
Learning to Identify while Failing to Discriminate

Jure Sokolić
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Abstract

Privacy and fairness are critical in computer vision ap-

plications, in particular when dealing with human identi-

fication. Achieving a universally secure, private, and fair

systems is practically impossible as the exploitation of ad-

ditional data can reveal private information in the origi-

nal one. Faced with this challenge, we propose a new line

of research, where the privacy is learned and used in a

closed environment. The goal is to ensure that a given entity,

trusted to infer certain information with our data, is blocked

from inferring protected information from it. We design a

system that learns to succeed on the positive task while si-

multaneously fail at the negative one, and illustrate this with

challenging cases where the positive task (face verification)

is harder than the negative one (gender classification). The

framework opens the door to privacy and fairness in very

important closed scenarios, ranging from private data ac-

cumulation companies to law-enforcement and hospitals.

1. Introduction

Advances in machine learning and data science allow to

develop products and services that leverage individuals data

to provide valuable services. At the same time care must

be taken to provide an appropriate amount of protection for

users in order to adhere to various legal and ethical con-

straints.

In this work we envision the following scenario: An en-

tity (e.g., the company or the government) wants to offer a

service to its users based on their data, (e.g., an ATM ver-

ify the card holder is the actual owner). However, some

users want to be able to prevent the entity from inferring

certain sensitive information from their data (e.g., the gen-

der of the person withdrawing money from the ATM). The

need for this may come from security, fairness, or privacy

concerns. For example, a hospital might be allowed to pro-

duce diagnosis on the patient, without being able to infer

some other irrelevant condition of the subject. We may al-

low identity verification for security purposes, but we want

to be sure that we can not be discriminated based on gen-

der, race, or age, guaranteeing that such information can not

even be inferred from the provided data. This motivates the

main question that we try to answer in this work:

How can we design a (human/face identifica-

tion/verification) system that can provide a valuable

service to a user and offer protection to their sensitive data

at the same time?

The benefits of such a system are twofold. First, the

users will be more comfortable because their privacy is re-

spected for the tasks the user wants to block. Second, the

system will offer the entity offering the service a principled

approach to prove that they are not using/inferring users’

sensitive information in case of legal/ethical disputes.

Before describing the proposed framework we need to

further address two issues that motivate our proposed sys-

tem. First, can we design a system that is universal, mean-

ing capable to prevent the undesired task by any other sys-

tem? And second, is the problem that we are trying to solve

trivial? The negative answers to these questions are impor-

tant motivations to the framework here introduced.

Regarding the first question, there are many examples

in practice where additional sources of information lead to

attacks on the systems that were designed to be private.

For example, the authors in [18] showed how to break the

anonymity of the publicly released Netflix Prize Dataset.

They achieved that by using other public datasets and an ap-

propriate algorithm. It has been shown in [20] that a person

in an image can be identified based on the social network

graph and the photos of other users even when the faces in

the images are obfuscated. The source and power of this

additional data may be very hard to anticipate. Another ex-

ample is the unexpected possibility to infer cardio-vascular
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health, a task we might want to protect, from regular credit

scores as those commonly provided to get mortgage autho-

rization [14].

The impossibility of universal privacy protection just

exemplified has also been studied extensively in the do-

main of differential privacy [4], where a number of authors

have shown that assumptions about the data or the adver-

sary must be made in order to be able to provide utility

[6, 15, 16]. Similarly, in the fairness domain the authors

in [12] propose a method to remove discrimination from

any learned predictor and note that their fairness objective

is not universal, but rather domain specific. As a conse-

quence their framework does not aim to certify fairness but

rather provide a set of tools which can be used to improve

the fairness of a system.

On the other hand, one may argue that users can prevent

inference of sensitive variables by simply sharing less data.

For example, [2] shows that if the feature vector represent-

ing a face image is sufficiently low dimensional, one can

infer the gender of the person, but not his/her identity. How-

ever, one may also be interested in face verification, which

is not possible if the features do not provide sufficient in-

formation, and be agnostic to gender at the same time. This

task is much harder, meaning the desired task (verification)

is harder than the protected task (gender detection), and the

appropriate assumptions must be made, as we will be shown

in the sequel.

In view of the issues presented above we propose a

novel framework that rather than being universal, assumes

a closed environment where privacy with respect to partic-

ular sensitive variables is desired. The goal is to ensure that

a given entity, trusted to infer certain information with our

data, is blocked from inferring sensitive information from

it. For example, a company might be allowed to use face

verification (the positive task), without being able to infer

the irrelevant gender of the subject (negative task). Simi-

larly, a company can guarantee they internally are not using

the provided data for any undesired task, an important goal

that is not contradicting the virtually impossible challenge

of blocking everybody from the undesired task.

To achieve this, we assume an environment where the

entity declares a set of (training) data and a set of tools (ma-

chine learning algorithms) that will be used to provide a

certain service (positive task) to users. We then design a

data sanitization function whereby users provide data to the

entity that prevents inference of sensitive variables (nega-

tive tasks) within the constrained environment. This general

idea is visualized in Figure 1.

The proposed framework is describe in detail in Sec-

tion 2. A critical application in face verification is presented

in Section 3. Related literature is reviewed and discussed in

Section 4. Finally, the paper is concluded in Section 5.

2. Proposed Framework

Our framework consists of a closed environment with a

set of data Z and a set of algorithms A. In particular, we

assume that the training set consist of m training examples:

Z = {zi}
m
i=1. An element of Z is a triplet z = (x, t, s),

where x ∈ X represents a feature vector in some feature

space X , t is a label associated with utility (positive task)

and s is a label associated with sensitive data (negative

task). For the sake of simplicity we assume that t and s are

binary, i.e., t, s ∈ {−1, 1}. The set of algorithms A consists

of algorithms A that map the training set to a predictor

A : Z 7→ qA(Z) A ∈ A , (1)

where the predictor is of the form

qA(Z) : X 7→ {−1, 1} . (2)

The training data and the algorithms are used to provide a

service to the users, where the users’ data consists of feature

vectors x and it is denoted by U = {(x)i}
n
i=1. In particular,

the entity provides a service to the user via the prediction of

the utility variable t. However, since the feature vector may

also be used to predict the sensitive variable s, care must be

taken to provide protection against that. As discussed be-

fore, on one hand, a user might not use the service because

of the concerns of revealing her sensitive information. On

the other hand, the entity wants to be able to prove that they

are not misusing users data by predicting the sensitive vari-

able s against the user’s preference, or for example due to

fairness. We assume that the training set has no privacy re-

strictions.

As discussed in the Introduction, giving guarantees about

non-identifiability of certain variables in the “open world”

where new data or new algorithms are readily available is

very likely impossible. Therefore, what we want to do is to

design mechanisms that will prevent prediction of sensitive

variables within this important closed environment. Such

methods are very relevant in practice: i) they create an ad-

ditional level of trust between the users and the entity; ii) it

gives the entity an elegant way to certify that sensitive infor-

mation is not being abused within their closed environment;

and iii) can provide additional value such as fairness.1

We require the entity to define a utility metric, a pri-

vacy metric, and to design a data sanitization function that

will achieve privacy while providing utility. Of particular

challenge is the case when inferring s (private data) is actu-

ally easier than inferring the actual authorized information

t. This is here addressed for the first time.

1Such a closed environment can be achieved for example by specifying

what algorithm has access to what data in a manner similar to the imple-

mentation of human access control in digital environments.

2538



Closed	environment	

User	data	

Posi1ve	task	

Nega1ve	task	

Sani1za1on	

Posi1ve	task	

Nega1ve	task	

En1ty	

Posi1ve	task	

Nega1ve	task	

Figure 1. The entity provides a service to its users in a closed environment with a set of data and a set of algorithms. Given a sensitive

variable that may be infered from raw user data, the entity designs a data sanitization function, which transformes users’ data in such a way

that the sensitive variables may not be infered whithin the closed environment. The data sanitization function is then either shared with the

user who can now share sanitized data or it is applied to the data before the users’ data enters the entity.

Utility Metric, Privacy Metric and Data Sanitization.

First, we will assume that the entity has a test set Z ′ with m′

samples where the samples are drawn from the same distri-

bution as the training examples. We define both the utility

metric and the privacy metric based on the testing set. This

is needed since a representative test set is exploited to gain

confidence about the utility of the machine learning model.

The same test can be used to verify that given the training

set Z and the set of algorithms A, no meaningful conclu-

sion about the sensitive variable s can be drawn from the

data.

The entity will then design a data sanitization function

f : X 7→ X , (3)

such that both utility and privacy will be satisfied. Note that

f maps to the same feature space X so that sanitized data

f(x) may be used as the input to a predictor qA(Z). We will

evaluate the data sanitization function on the sanitized test

set which will be denoted as Z ′
f :

Z ′
f = {(f(x), s, t)) : (x, s, t) ∈ Z ′}. (4)

In particular, the utility metric of the closed system will be

denoted by

u(A,Z,Z ′
f ) ∈ [0, 1] , (5)

and the privacy metric will be denoted as

p(A,Z,Z ′
f ) ∈ [0, 1] . (6)

The goal is to design such f that both utility and privacy

metrics are as close to 1 as possible.

For example, denote by CAt(A,Z,Z ′
f ) the classification

accuracy of the utility task of the predictor qA(Z) trained on

the training set Z and evaluated on the sanitized test set Z ′
f :

CAt(A,Z,Z ′
f ) =

∑

(f(x),s,t)∈Z′

f

(

1− ℓ(qA(Z)(f(x)), t)
)

|Z ′
f |

,

(7)

where ℓ is a 0-1 loss. Then we might define the utility metric

as the classification accuracy of the best possible predictor

given the training set Z and the set of algorithms A:

u(A,Z,Z ′
f ) = max

A∈A
CA(A,Z,Z ′

f ) . (8)

Similarly, denote by CAs(A,Z,Z ′
f ) the classification accu-

racy of the sensitive task of the predictor qA(Z) trained on

the training set Z and evaluated on the sanitized test set Z ′
f :

CAs(A,Z,Z ′
f ) =

∑

(f(x),s,t)∈Z′

f

(

1− ℓ(qA(Z)(f(x)), s)
)

|Z ′
f |

.

(9)

Assume also that the prior probabilities of the sensitive la-

bels are balanced, p(s = 1) = p(s = 0) = 0.5. Then

the privacy metric can be defined as the deviation of the the

most accurate predictor given the training set Z and the set

of algorithms A from the “random” classifier:

p(A,Z,Z ′
f ) = min

A∈A
1− 2 · |CAs(A,Z,Z ′

f )− 0.5| .

(10)

Note that the definitions of privacy and the utility are ap-

plication specific. For example, we may define the utility

or privacy metrics via averages over different users. How-

ever, we could use more restrictive definitions where utility

or privacy are defined per user. The novel framework here

introduced is independent of the particular selection. A con-

crete example is presented in Section 3.

The entity might now collect users data via the data san-

itization function f into the environment with training data

Z and with the set of algorithms A. The closed environ-

ment is certified with the utility u(A,Z,Z ′
f ) and the pri-

vacy p(A,Z,Z ′
f ), which may be communicated to the user

or a possible regulatory entity.

We have presented a framework to protect users privacy

based explicitly on the predefined data and algorithms. The

guarantees do not extend to algorithms outside A and addi-

tional data (side information) outside Z . Although these
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properties would be desirable, as previously described a

large body of literature suggests that universal privacy pro-

tection is only possible at the expense of utility [15].

3. Face verification and gender recognition

from face images

We now demonstrate the proposed framework with an

application involving face verification2 and gender classifi-

cation. In particular, we will consider the face verification

as the utility task and the gender classification as the sensi-

tive task. This may be useful in various applications where

we want to re-identify users, but want to prevent gender dis-

crimination/information within the system. This of course

goes beyond fairness, where the goal is only to make sure

that the system’s performance is independent of gender, but

not to block the gender detection.

Note that for the opposite case, where gender classifica-

tion is the utility task and face verification is the sensitive

task is also relevant. However, in this case the undesired

task can be easily blocked by simply using a sufficiently

low dimensional projection, as shown in [2], and is there-

fore less challenging.

3.1. Dataset and Tools

3.1.1 Dataset

We use the FaceScrub dataset [19], containing approxi-

mately 100,000 face images of 530 individuals, with 265

males and 265 females. For each image, x is obtained by

using the features of the last layer of the VGG-face network

[21] projected to dimension 1000 using principal compo-

nent analysis. Associated with each feature is the identity

label t and the gender label s. Note that our positive task is

verification and not identification, therefore, given two ex-

amples (x, t, s) and (x′, t′, s′) we want to establish either

t = t′ or t 6= t′ based on the features x and x′. The negative

task is gender classification where the features x are used to

predict the gender s.

We create three subsets from the original dataset:

• Training set Z = {(x, t, s)i}
m
i=1, which represents

data in the closed environment and is used to design

the data sanitization function;

• Test set Z ′ = {(x, t, s)i}
m′

i=1, which is used to evaluate

the utility and privacy metrics. The sanitized version of

the test set is denoted as Z ′
f = {(f(x), t, s)i}

m′

i=1;

• User set U = {(x)i}
n
i=1, which represents users’ data.

The three sets Z , Z ′ and U have a balanced ratio of males

and females and do not share identities.

2Note that face verification verifies if two images belong to the same

person (consider for example the ID verification at the airport or the en-

trance to a facility). It does not identify a person and therefore does not

reveal gender.

3.1.2 Metrics

We use the Area Under the Curve (AUC) of the Receiver

Operating Characteristic (ROC) curve to measure success

of the face verification task and the gender classification ac-

curacy (CA) to measure success of the gender classification

task. Therefore, the utility and the privacy metrics for this

particular application are defined as

u(A,Z,Z ′
f ) = AUC(Z ′

f ) (11)

and

p(A,Z,Z ′
f ) = min

A∈A
1− 2 · |CAs(A,Z,Z ′

f )− 0.5| ,

(12)

respectively.

3.1.3 Algorithms

We test using 3 algorithms, helping us to present the pro-

posed framework and not just an instance of it:

• Verification algorithm (VA): it takes two feature vec-

tors and it outputs the cosine similarity between the

two vectors;

• Support Vector Machine (SVM) classifier;

• Random Forest (RF) classifier.

Details of SVM and RF training. The training proce-

dure of the classifier works as follows: Provided data is ran-

domly split into training and validation sets. The predictor

is trained on the training set for various hyper-parameter set-

tings and the performance on the validation set is recorded.

The hyper-parameters corresponding to the best perfor-

mance on the validation set are chosen and the predictor

is trained on the entire dataset.

We use the linear SVM and RF implemented in [22]. The

constant C associated with the linear SVM is picked from

the set {1e − 3, 1e − 1, 1, 100}. For the RF classifiers we

consider number of trees in {25, 50, 100} and tree depth is

set to 3, 5 or it is set automatically by the algorithm.

3.1.4 Data Sanitization

We consider two data sanitization techniques:

• Data Sanitization with Linear Projection:

f(x) = Px , (13)

where P is a linear projection matrix.
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• Data Sanitization with Maximum Mean Discrepancy

Transformation:

f(x) = x+ n(x) , (14)

where n(x) is a “noise” vector that depends non-

linearly on x.

The data sanitization function are designed so that they

maximize the privacy and minimally affect the utility.

Data Sanitization with Linear Projection. The sanitiza-

tion function with linear projection P is defined as

f(x) = Px . (15)

The linear projection P is obtained by iterating the follow-

ing steps, where P is set to identity initially:

1. The features x in the training set Z and the test set Z ′

are transformed by P : x = Px.

2. An SVM classifier is trained on the training set Z to

predict the sensitive variable s. SVM training details

are provided in the paragraph above.

3. A linear projection P ′ is constructed so that the kernel

of the projection corresponds to the weight vector of

the trained SVM. In this way the projection “collapses”

the dimension of the space where the training samples

are linearly separable.

4. Projection P is updated to include the kernel of the

projection P ′: P = P ′P .

The process is repeated until we achieve a sufficiently low

classification accuracy on the test set (we used 55% in our

case).

The trade-off between utility and privacy is achieved by

increasing or decreasing the dimension of the kernel of the

projection P .

Data Sanitization with Maximum Mean Discrepancy

Transformation. We extend the technique proposed in

[8], which uses the Maximum Mean Discrepancy (MMD)

statistics [10]. It is originally used for image style transfer

using convolutional neural networks.

The sanitization function is defined as

f(x) = x+ n(x) , (16)

where n(x) is obtained as follows: First a dictionary D is

constructed from the feature vectors x in the training set Z .

We set n(x) to be a linear combination of the features in the

training set: n(x) = Dθ(x) where θ(x) is the vector of co-

efficients. The central part of the method is the computation

of the parameter vector θ(x), which we describe next.

We use the features x from the training set Z to construct

two subsets: X+ = {x : (x, s, t) ∈ Z, s = 1} and X− =
{x : (x, s, t) ∈ Z, s = −1}, which correspond to the two

classes associated with the sensitive label. Then for each

user’s feature vector x we determine randomly the target

class s′ ∈ {−1, 1} and define the cost function

c(θ(x)) = s′ ×





1

|X+|

∑

x+∈X+

k(x+, x+Dθ(x))

−
1

|X−|

∑

x−∈X−

k(x−, x+Dθ(x))



 , (17)

where k(x, x′) is the kernel function. We choose k(x, x′)
to be a Gaussian kernel, k(x, x′) = exp(−‖x− x′‖22/2σ

2)
with parameter σ = 0.001 in our experiments.

The value of θ(x) is obtained by maximizing the cost

function c(θ(x)):

max
θ(x)

c(θ(x)) . (18)

The optimization problem is solved by gradient descent us-

ing step size 0.05 and 10,000 iterations.

Intuitively, a large positive value of

1

|X+|

∑

x+∈X+

k(x+, x+Dθ(x))

−
1

|X−|

∑

x−∈X−

k(x−, x+Dθ(x)) (19)

indicates that x+D(θ) resembles the data in X+, and a large

negative value of (19) indicates that x + Dθ(x) resembles

the data in X−. Therefore, the optimization problem in (18),

where s′ ∈ {−1, 1}, can be interpreted as a non-linear noise

model that changes feature x to be close to either |X+| or

|X−|.

3.2. Results

We now explore various scenarios where we prevent gen-

der classification without compromising verification within

a closed environment. In all the cases we will assume that

the training set is part of the closed environment. We will

then consider the different examples of data sanitization

functions and the different algorithms allowed in the closed

environment.

Baseline. First, we consider a baseline scenario, where

the closed environment uses the training set Z and all three

algorithms: A = {VA, SVM,RF} and does not do any data

sanitization. We report the values of the utility metric and

the privacy metric as measured on the test set Z ′. We also
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report the gender classification accuracy of the SVM clas-

sifier, the gender classification accuracy of the RF classifier

and the verification AUC on the user data. The results are

reported in Table 1.

Note that the utility metric is close to 1 and the privacy

metric is close to zero. This is expected as no data saniti-

zation is used. The gender classification accuracies on the

data in the user set are high, which implies low privacy, and

the verification AUC on the user data is also high, which

implies high utility.

Case 1: Linear sanitization and SVMs. Here we set

the closed environment to include the training set Z , algo-

rithms: A = {VA, SVM}, and the linear sanitization func-

tion for the users’ data. The values of the utility metric and

the privacy metric as measured on the test set Z ′
f are re-

ported in Table 2. The gender classification accuracy of the

SVM classifier and the verification AUC on the user data

are reported as well. Note that the the gender classifica-

tion accuracy of the RF classifier is not reported because

RF classifier is not in the closed environment.

The utility metric in this case if very close to the base-

line. Therefore, the utility is preserved by the data sani-

tization function. The privacy metric, on the other hand,

is much higher than in the baseline example, which means

that gender recognition does not perform well on the users’

data. These observations are also supported by a low gender

classification accuracy of the SVM classifier and the veri-

fication AUC on the user dataset, which dropped for only

0.02% compared to the baseline. Therefore, we have simul-

taneously achieved privacy (and gender fairness as a conse-

quence) and utility within the specified environment.

Case 2: MMD sanitization, SVMs and RFs. Now we

extend the closed environment from case 1 to include the

stronger RF classifiers: A = {VA, SVM,RF}. The lin-

ear sanitization function is not effective when used with the

RF classifiers, therefore we use the MMD data sanitization.

The results following the format of the baseline and case 1

are presented in Table 3.

Note that the utility metric and the privacy metric are

slightly lower than in the case 1. Nevertheless, the verifica-

tion AUC on the user dataset dropped by 1.03% compared

to the baseline, whereas the SVM and RF gender classi-

fiers trained in the closed environment achieved accuracies

50.27% and 53.84%, respectively. We can claim that the

data sanitization is therefore effective.

3.3. Necessity of the Closed Environment

Finally, we show experimentally that the close environ-

ment assumptions is necessary in the presented scenario.

In particular, we create an additional adversary set ZA
f =

{(f(x), t, s)i}
m
i=1, which is sanitized by one of the sanitiza-

tion functions and does not share identities with the training

set, test set or the user set. We then violate the closed envi-

ronment assumption and train various classifier on the gen-

der classification task using the adversary set as the training

set. The gender classification accuracy results on the user

set are reported in Table 4 for different scenarios (baseline,

linear sanitization and MMD sanitization).

Note that in the case of linear sanitization and in the

case of MMD sanitization the gender classification accu-

racy is significantly higher than 50% for both the SVM and

the RF classifier. The sensitive information can therefore

be exposed by leveraging outside data (side information).

The reason for this is that data sanitization “removes” in-

formation relevant for gender classification that is present

in the training set. The adversary set contains information

about gender that is complimentary to the information in the

training set and is not captured by the sanitization function.

From this perspective a closed environment is very well mo-

tivated and our work addresses this for the first time.

4. Related Work

While the concept of closed environment privacy as here

defined is new, and the formulation presented in the previ-

ous section should be considered as one possible realization

of it, it is related to other contributions in the literature. We

give a review of some of these works next.

Privacy. The privacy problem has been widely studied in

the data mining and database communities, where differen-

tial privacy [4] is one of the most popular approaches.

Differentially private data release mechanisms ensure

that an adversary may not establish a presence or absence

of an individual in a database [24]. An important prop-

erty, emphasized in the differential privacy literature, is the

fact that there is no need for assumptions about the side

information of an adversary. However, such universality

comes at an expense of utility, as shown in [6, 15, 16]. Our

proposed framework differs from the differential privacy

framework by assuming a closed environment where the

data and tools are predefined/pre-trained. A consequence

is that we can maintain utility, while still offering privacy

within the closed environment.

Differential privacy has also been applied to training of

machine learning models where the goal is to keep the train-

ing data private while learning the parameters of the model,

e.g., [23, 1]. A successful attack using generative adversar-

ial networks on differentialy private training mechanisms

has been proposed in [13]. Our framework differs from

these models in the sense that we propose data sanitization

mechanisms and privacy for user’s data and not for training

data.

The Pufferfish framework [16] defines privacy with re-

spect to a set of potential secrets and with respect to a set of
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Table 1. Baseline. Setup: f(x) = x, Z , A = {VA, SVM,RF}.

User data

Utility metric Privacy metric Gender acc. (SVM) Gender acc. (RF) Verification AUC

0.9607 0.0672 96.73 % 95.37 % 96.10 %

Table 2. Case 1. Setup: f(x) = Px, Z , A = {VA, SVM}.

User data

Utility metric Privacy metric Gender acc. (SVM) Gender acc. (RF) Verification AUC

0.9600 0.8892 45.81 % / 96.08 %

Table 3. Case 2. Setup: f(x) = x+ n(x), Z , A = {VA, SVM,RF}.

User data

Utility metric Privacy metric Gender acc. (SVM) Gender acc. (RF) Verification AUC

0.9493 0.8713 50.27 % 53.84 % 95.07 %

Table 4. Gender classification accuracy on the user set using clas-

sifiers trained on the adversary dataset.

SVM RF

Baseline 94.13 % 94.90 %

Linear sanitization 81.52 % 86.99 %

MMD sanitization 78.24 % 79.90 %

assumptions about the knowledge of a potential adversary.

Similarly to our framework, this framework constrains the

problem to a particular secret and assumes an adversary has

a limited prior knowledge. In our framework we explicitly

constraint a potential adversary by defining the training data

and the set of algorithms. Moreover, we also propose two

techniques for data sanitization that are based on data and

achieve privacy and utility within a closed environment.

A deep learning architecture for privacy-preserving mo-

bile analytics has been proposed in [2]. Their main tools is

dimensionality reduction of shared features, which allows

them to prevent the success of hard tasks (person identifi-

cation), where a higher feature dimensionality is required.

However, such methods do not work if we want to disable

an easier task (e.g, gender classification).

The authors in [25] are concerned with image filters that

reduce discriminability of a particular classification task

while preserving discriminability of another. Their methods

differ from ours as they focus on discriminability of images

for people and not algorithms. Similarly, the work in [11]

proposes minimax filters that preserve privacy while pro-

viding utility and apply their framework on the application

that allows face expression classification and prevents gen-

der classification. However, they do not consider the case of

adversarial data set that allows to train a relatively accurate

gender classifier and is the main motivation for the closed

environment, as demonstrated in Section 3.3.

Fairness. The goal of fairness in machine learning is to

ensure that predictions are not biased or discriminatory [5].

To achieve fairness we may regularize the feature represen-

tations [27, 7, 17] or design predictors in a way that they

obey the fairness constraints [12, 26].

A fair representation with respect to a certain variable

does not necessarily imply privacy or non-identifiability of

this variable. On the other hand, fairness can automati-

cally result from the here proposed framework. Certain

approaches such as the variational fair auto-encoder [17]

or a censored representation trained using an adversary [7]

also achieve non-identifiability. These methods can poten-

tially be used in our proposed framework for closed privacy.

However, our focus is not on a particular method or algo-

rithm but rather on a wider framework that may encompass

various algorithms.

Other. An orthogonal direction that offers privacy is ho-

momorphic encryption [9], where models are trained and

tested using encrypted data, and the prediction results are

also returned in an encrypted form. Homomorphic encryp-

tion has been applied to neural networks in [3]. Such homo-

morphic encryption schemes are extremely computation-

ally inefficient. Our proposed framework is as efficient as

the desired utility, and again its goal is to block the entity

from extracting protected information and not to block oth-

ers from accessing data (encryption).

5. Conclusions

In this work we have introduced a framework that pro-

vides privacy to users within a closed environment and

demonstrated its usage in an application where the face ver-

ification is possible and the gender classification is blocked.

We also demonstrated that without the closed environment
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assumption the privacy can not be guaranteed. There are

many possible extension to the presented framework. In

particular, it may be interesting to design methods that

would allow sharing of users’ data between various closed

environments in a way consistent with privacy guaran-

tees. Another relevant extension is to adaptive environments

where users’ data is used internally to improve the models.
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