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Abstract

In this paper, we introduce a new regularization tech-

nique for transfer learning. The aim of the proposed ap-

proach is to capture statistical relationships among convo-

lution filters learned from a well-trained network and trans-

fer this knowledge to another network. Since convolution

filters of the prevalent deep Convolutional Neural Network

(CNN) models share a number of similar patterns, in order

to speed up the learning procedure, we capture such cor-

relations by Gaussian Mixture Models (GMMs) and trans-

fer them using a regularization term. We have conducted

extensive experiments on the CIFAR10, Places2, and CM-

Places datasets to assess generalizability, task transfer-

ability, and cross-model transferability of the proposed ap-

proach, respectively. The experimental results show that the

feature representations have efficiently been learned and

transferred through the proposed statistical regularization

scheme. Moreover, our method is an architecture indepen-

dent approach, which is applicable for a variety of CNN

architectures.

1. Introduction

The CNN models are found to be successful at var-

ious computer vision tasks such as image classification

[14, 27, 28], object detection [22], image segmentation [19,

21], and face recognition [20], where large-scale datasets

[24, 32, 20] are available. Nevertheless, the performance

of CNN models significantly reduces, when training data

is limited or the domain of the training set is far from the

test set. Today, the most successful and practical solution

to address lack of annotated large dataset is training the

networks on large-scale annotated datasets like ImageNet

[24] and Places [32], then finetuning these pre-trained net-

works for specific problems. Thanks to community, the pre-

trained models of well-known architectures like AlexNet

[18], VGG-16 [27], GoogLeNet [28], and ResNet [14] can

be found available online. However, when some architec-

tural changes are needed, these pre-trained networks can-

not be used. For such cases, it is necessary to train models

on large datasets, then, finetune for the particular problem.

Unfortunately, while getting nearly human performances on

a lot of applications with these models, training these net-

works on large datasets is still a significant problem and a

very time consuming process.

With recent advances in deep learning such as Resid-

ual Learning [14], successful networks have become more

and more deep, and training these models become harder in

terms of complexity and time. To find a solution for this

problem, inspired by What makes a good detector? [11],

we have investigated What makes a good CNN filter? Two

successful CNN models, AlexNet [18] and VGG-16 [27],

are analyzed from a statistical perspective, and we realized

that these models show similar patterns and redundancies.

In addition to our findings, in [7], authors show that 95%

of weights of neural networks could be predicted without

any reduction in accuracy. This leads us to the idea that we

can use these redundancies and patterns for learning better

representations quickly by transfer learning. Similar to the

methods used in [2, 4, 11], we introduce a regularization

term for transferring the statistical information to improve

the learning scheme. First, the statistical distribution of con-

volution filters from a well-trained network is learned with

a Gaussian Mixture Model. Next, the newly trained model

is encouraged to show similar statistics with source mod-

els using the regularization term. Extensive experiments on

the CIFAR10 [17], Places2 [32], and CMPlaces [4] datasets

show that the proposed approach is generalizable and the

networks can quickly learn a representation with statistical

regularization, which could efficiently be transferred to an-

other task and cross-domains. The overview of our pro-

posed method can be seen in Figure 1. The rest of the pa-

per is organized as follows: in Section 2 related works are

summarized, in Section 3 our detailed statistical analysis is

reviewed and the regularization term is introduced, in Sec-

tion 4 experimental results are presented and discussed, and

finally in Section 5 the paper is concluded.
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Figure 1: Overview of the proposed system. The blue (top) network is a well-trained CNN where its distribution is learned

via GMM. When new red (bottom) network being trained, along with the classification loss, the new regularization term∑
λ · R(w) that measures the statistical difference of two distributions are minimized. The statistical knowledge could be

transferred from source CNN to target CNN with our regularization term. Best viewed in color.

2. Related Work

Network Distillation: The aim of network distillation

approaches are transforming larger networks to smaller

ones, while not losing so much information that was learned

in the large network. The pioneering work is conducted by

Bucila et al. [3], where their aim is to compress the ensem-

ble of models to a single model without significant accuracy

loss. Later, Hinton et al. [15] optimized the smaller net-

work to show similar softmax output of cumbersome model.

Then, Romero et al. [23] suggest that in addition to soft-

max outputs, intermediate representations could be used for

distilling the network. Recently distillation is also applied

in the cross-modal settings [13, 1]. The major drawback

of these methods is the necessity to train a large network

before using it to train a smaller one. Also these models

mainly match the outputs of the networks, whereas we reg-

ularize the internal weights of the network.

Domain Adaptation: Domain adaptation is the prob-

lem of learning a model that generalizes target domain ex-

amples besides source domain ones while learning only

from source domain. With the success of CNNs, domain

adaptation works have been focused on CNNs and sev-

eral successful methods have been proposed. For instance,

Ganin & Lempitsky [9] introduced gradient reversal layer

which act like identity transform in forward pass of CNN

and change the sign of the gradient and scale in the back-

ward pass. In their work, they added a domain classifier

to the end of the feature map and tried to predict the do-

main of examples. In backpropagation, they changed the

gradient using gradient reversal layer and forced the net-

works to learn domain invariant features by maximizing

loss of domain classifier. Tzeng et al. [29] added new terms

into objective function of CNN to both increasing domain

confusion and transferring inter-class knowledge. The first

term domain confusion loss forces the networks to learn do-

main invariant features and soft label loss forces the fea-

ture of the same class to be similar for both source and

target domain. In contradistinction to Ganin & Lempit-

sky [9], some target labels must be available for optimiz-

ing soft label loss. Moreover, recently some other works

[10, 12, 30, 26] focused on domain adaptation problems for

CNNs. While these methods focus on transferring informa-

tion about structure of data, our method focuses on transfer-

ring more local information.

Statistical Transfer: Statistical transfer is learning sta-

tistical properties from a source and to use this statisti-

cal knowledge for improving learning procedure. For in-

stance, Aytar & Zisserman [2] proposed part-level transfer

regularization which transfers parts of source detectors in-

stead of whole detector. Additionally, they take advantage

of part co-occurrence statistics. For example, if there are

wheels in the picture, probably another wheel would also

appear. They calculated these co-occurrence statistics using

the source data and transfer these statistics when a new ob-

ject detector is learned. Moreover, in the era of hand crafted

features, Gao et al. [11] analyzed famous HOG [6] tem-

plates of successful object detectors and made two obser-

vations. Firstly, they observed that activations of individual

cell models had some correlations, secondly local neigh-

borhoods of cells also showed the same characteristic. Fur-

thermore, since they wanted to transfer local information in

contrast to templates like in [2], they defined their priors

such that the correlations from the source model could be

transferred to target model without global template align-
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ment. In a recent work [4], GMMs are used for aligning

cross-modal data. In this approach, statistics of activation

maps of different layers for a modality are learned, and the

other modalities are forced to show similar statistics in the

activations via a regularization term. The proposed method

is capable of aligning modalities by using this regularization

term when there is no strong alignment between modalities.

Our work is influenced by Gao et al. [11] and Castrejon

et al. [4]. The first work directs us to analyze the weights of

convolution filters and find the correlation between the fil-

ters, and the other one to use the GMM to enforce them to

show similar statistics in a non-convex optimization prob-

lem. Different from these works, our regularization forces

the weights to show similar statistics and transfers local cor-

relations of convolution filters.

3. Statistical Regularization

In this section, first, we present our analysis on CNN

models from a statistical perspective. Next, we describe our

approach for capturing statistical knowledge from a CNN

and present how to transfer this knowledge via a regulariza-

tion term.

3.1. Statistical Analysis

For investigating the statistical behavior of a CNN

model, we have used VGG-16 [27] and AlexNet [18] mod-

els that were trained on ImageNet [24] and Places-365 [32]

datasets. Especially, weights of convolution filters are an-

alyzed for the four models. We tried to answer following

three questions: (i) are filters separable into clusters?; (ii)

how much similar are the filters inside a cluster?; and (iii)

how all filters are distributed over clusters?. In order to ob-

tain this information, all 3 × 3 filters of a model are clus-

tered to ten different clusters using the k-means algorithm

and each cluster’s covariance matrix and mean value were

calculated and visualized. The covariance matrices would

provide information about how members of a cluster are

correlated. Mean values show whether the sets are similar

to each other or not. For instance, it can be seen in Figure 2

(a) the covariance matrices of all the four models show that

there is some shared behavior of learned filters across layers

and architectures. Also, the cluster centers depict different

similarities. Generally, all models have clusters that their

mean values are accumulated on the left, right, top, and bot-

tom. Moreover, when we look at the distribution of filters

to clusters, the models show different characteristics. While

the distributions are Gaussian-like in VGG-16 models, the

distributions cannot be fitted to a known distribution in the

AlexNet models and most of the clusters have roughly the

same number of filters. However, both AlexNet and VGG-

16 models show similar distributions by model wise while

they are trained on different dataset. The mean values are

shown in Figure 2 (b), and the distributions can be seen in

Figure 3.

3.2. The Proposed Method

Since our aim is capturing statistical properties of

“good” convolution filters and transfering this statistical

knowledge to another network, we modeled the convolu-

tion filters’ distributions and enforced the network to show

similar distributions. Similar to our work, [4] forces the

activations of networks to show similar distributions across

modalities for aligning cross modal data. In [4], the au-

thors used both mixture and single Gaussian distributions

for modelling activations, and the mixture models outper-

formed single Gaussian model in their problem. Since, our

aim is also similar to their work -capturing statistical knowl-

edge and transfering it- we have decided to use mixture

models for modeling distributions. The main difference is

that we force the weights of filters instead of the activations

to show similar distributions across the networks.

Let xn and yn be a training image and its corresponding

label. We want to minimize

min
w

∑

n

L(z(xn, w), yn) (1)

where zn(xn ,w) is output of the network. We have added

a regularization term R to the loss term that represents the

negative log likelihood of a convolution filter to encourage

the network to learn the weights that are statistically simi-

lar to another network. For filter wi and distribution P we

define R such that,

R(wi) = − log(P (wi)) (2)

The distribution P is modeled as GMM, therefore P would

be,

P (w|π, µ,Σ) =
K∑

k=1

πkN (w|µk,Σk) (3)

where K is the number of mixtures and
∑

k
πk = 1 , πk ≥

0 ∀k. Therefore, the total negative log likelihood for N

convolution filters can be defined as,

R(w|µ,Σ) =
N∑

i=1

− log

K∑

k=1

πkN (wi|µk,Σk) (4)

where N is specified as,

N (w|µ,Σ) =
1

(2π|Σ|)−( 1
2
)
exp(−

1

2
(w−µ)TΣ−1(w−µ))

(5)

The derivate of the negative log likelihood must be calcu-

lated exactly or analytically, since the network is trained

with back-propagation. Still, calculating exact derivative

in every iteration would be very expensive during training,
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(a) (b)

Figure 2: (a) The covariance matrices of ten clusters that are calculated using the weights of convolution filters. The converged

VGG-16 and AlexNet models, which are trained on Places and ImageNet datasets, are used for clustering and visualizing.

(b) Visualizations of mean values of each clusters.

Figure 3: The distributions of the convolution filters over clusters. For both Places and ImageNet, the converged model of

VGG and AlexNet show similar distributions.

therefore, we approximately calculate the derivative. To

approximately calculate the derivative of a convolution fil-

ter, we first pick the mixture component N (µs,Σs) that the

probability of the convolution filter is maximized. Next, the

derivate is calculated using that single Gaussian. The partial

derivative of R with respect to a convolution filter wi would

be
∂R

∂wi

= (wi − µs)Σ
−1

s
(6)

Finally, our complete loss term is defined as

min
w

∑

n

L(z(xn, w), yn)+
∑

α
1

2
w2+

∑
λ ·R(w) (7)

where the first and second terms are classification loss and

weight decay terms, and the last one is our regularization

term. The λ is a hyperparameter that controls the regulariza-

tion. For experiments in this paper, we have used distribu-

tion P , which is learned from convolution filters of VGG-16

model trained on ImageNet using Expectation maximiza-

tion (EM) algorithm with K = 1000 components. To re-

duce the number of parameters, we assumed that the co-

variances Σk are diagonal. Also, K-Means algorithm was

run on filters for decreasing the convergence time of EM al-

gorithm. While it is known that, different layers, especially

first layers, show different characteristics than other layers,

we have used a single GMM -P - for all filters. Because, if

multiple distributions are used, a layer alignment relation-

ship between layers are needed in transfer time.

4. Experiments and Results

Our hypothesis was that well-trained CNN models show

similar statistical patterns, and we could exploit this infor-

mation in the training phase. Our experiments show that

we can learn a better representation faster with the statisti-

cal regularization. For example, in section 4.1, we validate

that with regularization the convolution filters create more

general representations and show less overfitting character-

istics than regular trained filter’s representations. Also in

section 4.2, we see how the regularization helps to learn

representations that are successfully transferred to another

task. Furthermore, while transferring across task and do-

mains is widely studied, transfer learning for cross modal

data is not a well studied problem. We show that our method
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(a) (b) (c) (d)

Figure 4: Difference between train and test losses of models in CIFAR-10. After freezing weights the models continued to

training. It can be easily seen that later freezing show less overfitting. In the (a),(b),(c), and (d) the regularization effect

is compared. With regularization models always overfit slowly (the difference increases slowly) than regular training. Best

viewed in color.

could be applied to cross-modal data as well. In section 4.3,

we present our experiments applied to a cross-modal dataset

CMPlaces [4].

4.1. Generalization

In this section, we evaluate if the statistical regulariza-

tion helps the generalizability of the learned representation.

For this purpose, we have used middle sized CIFAR-10

dataset [17] and CNN architecture described in [25]. Firstly,

we trained the network with and without regularization and

stopped the training at 10k, 15k, 20k, and 25k iterations.

Later on we freeze all 3 × 3 filters and continue learning

with training data. Since only the last layers change during

the training and the features extracted from convolution fil-

ters are not so generic, the validation loss starts to increase

and the validation accuracy is dropped.

We compared the networks, whose training stopped in

different iterations with and without regularization. In our

experiments, the training loss is started to oscillate in a

small interval and does not change much, that is, nei-

ther increases nor decreases. However, the validation loss

changed. The gap between training and test loss indicates

how generalizable the network is.

When we compared the models initialized at 10k, 15k,

20k, and 25k iterations, always the test loss of regular-

ized versions increased slowly compared to those of non-

regularized versions. For instance, as can be seen in Figure

4 (a,b,c,d), the difference between training and test loss in-

creases slowly in regularized models than non-regularized

models. Interestingly, as regular training time (no freezing)

increases, the gap between the regularized and normal train-

ing reduces.

4.2. Task Transfer

In this section, we show that the quickly learned repre-

sentations can also be transferred to another task more suc-

cessfully with regularization. To validate our claim, we try

to transfer filter distributions from ImageNet to Places2 [32]

dataset. The trivial solution for a classification problem is

training the network on ImageNet and finetuning the models

on the new task afterwards. We follow the same procedure

in this section for our experiments, but we want to finish

the pre-training stage as early as possible. Also we want

to show that our regularization can be used with finetuning.

To evaluate our method’s performance, we first train VGG-

F model introduced in [5] on ImageNet [24] data with and

without regularization. As in Section 4.1, we take snapshots

from 10k, 25k, and 50k iterations. Next, we start finetun-

ing on Places2 data [32]. When we compare regularization

effect, we see that the regularization can help to learn bet-

ter representations in the early iterations. For example, as

can be seen in Figure 5 (a), the performance of the mod-

els that are initialized at the weights learned in pre-training

with only 10k iterations, the regularized version shows a

better performance than the non-regularized one. When we

examine the models initialized at 25k iterations, the perfor-

mance difference between regularized and non-regularized

versions reduces. Finally, in 50k iterations, nearly there is

no difference in the performance. The test loss/iterations

plots are shown in Figure 5 (a), (b), (c). This experiment

shows that as pre-training time increases, the gain obtained

from regularization decreases. However, for limited amount

of pre-training time, the regularization could increase the

efficiency of the pre-training.

4.3. Modality Transfer

While CNNs performances are very good at various

computer vision tasks for real-world images, most of the

computer vision algorithms fail at non-real images. This

shows that generalization performance of the computer vi-

sion algorithms is not good for cross modal data. Some re-

cent works [4, 8] focused on this problem and recently Cas-

trejon et al. [4] has introduced a new Cross-Modal dataset.

In the dataset there are five different modalities for each

scene type such as natural image, sketch, clip art, spatial

text, and description. As in section 4.2, we firstly train

VGG-F models on a large dataset -Places2- and finetune

on CMPlaces data. We have used clipart and sketch data to
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(a) (b) (c)

Figure 5: The pre-traiened VGG-F models are finetuned on Places2 dataset. Pretraining is stopped at 10k, 25k, and 50k

iterations. For (a) and (b) it can be easily seen that with regularization the test loss decreases quickly. Since test losses and

accuracies correlated we only provide test losses.

Pre-Training Top-5 Accuracy

25k 60.45

25k \w Reg. 62.25

50k 63.0

50k \w Reg. 64.5

Converged Imagenet 64.8

Table 1: The first column describes how pretraining is done

and the second column shows the top-5 accuracies after

finetuning for clipart data.

evaluate our performance, since we are interested in the vi-

sual domain. We take snapshots from 25k and 50k iterations

from the regularized and non-regularized networks. Next,

we start to finetune on sketch and clipart data and com-

pare their accuracies. Also, we finetune VGG-F model con-

verged on ImageNet data and compare with our pre-trained

models. Similar to our experiments, by rising the training

pre-training time the performance increases. Also, the regu-

larization helps to learn better representations and increases

the performance of pre-training for finetuning. Although,

there is a significant gap between the converged ImageNet

model and our regularization in the sketch data, there is

not a substantial difference between 50k iteration with reg-

ularization and the converged ImageNet model on clipart

modality. The results for both modalities can be seen in

Table 1 and Table 2. These results show that instead of

training ImageNet until the model converges, we could train

the models using regularization with only few iterations and

could employ these pre-trained networks for cross-modality

transfer.

4.4. Implementation Details

We have used Caffe [16] deep learning framework in

our experiments. Moreover, we have implemented our spe-

cial convolution layer for applying statistical regularization.

Pre-Training Top-5 Accuracy

25k 33.05

25k \w Reg. 40.75

50k 37.65

50k \w Reg. 41.1

Converged ImageNet 53.6

Table 2: The first column describes how pretraining is done

and the second column shows the top-5 accuracies after

finetuning for sketch data.

When VGG-F model is trained on ImageNet and Places

datasets, stochastic gradient descent with 0.01 learning rate

is used for optimization. In the CIFAR experiments, we

have used the same parameters described in [25]. Finally,

the Gaussian mixture models are learned using the VLFeat

library [31].

5. Conclusion

In this paper, we analyzed convolution filters of well-

known CNN architectures and found that they share a num-

ber of common patterns and redundancies that could be

exploited for transfer learning. Gaussian Mixture Models

are used for capturing these statistical patterns and a new

regularization term is introduced for transferring such pat-

terns to other networks. Our experiments show that we

could learn good representations that are transferable to the

other tasks and cross-domains quickly with regularization.

For instance, we achieved around 25% improvement on the

sketch modality in the cross-modal dataset under limited

pre-training time. Also, our method gets similar perfor-

mance on clipart data with converged model that pre-trained

on the ImageNet, while pre-training stopped at 50k itera-

tions in our method.
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