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Abstract

Face datasets are a fundamental tool to analyze the per-

formance of face recognition algorithms. However, the ac-

curacy achieved on current benchmark datasets is satu-

rated. Although multiple face datasets have been published

recently, they only focus on the number of samples and lack

diversity on facial appearance factors, such as pose and il-

lumination. In addition, while 3D data have been demon-

strated improved face recognition accuracy by a significant

margin, only a few 3D face datasets provide high quality 2D

and 3D data. In this paper, we introduce a new and chal-

lenging dataset, called UHDB31, which not only allows di-

rect measurement of the influence of pose, illumination, and

resolution on face recognition but also facilitates different

experimental configurations with both 2D and 3D data. We

conduct a series of experiments with various face recogni-

tion algorithms and point out how far they are from solving

the face recognition problem under pose, illumination, and

resolution variation. The dataset is publicly available and

free for research use1.

1. Introduction

Challenging face datasets with diverse pose and illu-

mination conditions are indispensable in evaluating face

recognition systems. Along with recent advances in deep

learning, face recognition accuracy measured on current

benchmark datasets is saturated. In fact, automatic face

recognition systems based on deep convolutional neural net-

works surpassed the human level of identifying faces under

the well-constrained condition: frontal pose and standard

illumination [3]. Face datasets published several years ago

(e.g., LFW [15]) are no longer challenging. They are not

only limited in the number of samples, they also lack large

pose and illumination variations. Several large face datasets

have been published recently (e.g., IJB-A [18], MegaFace

1UHDB31 can be found at: http://cbl.uh.edu/repository-data

[17], and MS-Celeb-1M [13]). However, these datasets pri-

marily focus on the number of samples, and they are not

coupled with pose or illumination ground-truth, which is

essential to analyze the strengths and weaknesses of a face

recognition algorithm. A face dataset with precise pose

and illumination ground-truth is in great demand to eval-

uate face recognition algorithms.

In addition to 2D datasets, 3D datasets are also signifi-

cant to face recognition research. With advances in hard-

ware technology, we may soon witness a revolution in 3D

data. Three-dimensional cameras are becoming cheaper and

more popular. The structure sensor [24], for example, is

an iPad external accessory that can perform a 3D scan of

objects or people in just seconds. Smartphones integrated

with a 3D camera are under development and will become

available in a few years. Several researches have demon-

strated that 3D facial data can improve face recognition ac-

curacy by a significant margin [32]. A few 3D face datasets

have been published in the past decade, but they have sev-

eral deficiencies. In the meantime, 3D face reconstruction

from 2D images is a solution to compensate for the short-

age of 3D data and has been actively investigated in the past

few years. Since 3D face reconstruction algorithms require

training and testing using both 2D and 3D data, a dataset

with both 2D and 3D data is vital.

To further investigate unconstrained face recognition, as

well as stimulate research, we have created a challenging

dataset, UHDB31. It allows researchers to measure the in-

fluence of pose, illumination, and resolution on their algo-

rithms and facilitates different experimental configurations,

including 3D-3D, 3D-2D, and 2D-2D2. Despite the small

number of subjects, UHDB31 provides challenging data

samples for face recognition due to its wide variation of

poses and illuminations. UHDB31 data samples are equally

distributed among 21 different poses and three different il-

luminations. The pose and illumination conditions of each

2By X-Y (i.e. 3D-3D, 3D-2D, and 2D-2D), we refer to the use of X

data as gallery and Y data as probe.
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data sample are observed and recorded during data acqui-

sition to provide precise ground-truth. In addition, high

resolution 2D and 3D data are captured simultaneously to

provide symmetric 3D-2D data, which creates a connection

between 2D and 3D data. In addition to the raw captured

data, four sets of lower resolution images are created by

downscaling the original data to evaluate face recognition

algorithms under different resolutions. Moreover, twelve

manually annotated landmarks of both 2D and 3D data are

provided to assess face detection and face alignment algo-

rithms.

Instead of focusing on large number of subjects,

UHDB31 focuses on identifying the strengths and weak-

nesses of a face recognition algorithm based on compre-

hensive ground-truth. We design three evaluation protocols

to separately evaluate pose variation, illumination variation,

and the combination variation of both pose and illumina-

tion. Each protocol is evaluated on two types of face recog-

nition: 3D-2D and 2D-2D. Extensive experiments are con-

ducted on UHDB31 using four baseline face recognition

methods. The experimental results indicate the strengths

and weaknesses of each algorithm and show that face recog-

nition under pose and illumination variation is still a chal-

lenging problem.

The contributions of the paper are:

• We acquired the data and created a face dataset that al-

lows evaluation of face recognition algorithms across

poses, illuminations, and resolutions, and facilitates

different experimental configurations, including 3D-

3D, 3D-2D, 2D-2D and 3D reconstruction. The dataset

is publicly available and free for research use.

• We conducted a set of experiments to identify strengths

and weaknesses of several state-of-the-art face recog-

nition algorithms.

The rest of the paper is structured as follows. In Sec-

tion 2, we provide a brief overview of the existing datasets,

including 2D and 3D datasets. Section 3 explains the data

acquisition procedure and data specifications in detail. A

series of experiments is conducted and evaluated in Section

4. Section 5 offers our conclusions.

2. Related Work

Face recognition is one of the most well-studied topics

in computer vision. The advance of face recognition has a

close connection with the number of published datasets. In

the scope of this paper, we provide a brief overview of well-

established datasets in the last decade to highlight their tar-

geted challenges and contrast them to UHDB31. We clas-

sify these datasets into two groups: 2D datasets, and 3D

datasets. A non-exhaustive list of published datasets can be

found in Table 1.

2.1. Two­dimensional Datasets

Two-dimensional datasets are designed for 2D-2D face

recognition experiments, where both the gallery and the

probe are 2D images. They can be classified into two small

groups: uncontrolled and lab-acquired datasets. An uncon-

trolled dataset provides only images and their correspond-

ing labels. The images are varied in pose, illumination,

expression, occlusion and resolution. The most popular

uncontrolled dataset is Labeled Faces in the Wild (LFW),

which contains 13,233 face images of 5,748 subjects col-

lected from the internet. LFW was published in 2007, and

has been a standard benchmark in face recognition for a

decade. However, face images in LFW were collected using

the Viola-Jones face detector, which can only detect frontal

or near-frontal face images. LFW is, therefore, no longer

challenging for recent face recognition algorithms. For ex-

ample, FaceNet [29] achieves 99.63% face verification rate

on LFW. Ng et al. [23] proposed a method to clean up large

data from search queries and created the FaceScrub dataset

with 106,863 images of 530 celebrities. Similarly, Yi et al.

[34] presented the CASIA-Webface dataset with 494,414

images of 10,575 celebrities. VGG-Face [25] dataset was

also collected from the internet, but it focuses on the number

of samples per subject. On average, VGG-Face has 374.8

images per subject, while CASIA-Webface and FaceScrub

have only 46.8 and 201.6 images per subjects, respectively.

FaceScrub, CASIA-Webface, and VGG-Face are only used

for training since they do not provide an evaluation proto-

col. Multiple datasets have been proposed along with their

face recognition challenges. Klare et al. [18] presented IJB-

A dataset and two evaluation protocols that support both

open-set identification and verification. Although IJB-A

includes large variation within an image, it is not a large

scale dataset. It contains only 25,813 images of 500 sub-

jects. MegaFace [17] is the first face dataset that contains

more than one million images. In the MegaFace challenge,

FaceScrub dataset is used as the test set. The difficulty of

MegaFace challenge comes from its one million distractors

added to the gallery. MegaFace is extended to MF2 [22]

dataset, which contains 4,753,320 images of 672,057 sub-

jects. The biggest published dataset is MS-Celeb-1M [13]

with 10 million images of 100,000 subjects.

Unlike the aforementioned datasets, UHDB31 is a lab-

acquired dataset. A lab-acquired dataset provides not only

images and their corresponding labels but also the detailed

variation information (e.g., pose and illumination). Due to

difficulties in setup conditions, few lab-acquired datasets

have been published. Multi-PIE [12], the most popular lab-

acquired dataset, contains 337 subjects, captured under 15

view points and 19 illumination conditions in four recording

sessions for a total of more than 750,000 images. In com-

parison with Multi-PIE, UHDB31 has a wider pose varia-

tion (180◦ in yaw rotation and 60
◦ in pitch rotation), more
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Table 1: Summary of 2D and 3D Datasets with variations in: P : Pose, I: Illumination, E: Expression, O: Occlusion, R:

Resolution, T: Twin (the levels of variation are given in parentheses).

Dataset Year Group # Subjects # Samples Variation

LFW [15] 2007 2D 5,749 13,233 Uncontrolled

FaceScrub [23] 2014 2D 530 106,863 Uncontrolled

CASIA-Webface [34] 2014 2D 10,575 494,414 Uncontrolled

VGG-Face [25] 2015 2D 2,622 982,803 Uncontrolled

IJB-A [18] 2015 2D 500 25,813 Uncontrolled

MegaFace [17] 2016 2D 690,572 1,027,060 Uncontrolled

MS-Celeb-1M [13] 2016 2D 100,000 10M Uncontrolled

MF2 [22] 2017 2D 672,057 4,753,320 Uncontrolled

Multi-PIE [12] 2008 2D 337 750,000 P(15), I(19), E(6)

SCface [11] 2009 2D 130 4,160 P(9)

GBU [19] 2010 2D 437 6,510 I(3)

FRGC v2.0 [27] 2005 3D 466 28,049 I(2), E(2)

BU-3DFE [35] 2006 3D 100 7,500 P(2), E(7)

ND-2006 [9] 2007 3D 888 13,450 E(6)

Bosphorus [28] 2008 3D 105 9,250 P(13), E(34), O(4)

CASIA-3D FaceV1 [5] 2008 3D 123 9,248 P(11), I(5), E(5)

Texas 3DFRD [14] 2010 3D 118 4,596 N/A

3D-TEC [31] 2011 3D 214 856 E(2), T(214)

UMB-DB [6] 2011 3D 143 2,946 E(4), O(6)

Florence Faces [2] 2011 3D 53 212+ P(3)

UHDB11 [30] 2013 3D 23 3,312 P(12), I(6)

UHDB31 (Ours) 2017 3D 77 25,872 P(21), I(3), R(5)

precise pose information, and free for research use. SCface

[11] is a dataset of 4,160 face images of 130 subjects, in

which 1,170 images were captured under nine view points

and the standard illumination condition. Another 2,990

images were acquired in uncontrolled indoor environment

using five video surveillance cameras of various qualities.

Compared to SCface, UHDB31 has more pose and illumi-

nation variations. GBU [19] contains 6,510 images of 437

subjects. GBU face images were captured under frontal

pose, but with three different lighting conditions: indoor,

outdoor and ambient. Compared to GBU, UHDB31 varies

not only in illumination but also in pose.

2.2. Three­dimensional Datasets

Three-dimensional datasets, which also called multi-

modal datasets, are designed for multiple experimental con-

figurations, including 3D-3D, 3D-2D, 2D-2D and 3D recon-

struction. The quality of 3D data depends on the 3D sensor.

Multi-modal datasets have a clear transition before and af-

ter the release of Kinect, a low-cost small-size acquisition

device, in year 2010.

Before the release of Kinect, multi-modal datasets fo-

cused on the quality of 3D facial models. FRGC v2.0 [27]

is the most popular 3D face dataset in the literature. It con-

tains 4,007 facial models and 24,042 images of 466 sub-

jects. These data were captured in 4,007 sessions, and each

session contains one facial model, four controlled images,

and two uncontrolled images. All images were captured

under two expressions and two illuminations. FRGC v2.0

was later extended to the ND-2006 [9] dataset, which con-

tains 13,450 facial models of 888 subjects. BU-3DFE [35]

is the first 3D face dataset focusing on facial expression. It

includes 100 subjects with 2,500 facial expression models

and 2,500 two-view texture images. Each subject performed

seven expressions in front of a 3D face scanner, and two

corresponding facial texture images captured at two view-

points (±45
◦) were associated with each expression shape

model. The Bosphorus [28] dataset represents a new com-

prehensive multi-expression, multi-pose 3D face data en-

riched with realistic occlusions. The dataset is a combi-

nation of 13 poses, 34 expressions, and four occlusions.

In total, it contains 4,625 pairs of facial models and im-

ages of 105 subjects. Similarly, the UHM-DB [6] dataset

was focused on partial occlusions. It contains 1,473 pairs

of facial models and images of 143 subjects. Each sub-

ject was acquired with four different facial expressions, and

with the face partially occluded by various objects such as

eyeglasses, hats, scarves and hands. CASIA-3D FaceV1 [5]
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consists of 4,624 pairs of facial models and images of 123

persons. The dataset is a combination of 11 poses, five il-

luminations, and five expressions. Texas 3DFRD [14] con-

tains 1,149 pairs of high resolution, pose normalized, pre-

processed, and perfectly aligned color and range images of

118 subjects. The 3D-TEC dataset [31] contains 3D facial

data for 107 pairs of identical twins. The Florence Faces

dataset [2] consists of more than 212 facial models and 159

video sequences of 53 subjects. Each subject is scanned

four or five times, including two frontal scans, two profile

scans and a scan with glasses if present. UHDB11 [30] con-

sists of 1,625 pairs of facial models and images of 23 sub-

jects, and each subject was captured 72 times: 12 poses and

six illuminations. In comparison with these 3D datasets,

UHDB31 contains 1,617 facial models and 24,255 images

of 77 subjects captured under 21 poses, three illuminations,

and five resolutions.

After the release of Kinect, multiple 3D datasets were ac-

quired using Kinect (e.g., FaceWarehouse [4], and Kinect-

FaceDB [21]). A complete list of 3D datasets acquired us-

ing Kinect can be found in [10]. Due to the low precision in

depth data, 3D facial models of these datasets do not con-

tain detailed facial geometries (e.g., wrinkles, and eyelids).

Unlike these datasets, UHDB31 provides high quality 3D

data.

3. The UHDB31 Dataset

3.1. Data Acquisition

UHDB31 data were captured using a 3dMD system [1]

that includes seven modular units of 21 cameras and an

industrial-grade flash system. All the cameras are arranged

in a half-ellipse shape with the semi major axis and semi

minor axis of 1.2 m and 1 m, respectively. The participants

were asked to sit in a chair placed in the center of the el-

lipse and look straight forward at the center camera. In a

single capture, 21 pairs of a 180
◦ facial model and a high

resolution images are automatically generated by a single

coordinate system from all synchronized stereo pairs.

Indoor illumination variations are obtained using multi-

ple diffuse light sources, from incandescent light bulbs with

an approximate color temperature of 2,800K. Three indoor

lighting conditions are created by altering the light sources

in three directions, left, center, and right, from the subject

perspective. Figure 1 depicts our data acquisition system.

3.2. Data Specifications

Seventy-seven subjects, 53 males, and 24 females, of dif-

ferent ethnic groups, participated in our data acquisition,

and each subject was captured three times under three light-

ing conditions. Figure 2 illustrates three illumination varia-

tions. Each capture generates 21 pairs of samples of differ-

ent poses. Since the captured 3D facial models are invariant

Figure 1: Depiction of the data acquisition system.

to the illumination variation, only one set of 3D facial mod-

els is retained. Thus, UHDB31 contains 1,617 facial models

and 4,851 raw images in total.

(a) (b) (c)

Figure 2: Illumination variations in 2D images. (a-c) Im-

ages acquired with the light positioned to the left, in front,

and to the right of the subject, respectively.

Since 21 cameras are well-aligned on a grid of size 3 × 7

and cover 180◦ around the subject, the precise pose ground-

truth is measured directly from the camera viewpoints. In

particular, three pitch rotations are evenly distributed from

−30
◦ to 30

◦ while seven yaw rotations are evenly distributed

from −90
◦ to 90

◦. An example of pose variations is shown

in Table 2.

The capture speed of the 3dMD system is approximately

1.5 ms, with the geometry accuracy of less than 0.2 mm

RMS. However, the system needs more than 9 s to ren-

der a high quality 3D facial model. The rendering is pro-

cessed offline. In average, a facial model has 25,000 ver-

tices and 49,500 triangles. Table 3 shows 21 facial models

corresponding to 21 pose images in Table 2.

High resolution 2D images of size 2,048 × 2,448 pixels

are saved in the BMP file format. To evaluate face recog-

nition algorithms on a variety of image qualities, four other
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Table 2: Depiction of the pose variations in 2D images. Rows correspond to seven yaw rotations, and columns correspond to

three pitch rotations.

Yaw

Pitch
−90

◦
−60

◦
−30

◦
0
◦

30
◦

60
◦

90
◦

−30
◦

0
◦

30
◦

Table 3: The 3D facial models corresponding to the 2D images in Table 2.

Yaw

Pitch
−90

◦
−60

◦
−30

◦
0
◦

30
◦

60
◦

90
◦

−30
◦

0
◦

30
◦

sets of data are created by down-sampling the raw images.

Five subsets of different resolutions and average inter-pupil

distances (IPDs) are summarized in Table 4. The mean and

standard deviation of IPDs are computed using manually

annotated landmarks presented in the following subsection.

Figure 3 shows the distribution of IPDs on raw images.

3.3. Facial Landmarks

Facial landmark localization, also known as face align-

ment, is an essential module in a face recognition system.

To facilitate the evaluation of facial landmark localization

algorithms, we manually annotate 12 landmarks for each

2D image and 3D facial model. The 12 landmarks consist

of four inner and outer eye corners, a nose tip, four inner

and outer corners of two nostrils, a nose middle and two

mouth corners. Figure 4 shows examples of 12 landmarks

superimposed on a 2D image and a 3D facial model.

4. Evaluations

4.1. Evaluation Protocols

The multiple types of data and the wide range of poses,

illuminations, and resolutions of UHDB31 enable differ-

ent experimental configurations on face recognition. Three
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Table 4: Five subsets of UHDB31 with five different res-

olutions. IPD: mean and standard deviation of inter-pupil

distances.

Subset Resolution (pixels) IPD (pixels)

UHDB31.R2048 2,048 × 2,448 398.41± 152.14

UHDB31.R1024 1,024 × 1,224 199.20± 76.07

UHDB31.R0512 512 × 612 99.61± 38.03

UHDB31.R0256 256 × 306 49.82± 19.01

UHDB31.R0128 128 × 153 24.91± 9.50

0 100 200 300 400 500 600 700

IPD (pixel)

0

10

20

30

40

50

60

70

80

#
 o

f 
im

a
g

e
s

Figure 3: Distribution of IPDs on raw images.

(a) (b)

Figure 4: Twelve manually annotated landmarks superim-

posed in: (a) a 2D image, and (b) a 3D facial model.

evaluation protocols have been defined, including pose, il-

lumination, and combination, as the standard benchmark of

UHDB31. Each protocol consists of two types of experi-

ments: 2D-2D and 3D-2D. Each experiment is conducted

on five resolution subsets separately to evaluate the impact

of image quality on face recognition methods. The detailed

descriptions of three evaluation protocols are described in

Table 5, in which P01 - P21 denote the 21 poses, P11 is

the frontal pose, and I01, I03, and I05 denote illumination

from the left, center and right light sources, respectively.

The subset of P11 (frontal pose) and I03 (center light) is

used as the gallery in both 3D-2D and 2D-2D experiments.

However, 77 facial models corresponding to P11 are used

as a complement to the gallery in 3D-2D experiments. The

subsets of P01 - P21 and I03 are used as the probes in the

pose evaluation protocol, while the subsets of P11 and two

illuminations I01 and I05 are used as the probes in the illu-

mination evaluation protocol. The probes used in the com-

bination evaluation protocol are the subsets of all combina-

tion of 21 poses and three illuminations. The subset used as

the gallery is removed from probes.

Besides the experimental configurations presented in Ta-

ble 5, UHDB31 can be used for 3D-3D or partial 3D-

3D face recognition. Although the primary purpose of

UHDB31 is face recognition evaluation, we can also apply

the dataset in different evaluation tasks, including face de-

tection, landmark localization, 3D pose reconstruction, and

gender estimation.

4.2. Baseline Methods

For 2D-2D experiments, three face recognition methods,

including a commercial off-the-shelf (COTS) software, a

well-known face recognition system VGG-Face [25], and

a face recognition pipeline UR2D, are used as the baseline

methods. The UR2D pipeline is a combination of five state-

of-the-art modules, including face detection using DPM

Headhunter [20], 3D face reconstruction using UH-E2FAR

[7], pose estimation using GoDP [33], texture lifting using

the method proposed by Kakadiaris et al. [16], and feature

extraction using PRFS [8].

For 3D-2D experiments, a face recognition pipeline

UR3D2D is used as the baseline method. UR3D2D pipeline

has the same modules as UR2D. However, UR3D2D di-

rectly uses 3D facial models for pose estimation and texture

lifting on the gallery images.

The code for VGG-Face was downloaded from the au-

thor’s website [26]. Cosine distance is used for matching

since it provides better results than L2 distance in all three

systems.

4.3. Evaluation Results

In this section, we report the results of pose protocol on

UHDB31 using the baseline face recognition methods and

discuss the influence of pose and resolution on face recog-

nition performance. In all the following tables, we drop the

percentage sign for simplicity.

Table 6 shows the rank-1 identification rates of four base-

line methods evaluated on pose protocol. The rank-1 iden-
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Table 5: Summary of evaluation protocols: P01 - P21 denote 21 poses corresponding to 21 poses in Table 2 (following the

order top to bottom, then left to right). P11 is the frontal pose; I01, I03 and I05 denote illumination from the left, center and

right light sources, respectively. A pair of samples includes a 2D image and its corresponding 3D facial model.

Protocol Type
Gallery Probes

Pose Light # Samples Poses Lights # Samples

Pose
2D-2D P11 I03 77 P01 - P10, P12 - P21 I03 1,540

3D-2D P11 I03 77 pairs P01 - P10, P12 - P21 I03 1,540

Illumination
2D-2D P11 I03 77 P11 I01, I05 154

3D-2D P11 I03 77 pairs P11 I01, I05 154

Combination
2D-2D P11 I03 77 P01 - P10, P12 - P21 I01, I05 3,080

3D-2D P11 I03 77 pairs P01 - P10, P12 - P21 I01, I05 3,080

Table 6: Rank-1 identification rates of four baseline methods evaluated on the pose protocol. The four numbers in each cell

of the table are in the following order: COTS, VGG-Face, UR2D and UR3D2D. The best result for each pose is highlighted

in bold.

Pitch

Yaw
−90

◦
−60

◦
−30

◦
0
◦

30
◦

60
◦

90
◦

30
◦

3.9/30.4/

57.9/58.7

41.8/81.0/

94.8/94.8

78.4/99.0/

98.2/98.4

89.1/96.9/

98.7/99.0

80.0/99.2/

98.4/98.7

44.7/86.5/

95.6/95.8

11.9/45.5/

55.6/56.4

0
◦

9.9/64.9/

86.5/86.8

54.5/95.8/

99.2/99.5

92.2/100.0/

99.7/100.0
-

90.6/100.0/

98.7/99.0

66.5/99.5/

99.5/99.7

13.5/76.1/

87.8/87.8

−30
◦

2.9/30.7/

56.9/56.9

14.3/81.8/

93.5/93.8

65.2/94.6/

98.7/99.0

91.4/97.1/

99.7/100.0

81.6/97.4/

98.7/99.0

19.2/84.7/

97.7/97.9

5.5/36.1/

68.3/68.8

tification rates are saturated on near-frontal poses. VGG-

Face, UR2D and UR3D2D achieve 98%, 98.9%, and 99.1%

rank-1 identification rates on an average of nine near-frontal

poses (P07 - P15), respectively. The COTS achieves only

47.9% on average because the software fails to detect large

pose faces. Since both UR2D and UR3D2D utilize a 3D

face reconstruction module, they achieve better results than

VGG-Face in terms of pose. By using 3D facial models,

UR3D2D improves UR2D result slightly.

Image quality also affects the performance of face recog-

nition algorithms. As shown in the Fig. 5, rank-1 identifi-

cation rates of baseline methods are significantly increased

when the image resolution is changed from 128 × 153 pix-

els to 256 × 306 pixels. The increment is saturated when

the image resolution reaches the size of 1,024 × 1,224 pix-

els. Face recognition methods based on deep convolutional

neural networks require rescaling the input face image into

a predefined size (e.g., VGG-Face uses the input image size

of 224 × 224 pixels). When the face size is larger than the

predefined size of each face recognition method, the perfor-

mance stops improving.

In summary, the experimental results allow us to iden-

tify the strengths and weaknesses of four baseline methods.

We hypothesize that one of the reasons the COTS has poor

results on UHDB31 because its face detection module fails

0.44

0.49

0.54

0.59

0.64

0.69

0.74

0.79

0.84
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0.94
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n
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n
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COTS VGG-Face UR2D UR3D2D

Figure 5: The growth of rank-1 identification rates along

with the increase of image resolution.

on large face poses. VGG-Face proves their performance on

near-frontal poses. Both UR2D and UR3D2D have verified

their strengths on large face poses in the evaluation on the

pose protocol due to the improvement of the 3D reconstruc-

tion method [7]. Face recognition performance is improved

if we use 3D facial models as a complement for gallery im-

ages. However, the improvement is not distinctly shown in
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our experiments. It appears that UH-E2FAR module esti-

mates an accurate 3D model to be used for recognition.

5. Conclusion

In this paper, we presented UHDB31, a face dataset with

two types of data and rich ground-truth information, includ-

ing poses, illuminations, resolutions and landmarks. Ad-

ditionally, we defined three evaluation protocols for both

3D-2D and 2D-2D face recognition. The evaluation proto-

cols allow identification of the strengths and weaknesses of

face recognition algorithms under pose, illumination, and

resolution variations. Our experiments with four baseline

methods demonstrated that face recognition performance is

limited under large face pose. In addition to 3D-2D and 2D-

2D face recognition, UHDB31 can also be applied to other

evaluation tasks.

UHDB31 has the follow limitations: (i) small number

of subjects, (ii) limited number of lighting conditions, ab-

sence of (iii) facial expressions and (v) occlusion. In our

future work, we will focus on addressing UHDB31 limi-

tations by complementing the dataset with additional data

captured from more subjects and multiple acquisition con-

ditions, especially outdoor lighting conditions.
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