals

(magenta, crayon) on a unit sphere and its fusion (black).

the matched surfel ϕg ∈Mg, our objective is to find the bet-

ter estimation. Assuming two observations are independent,

the Kalman filter gives a Bayesian update formula as

µ ′g = Σ′g(Σ
−1
g µg +Σ−1

l µ l) (8)

Σ′g = (Σ−1
g +Σ−1

l +Σ−1
s )−1 (9)

which can immediately be applied for the fusion of cen-

troids as listed in the second and third line of Algorithm 2.

However, a different approach should be taken for nor-

mal vectors as it is in a manifold. As we described in Sec-

tion 4.1 the canonical form of normal uncertainty lies on the

tangential space of the unit sphere. Thus, to handle the un-

certainty propagation, we lift the 2D normal uncertainty to

a 3D space by Equation (7) and fuse them in a 3D space as

Line 13, 14 in Algorithm 2. An example of two surfel nor-

mal fusion on the unit sphere is depicted in Figure 6. Gen-

erally, the propagated uncertainty Σ′nd
is not tangential to

the sphere surface. Thus, tangentiality should be reinforced

after the propagation by decomposing Σ′nd
and forcing its z

axis to be aligned with the fused normal direction n′d (Line

15 to 18 in Algorithm 2). As this is a linearized method, we

limit its application to the situations where the distance of

two vectors on the surface is small enough.

There are some cases where the underlying original point

geometry of a surfel is degenerate as depicted in Figure 2

where the approximated normal fusion model cannot han-

dle this. A surfel degeneracy can be easily found by looking

at uncertainty ratio of σθ , σφ . When it is degenerate, the un-

certainty of the first principal axis σθ is far higher than σφ .

Instead of just throwing those surfels away, we keep them

in the surfel pool as a degenerate surfel and wait until it is

properly observed. When one of the target or source sur-

fels is degenerate, the new normal direction and uncertainty

follows the ordinary one. In case both of the source and

destination surfels are degenerate, the normal is acquired

by the cross product of the first principal directions.

Note that the added system uncertainties σ s
θ ,σ

s
φ ,σ

s
ICP
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Algorithm 2 Surfel Fusion

Input: Map surfel ϕ tar
i , Input surfel ϕsrc

i

Output: Updated map surfel ϕ i

foreach pair of matched surfels ϕ tar
i , ϕsrc

i do
Centroid Fusion:

Σd←(Σ−1
s +Σ−1

d +Σ−1
s )−1

pd←(Σ−1
s +Σ−1

d )−1(Σ−1
d pd +Σ−1

s ps)
if σθ ≫ σφ then

surfel is degenerate

end

if ϕ tar
i = degenerate, ϕsrc

i = degenerate then

n′d←vs×vd

else if ϕ tar
i = degenerate then

ϕ i←ϕsrc
i

else if ϕsrc
i = degenerate then

ϕ i←ϕ tar
i

else
Normal Direction Fusion:

Σ′nd
←(Σ−1

ns
+Σ−1

nd
)−1

n′d←Σ′nd
(Σ−1

ns
ns +Σ−1

nd
nd)

[ λ v ]←SV D(Σ′nd
)

Σnew←λ +diag(σ s
θ ,σ

s
φ ,−λ3)

R←[u1×n′d (u1×n′d)×n′d n′d ]
Σ′nd
←RΣnewRT

end

end

prevent the surfels from being over-fitted to repeated sys-

tematic errors such as noise points caused by a mixed pixel

problem [23].

The surfels that are not matched to the global map will

be added to the global map as a new unstable surfel. To

effectively remove the surfels generated from LiDAR non-

Gaussian noise, any unstable surfels that are not observed

for a certain period of time (e.g. 5 min) when the sensor

revisited the surfel within a certain radius will be deleted

from the global map.

5. Experimental Results

5.1. Simulated Data

In order to evaluate the proposed method, we compare

the fused map from a simulation data with its ground truth.

We first generated synthetic data with a LiDAR simulator.

As shown in Figure 7(a), a spinning LiDAR simulates hit

points using ray casting with measurement noise of σ = 15

mm along the beam direction in an office-like environment

of 20× 20 m. Then, the simulated data is used to build a

fused map by the proposed method. Finally, the position

and normal errors of each surfels can be calculated as its

ground truth is known from the simulation process.

Table 1 describes the simulated result in more detail by

(a) Map and trajectory (b) Point cloud comparison

Figure 7. Synthetic environment for simulation and experimental

results with simulated data. (a) A spinning LiDAR scans an office-

like environment of 20×20 m several times, (b) Top views of the

red circle area in (a) to compare point clouds generated by CT-

SLAM [2] (top) and our method (bottom). Points are color-coded

by normal directions.

Figure 8. The experimental handheld 3D spinning LiDAR for mo-

bile mapping. It contains a 2D laser, an IMU, an encoder, a color

camera and a thermal camera.

Size
Position Err. Normal Err.

mean std. mean std.

CT-SLAM 4.9×106 10.6 78.7 9.5 10.6

Our method 2.6×106 3.7 7.7 3.2 7.3

Table 1. Comparison of point cloud accuracy between CT-SLAM

[2] and our method given the same simulation data. The unit for

errors is mm. Size is the total number of surfels in the final map.

comparing the errors in positions and normal vectors be-

tween CT-SLAM [2] and our proposed method. The po-

sitional errors are calculated by point-to-plane distances,

while the normal vector errors are calculated as an angle dif-

ference between mesh normals and map normals. Our pro-

posed probabilistic surfel fusion produced an accurate point

cloud with about 3 times less errors in both positions and

normal vectors. Also, as shown in Figure 7(b), our method

produced sharper and cleaner point clouds on the wall than

CT-SLAM [2].
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(a) LiDAR trajectory (b) Fused dense surfel map

Figure 9. Real environment and experimental result with real data.

(a) LiDAR trajectory in an office building of 20×20 m. The total

trajectory length is 707 meters and recorded for 24 min. (b) Top

view of the global dense surfel map generated by the proposed

method. Note that the ceiling is removed to show the details inside.

Color represents normal directions.
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Figure 10. Surfel statistics and uncertainties. [left] The number of

surfels and the average number of fusion per surfel, [right] Uncer-

tainties of surfel positions and normal vectors.

5.2. Real Data

For the real data experiments, an experimental hand-held

3D spinning LiDAR system is used. The system consists of

a spinning Hokuyo UTM-30LX laser, an encoder, a Micros-

train 3DM-GX3 IMU, Grasshopper3 2.8 MP color camera

and Optris PI 450 thermal-infrared 382 x 288 pixel cam-

era (Figure 8). For the experimental results presented here,

we only use the 3D spinning LiDAR, IMU and the encoder

data.

To demonstrate the advantages of the proposed method,

we compare our fused map from the proposed method with

a map from the ordinary global batch optimization method

(CT-SLAM [2]). Figure 9(a) shows the scanning trajectory

in an office building of about 20×20 m. The data utilized in

the comparison is collected by the sensor in Figure 8, while

the operator is moving around the office at a speed of about

0.5 meters per second. We obtained local point clouds by

3D spinning LiDAR and local trajectory optimization using

[2], and collected 1441 views in total for 24 minutes. Each

of the views contains 194k 3D points. Figure 9(b) shows

the top view of the sequentially fused dense surfel map.

Figure 10 shows surfel statistics and uncertainties chang-

ing over time. The number of surfels steeply increases

Size
Noise

mean std.

CT-SLAM 4.2×106 3.10 46.67

CT-SLAM∗ 2.1×106 0.41 10.21

Our method 2.1×106 0.22 7.86

Table 2. Comparison of noise in the point clouds generated by CT-

SLAM [2] and our method given the same real data. CT-SLAM∗

denotes the CT-SLAM result with post-processing. Noise is the

distances to the closest surfaces extracted from the point clouds.

The unit for noise is mm. Size is the total number of surfels in the

final map.

until they fill the most of the space, and then slowly in-

creases based on surfel fusion. The surfel count occasion-

ally drops due to the removal of unstable surfels. Recognize

that the average number of updates per surfel monotonously

increases over time. On the other hand, the uncertainties of

positions and normal vectors of surfels decrease as they are

observed multiple times. Here, the positional uncertainties

are calculated by the distance errors to the closest surfaces.

As the ground truth is not available for the real data, we

extracted surface meshes from the point clouds by [9] and

evaluated the distances to the closest surfaces as a metric for

accuracy. Table 2 shows that our method produced much

more accurate point cloud than CT-SLAM does. Our result

is even better than the CT-SLAM point clouds after post-

processing which performs outlier removal and k-nearest

neighbor noise filtering. The reduced noise in our result

is visualized in Figure 11.

Figure 12 compares dense surfel maps from CT-SLAM

and the proposed method. The fused map from the pro-

posed method shows noticeably a lesser noise level than the

original point cloud. This is due to in the proposed method

matched surfels are merged and unstable surfels are regu-

larly removed during the fusion. The proposed method pro-

duced a sharp surfel map with less redundancy and noise.

6. Conclusion

In this paper, we proposed a new approach for dense Li-

DAR mapping by applying probabilistic surfel fusion. Par-

ticularly, we built dual surfel maps, 3D ellipsoid surfel map

(ESM) and 2D disk surfel map (DSM). We aligned the

point clouds based on sparse ESM, and updated dense DSM

based on Bayesian filtering. In addition, we modeled uncer-

tainties in positions and normal vectors for each surfel and

considered degenerated surfels due to sparse laser hit points.

Also, the proposed data association method increases sur-

face resolution of the map while successfully suppressing

noise level. Experimental results with both simulated and

real data show that our method produces more accurate sur-

fel maps with less noise and a minimum amount of map el-
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(a) CT-SLAM (b) CT-SLAM (after post-processing) (c) Our method

Figure 11. Comparison of noise in point clouds from the top view. Points are color-coded by noise, 0 (blue) to 5 mm (red). The points on

the floor and tables contains more noise in CT-SLAM results than our result.

(a) CT-SLAM (b) Our method

Figure 12. Comparison of dense surfel maps. The redundant surfels in CT-SLAM due to local deformation and the mixed pixel problem

are clearly combined in our results, and the noise in normal vectors is dramatically reduced in our results.

ements, compared with the previous work. In future work,

our method can be further extended to real-time LiDAR

mapping with hardware and software optimization to pro-

duce an accurate dense LiDAR surfel map on the fly. This

is applicable because our method sequentially updates sur-

fel maps rather than globally optimizing the maps by batch

processing.
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