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Abstract

This paper addresses the task of learning an image clas-

sifier when some categories are defined by semantic de-

scriptions only (e.g. visual attributes) while the others are

defined by exemplar images as well. This task is often re-

ferred to as the Zero-Shot classification task (ZSC). Most

of the previous methods rely on learning a common embed-

ding space allowing to compare visual features of unknown

categories with semantic descriptions. This paper argues

that these approaches are limited as i) efficient discrimi-

native classifiers can’t be used ii) classification tasks with

seen and unseen categories (Generalized Zero-Shot Clas-

sification or GZSC) can’t be addressed efficiently. In con-

trast, this paper suggests to address ZSC and GZSC by i)

learning a conditional generator using seen classes ii) gen-

erate artificial training examples for the categories without

exemplars. ZSC is then turned into a standard supervised

learning problem. Experiments with 4 generative models

and 5 datasets experimentally validate the approach, giving

state-of-the-art results on both ZSC and GZSC.

1. Introduction and related works

Zero-Shot Classification (ZSC) [22] addresses classifi-

cation problems where not all the classes are represented

in the training examples. ZSC can be made possible by

defining a high-level description of the categories, relating

the new classes (the unseen classes) to classes for which

training examples are available (seen classes). Learning is

usually done by leveraging an intermediate level of repre-

sentation, the attributes, that provide semantic information

about the categories to classify. As pointed out by [32] this

paradigm can be compared to how human can identify a

new object from a description of it, leveraging similarities

between its description and previously learned concepts.

Recent ZSC algorithms (e.g. [1, 5]) do the classifica-

tion by defining a zero-shot prediction function that outputs

the class y having the maximum compatibility score with

seen and unseen 
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Figure 1: Our method consists in i) learning an image fea-

ture generator capable of generating artificial image repre-

sentations from given attributes ii) learning a discriminative

classifier from the artificially generated training data.

the image x: f(x) = argmaxy S(x, y). The compatibil-

ity function, for its part, is often defined as S(x, y;W ) =
θ(x)tWφ(y) where θ and φ are two projections and W is

a bilinear function relating the two in a common embed-

ding. There are different variants in the recent literature on

how the projections or the similarity measure are computed

[11, 8, 15, 29, 32, 40, 41, 43], but in all cases the class is

chosen as the one maximizing the compatibility score. This

embedding and maximal compatibility approach, however,

does not exploit, in the learning phase, the information po-

tentially contained in the semantic representation of the un-

seen categories. The only step where a discriminating capa-

bility is exploited is in the final label selection which uses

an argmaxy decision scheme, but not in the setting of the

compatibility score itself.

A parallel can be easily done between the aforemen-

tioned approaches and generative models such as defined
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in the machine learning community. Generative models es-

timate the joint distribution p(y, x) of images and classes,

often by learning the class prior probability p(y) and the

class-conditional density p(x|y) separately. However, as it

has been observed for a long time [37], discriminative ap-

proaches trained for predicting directly the class label have

better performance than model-based approaches as long as

the learning database reliably samples the target distribu-

tion.

Despite one can expect discriminative methods to give

better performance [37], they can’t be used directly in the

case of ZSC for obvious reasons: as no images are avail-

able for some categories, discriminative classifiers cannot

be learned out-of-the-box.

This paper proposes to overcome this difficulty by gen-

erating training features for the unseen classes, in such a

way that standard discriminative classifiers can be learned

(Fig. 1). Generating data for machine learning tasks has

been studied in the literature e.g., [18] or [3] to compensate

for imbalanced training sets. Generating novel training ex-

amples from the existing ones is also at the heart of the tech-

nique called Data Augmentation, frequently used for train-

ing deep neural networks [23]. When there is no training

data at all for some categories, some underlying paramet-

ric representation can be used to generate missing training

data, assuming a mapping from the underlying representa-

tion to the image space. [12] generated images by applying

warping and other geometric / photometric transformations

to prototypical logo exemplars. A similar idea was also pre-

sented in [19] for text spotting in images. [7] capture what

they call The Gist of a Gesture by recording human ges-

tures, representing them by a model and use this model to

generate a large set of realistic gestures.

We build in this direction, in the context of ZSC, the un-

derlying representation being some attribute or text based

description of the unseen categories, and the transforma-

tion from attributes to image features being learned from

the examples of the seen classes. A relevant way to learn

this transformation is to use generative models such as de-

noising auto encoders [4] and generative adversarial nets

(GAN) [16] or their variants [10, 26]. GANs consist in esti-

mating generative models via an adversarial process simul-

taneously learning two models, a generative model that cap-

tures the data distribution, and a discriminative model that

estimates the probability that a sample came from the train-

ing data rather than the generator. The Conditional Gen-

erative Adversarial Nets of [28] is a very relevant variant

adapted to our problem.

In addition to the advantage of using discriminative clas-

sifiers – which is expected to give better performance – our

approach, by nature, can address the more realistic task of

Generalized Zero-Shot Classification (GZSC). This prob-

lem, introduced in [9], assumes that both seen and unseen

categories are present at test time, making the traditional

approaches suffering from bias decision issues. In contrast,

the proposed approach uses (artificial) training examples of

both seen and unseen classes during training, avoiding the

aforementioned issues.

Another reason to perform classification inference di-

rectly in the visual feature space rather than in an abstract

attribute or embedding space is that data are usually more

easily separated in the former, especially when using dis-

criminant deep features that are now commonly available.

This paper experimentally validates the proposed strat-

egy on 4 standard Zero-Shot classification datasets (Ani-

mals with Attributes (AWA) [22], SUN attributes (SUN)

[31], Apascal&Ayahoo (aP&Y) [14] and Caltech-UCSD

Birds-200-2011 (CUB) [38]), and gives insight on how the

approach scales on large datasets such as ImageNet [11]. It

shows state-of-the-art performance on all datasets for both

ZSC and GZSC.

2. Approach

2.1. Zero shot classification

As motivated in the introduction, we address in this pa-

per the problem of learning a classifier capable of discrim-

inating between a given set of classes where empirical data

is only available for a subset of it, the so-called seen classes.

In the vocabulary of zero-shot classification, the problem is

usually qualified as inductive — we do not have access to

any data from the unseen classes — as opposed to transduc-

tive where the unseen data is available but not the associated

labels. We do not address in this paper the transductive set-

ting, considering that the availability of target data is a big

constraint in practice.

The learning dataset Ds is defined by a series of triplets

{xs
i , a

s
i , y

s
i }

Ns

i=1
where xs

i ∈ X is the raw data (image or fea-

tures), ysi ∈ Ys is the associated class label and asi is a rich

semantic representation of the class (attributes, word vector

or text) belonging to As. This semantic representation is

expected to i) contain enough information to discriminate

between classes by itself, ii) be predictable from raw data

and iii) infer unambiguously the class label y = l(a).
In an inductive ZSC problem, all that is known regarding

the new target domain is the set of semantic class represen-

tations Au of the unseen classes. The goal is to use this

information and the structure of the semantic representation

space to design a classification function f able to predict the

class label ŷ = f(x;Au,Ds). The classification function f

is usually parametric and settled by the optimization of an

empirical learning criterion.

2.2. Discriminative approach for ZSC

In ZSC, the main problem is precisely the fact that no

data is available for the unseen classes. The approach taken
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in this paper is to artificially generate data for the unseen

classes given that seen classes and their semantic represen-

tations provide enough information to do so, and then apply

a discriminative approach to learn the class predictor.

The availability of data for the unseen classes has two

main advantages: it can make the classification of seen and

unseen classes as a single homogeneous process, allowing

to address Generalized Zero Shot Classification as a sin-

gle supervised classification problem; it potentially allows

a larger number of unseen classes, which is for instance re-

quired for datasets such ImageNet [11].

Let D̂u = {x̂u
i , a

u
i , y

u
i }

Nu

i=1
be a database generated

to account for the unseen semantic class representation

au ∈ Au. The ZSC classification function becomes: ŷ =
fD(x; D̂u,Ds) and can be used in association with the seen

data Ds, to learn a homogeneous supervised problem.

2.3. Generating unseen data

Our generators of unseen data build on the recently pro-

posed approaches for conditional data generation as pre-

sented in section 1. The idea is to learn globally a para-

metric random generative process G using a differentiable

criterion able to compare, as a whole, a target data distribu-

tion and a generated one.

Given z a random sample from a fixed multivariate prior

distribution, typically uniform or Gaussian, and w the set

of parameters, new sample data consistent with the seman-

tic description a are generated by applying the function:

x̂ = G(a, z;w). A simple way to generate conditional x̂

data is to concatenate the semantic representation a and the

random prior z as the input of a multi-layer network, as

shown in Fig. 2.

We now present 4 different strategies to design such a

conditional data generator, the functional structure of the

generator being common to all the described approaches.

Generative Moment Matching Network A first ap-

proach is to adapt the Generative Moment Matching Net-

work (GMMN) proposed in [24] to conditioning. The gen-

erative process will be considered as good if for each se-

mantic description a two random populations X (a) from

Ds and X̂ (a;w) sampled from the generator have low max-

imum mean discrepancy which is a probability divergence

measure between two distributions. This divergence can be

approximated using a Hilbert kernel based statistics [17] –

typically a linear combination of Gaussian functions with

various widths — which has the big advantage of being dif-

ferentiable and may be thus exploited as a machine learn-

ing cost. Network parameters w are then obtained by opti-

mizing the differentiable statistics by stochastic gradient de-

scent, using batches of generated and real data conditioned

by the semantic description a.

(2) AC-GAN

(4) Adversarial Auto-Encoder

(1) GMMN

(3) Denoising Auto-Encoder

FC + lrelu

FC + lrelu

FC + lrelu

FC + lrelu

FC + lrelu FC + lrelu

FC + lrelu

FC + lrelu

FC + lrelu

Figure 2: Architecture of the different generative models

studied.

Conditional Generative adversarial models Our second

model builds on the principles of the generative adversarial

networks (GAN), which is to learn a discrepancy measure

between a true and a generated distributions — the Discrim-

inator — simultaneously with the data generator. One ex-

tension allowing to produce conditional distributions is the

AC-GAN [30] (Fig. 2) where the generated and the true dis-

tributions are compared using a binary classifier, and the

quality of the conditional generation is controlled by the

performance of this auxiliary task.

This model bears similarities with the GMMN model,

the key difference being that in the GMMN distributions

of true and generated data are compared using the kernel

based empirical statistics while in the AC-GAN case it is

measured by a learned discriminative parametric model.

Denoising Auto-Encoder Our third generator relies on

the work presented in [4], where an encoder/decoder struc-

ture is proposed to design a data generator, the latent code

playing the role of the random prior z used to generate the

data. A simple extension able to introduce a conditional

data generation control has been developed by concatenat-

ing the semantic representation a to the code that is fed to

the decoder (Fig. 2).

In practice, this model is learned as a standard auto-

encoder, except that i) some noise is added to the input and

ii) the semantic representation a is concatenated to the code

in the hidden layer. For generating novel examples, only the

decoder part, i.e. the head of the network using z and a as

input to produce x̂ is used.

Adversarial Auto-Encoder Our fourth generator is in-

spired by [26], which is an extension of the denoising auto-
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encoder. It introduces an adversarial criterion to control the

latent code produced by the encoder part, so that the code

distribution matches a fixed prior distribution. This extra

constraint is expected to ensure that all parts of the sam-

pling prior space will produce meaningful data.

During training, both the auto-encoder and the discrimi-

nator are learned simultaneously. For generating novel ex-

amples, as for the denoising auto-encoder, only the decoder

part is used.

2.4. Implementing the generators

We implemented our 4 generative models with neural

networks, whose architectures are illustrated Fig. 2. Hid-

den layers are fully connected (FC) with leaky-relu non-

linearity [25] (leakage coefficient of 0.2). For the models

using a classifier (the AC-GAN and the Adversarial auto-

encoder), the classifier is a linear classifier (fully connected

layer + Softmax activation function). The loss used to

measure the quality of the reconstruction in the two auto-

encoders is the L2 norm.

Regarding how to sample the noise z, we did not observe

any difference between sampling it from a Gaussian distri-

bution or from a uniform distribution.

3. Experiments

In this section, after presenting the datasets and the ex-

perimental settings, we start by comparing the different gen-

erative models described in the previous section. We then

show how our approach can be used for the Generalized

Zero-shot Classification Task, which is one of the key con-

tributions of the paper, provide some experiments on a large

scale zero shot classification task, and finally compare our

approach with state-of-the art Zero-Shot approaches on the

regular Zero-shot Classification Task.

3.1. Datasets and Settings

A first experimental evaluation is done on 4 standard

ZSC datasets: Animals with Attributes (AWA) [22], SUN

attributes (SUN) [31], Apascal&Ayahoo (aP&Y) [14] and

Caltech-UCSD Birds-200-2011 (CUB) [38] . These bench-

marks exhibit a great diversity of concepts; SUN and CUB

are for fine-Grained categorization, and include respectively

birds and scenes images; AwA contains images of animals

from 50 different categories; finally, aP&Y has broader con-

cepts, from cars to animals. For each dataset, attributes

descriptions are given, either at the class level or at im-

age level. aP&Y, CUB and SUN have per image binary

attributes that we average to produce per class real valued

representations. In order to make comparisons with other

works, we follow the same training/testing splits for AwA

[22], CUB [2] and aP&Y [14]. For SUN we experiment two

different settings: one with 10 unseen classes as in [20], a

Table 1: Zero-Shot classification accuracy (mean) on the

validation set, for the 4 generative models.

Model aP&Y AwA CUB SUN Avg

Denois. Auto-encod. [4] 62.0 66.4 42.8 82.5 63.4

AC-GAN [30] 55.2 66.0 44.6 83.5 62.3

Adv. Auto-encod. [26] 59.5 68.4 49.8 83.7 65.3

GMMN [24] 65.9 67.0 52.4 84.0 67.3

second, more competitive, with ten different folds randomly

chosen and averaged, as proposed by [8] (72/71 splits).

Image features are computed using two deep networks,

the VGG-VeryDeep-19 [34] and the GoogLeNet [36] net-

works. For the VGG-19 we use the 4,096-dim top-layer

hidden unit activations (fc7) while for the GoogLeNet we

use the 1,024-dim top-layer pooling units. We keep the

weights learned on ImageNet fixed i.e., we don’t apply any

fine-tuning.

The classifiers are obtained by adding a standard Fully

Connected with Softmax layer to the pre-trained networks.

We purposively chose a simple classifier to better observe

the behavior of the generators. In all our experiments we

generated 500 artificial image features by class, which we

consider to be a reasonable trade-off between accuracy and

training time; we have not observed any significant im-

provement when adding more images.

Each architecture has its own set of hyper-parameters

(typically the number of units per layer, the number of

hidden layers, the learning rate, etc.). They are obtained

trough a ’Zero-shot’ cross-validation procedure. In this pro-

cedure, 20% of the seen classes are considered as unseen

(hence used as validation set), allowing to choose the hyper-

parameters maximizing the accuracy on this so-obtained

validation set. In practice, typical values for the number

of neurons (resp. the number of hidden layers) are in the

range of [500-2000] (resp. 1 or 2).

Model parameters are initialized according to a centered

Gaussian distribution (σ = 0.02). They are optimized with

the Adam solver [21] with a cross-validated learning rate

(typically of 10−4), using mini-batches of size 128 except

for the GMMN where each batch contains all the training

images of one class, to make the estimation of the statis-

tics more reliable. In order to avoid over-fitting, we used

dropout [35] at every layer (probability of drop of 0.2 for

the inputs layers and of 0.5 for the hidden layers). Input

data (both image features and w2c vectors) are scaled to

[0,1] by applying an affine transformation. With the Ten-

sorFlow framework [13] running on a Nvidia Titan X pas-

cal GPU, the learning stage takes around 10 minutes for a

given set of hyper-parameters. Our code will be made pub-

licly available.
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Table 2: Generalized Zero-Shot classification accuracy on

AWA. Image features are obtained with the GoogLeNet.

[36] CNN.

AwA

Method u → u s → s u → a s → a

Lampert et al. [22]dap 51.1 78.5 2.4 77.9

Lampert et al. [22]iap 56.3 77.3 1.7 76.8

Norouzi et al. [29] 63.7 76.9 9.5 75.9

Changpinyo et al. [8]o−vs−o 70.1 67.3 0.3 67.3

Changpinyo et al. [8]struct 73.4 81.0 0.4 81.0

Ours 81.48 82.73 32.32 81.32

Ours. (VGG-19) 87.78 85.61 38.21 83.14

Table 3: Generalized Zero-Shot classification accuracy on

CUB. Image features are obtained with the GoogLeNet [36]

CNN.

CUB

Method u → u s → s u → a s → a

Lampert et al. [22]dap 38.8 56.0 4.0 55.1

Lampert et al. [22]iap 36.5 69.6 1.0 69.4

Norouzi et al. [29] 35.8 70.5 1.8 69.9

Changpinyo et al. [8]o−vs−o 53.0 67.2 8.4 66.5

Changpinyo et al. [8]struct 54.4 73.0 13.2 72.0

Ours. 61.05 72.38 26.87 72.00

Ours. (VGG-19) 59.70 71.21 20.12 69.45

3.2. Comparing the different generative models

Our first round of experiments consists in comparing the

performance of the 4 generative models described in Sec-

tion 2.3, on the regular Zero-shot classification task. Our

intention is to select the best one for further experiments.

Performance on the validation set is reported Table 1. We

can see that the GMMN model outperforms the 3 others on

average, with a noticeable 5% improvement on aP&Y. Its

optimization is also computationally more stable than the

adversarial versions. We consequently chose this generator

for the following.

We explain the superiority of the GMMN model by the

fact it aligns the distributions by using an explicit model of

the divergence of the distributions while the adversarial au-

toencoder and the AC-GAN have to learn it. For its part, the

denoising autoencoder doesn’t have any guaranty that the

distributions are aligned, explaining its weak performance

compared to the 3 other generators.

3.3. Generalized Zero­Shot Classification task

In this section, we follow the Generalized Zero-Shot

Learning (GZSC) protocol introduced by Chao et al. [9].

In this protocol, test data are from any classes, seen or un-

seen. This task is more realistic and harder, as the number

of class candidates is larger.

We follow the notations of [9], i.e.

u → u: test images from unseen classes, labels of unseen

classes (conventional ZSC)

s → s: test images from seen classes, labels of seen classes

(multi-class classication for seen classes)

u → a: test images from unseen classes, labels of seen and

unseen classes (GZSC)

s → a: test images from seen classes, labels of seen and

unseen classes (GZSC)

In the first two cases, only the seen/unseen classes are

used in the training phase. In the last two cases, the classi-

fier is learned with training data combining images gener-

ated for all classes (seen and not seen).

Most of the recent ZSC works e.g., [2, 6, 5, 32] are fo-

cused on improving the embedding or the scoring function.

However, [9] has shown that this type of approach is un-

practical with GZSC. Indeed the scoring function is in this

case biased toward seen classes, leading to very low accu-

racy on the unseen classes. This can be seen on Table 2 and

3 (u → a column), where the accuracy drops significantly

compared to regular ZSC performance. The data distribu-

tion of the ZSC datasets are strongly subject to this bias, as

unseen classes are very similar to seen classes both in terms

of visual appearance and attribute description. When seen

and unseen classes are candidates, it becomes much harder

to distinguish between them. For example, the horse (seen)

and the zebra classes (unseen) of the AwA dataset cannot be

distinguished by standard ZSC methods.

As we can see on Table 2 and 3, our generative approach

outperforms any other previous approach. In the hardest

case, u → a, it gives the accuracy of 30% (resp. 10%)

higher than state-of-the-art approaches on the AwA (resp.

CUB) dataset. It can be easily explained by the fact that it

doesn’t suffer from the scoring function problem we men-

tioned, as the Softmax classifier is learned to discriminate

both seen and unseen classes, offering a decisive solution to

the bias problem.

3.4. Large Scale Zero­Shot Classification

We compared our approach with state-of-the-art methods

on a large-scale Zero-Shot classification task. These expe-

riences mirror those presented in [15]: 1000 classes from

those of the ImageNet 2012 1K set [33] are chosen for train-

ing (seen classes) while 20.345 others are considered to be

unseen classes with no image available. Image features are

computed with the GoogLeNet network [36].

In contrast with ZSC datasets, no attributes are provided

for defining unseen classes. We represent those categories

using a skip-gram language model [27]. This model is

learned on a dump of the Wikipedia corpus (≈3 billion

words). Skip-gram is a language model learned to pre-

dict context from words. The neural network has 1 input

layer, 1 hidden layer and 1 output layer having the size

of the vocabulary (same size as the input layer). The hid-

den layer has 500 neurons in our implementation. In the

literature, the hidden layer has been reported to be an in-
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Table 4: Zero-shot and Generalized ZSC on ImageNet.

Flat Hit @K

Scenario Method 1 2 5 10 20

2-hop Frome [15] 6.0 10.0 18.1 26.4 36.4

Norouzi [29] 9.4 15.1 24.7 32.7 41.8

Changpinyo [8] 10.5 16.7 28.6 40.1 52.0

Ours. 13.05 21.52 33.71 43.91 57.31

2-hop Frome [15] 0.8 2.7 7.9 14.2 22.7

(+1K) Norouzi [29] 0.3 7.1 17.2 24.9 33.5

Ours. 4.93 13.02 20.81 31.48 45.31

3-hop Frome [15] 1.7 2.9 5.3 8.2 12.5

Norouzi [29] 2.7 4.4 7.8 11.5 16.1

Changpinyo [8] 2.9 4.9 9.2 14.2 20.9

Ours. 3.58 5.97 11.03 16.51 23.88

3-hop Frome [15] 0.5 1.4 3.4 5.9 9.7

(+1K) Norouzi [29] 0.2 2.4 5.9 9.7 14.3

Ours. 1.99 4.01 6.74 11.72 16.34

All Frome [15] 0.8 1.4 2.5 3.9 6.0

Norouzi [29] 1.4 2.2 3.9 5.8 8.3

Changpinyo [8] 1.5 2.4 4.5 7.1 10.9

Ours. 1.90 3.03 5.67 8.31 13.14

All Frome [15] 0.3 0.8 1.9 3.2 5.3

(+1K) Norouzi [29] 0.2 1.2 3.0 5.0 7.5

Ours. 1.03 1.93 4.98 6.23 10.26

teresting embedding space for representing word. Conse-

quently, We use this hidden layer to describe each class la-

bel by embedding the class name into this 500-dimensional

space. Some classes cannot be represented as their name is

not contained in the vocabulary established by parsing the

Wikipedia corpus. Such classes are ignored, bringing the

number of classes from 20,842 to 20,345 classes. For fair

comparison, we take the same language model as [8] with

the same classes excluded.

As in [8, 15] our model is evaluated on three different

scenarios, with an increasing number of unseen classes: i)

2-hop: 1,509 classes ii) 3-hop: 7,678 classes, iii) All: all

unseen categories.

For this task we use the Flat-Hit@K metric, the percent-

age of test images for which the model returns the true la-

bels in the top K prediction scores.

Table 4 summarizes the performance on the 3 hops. As

one can see, our model gets state-of the art performance

for each configuration. As it can be observed from these

experiments, our generative model is very suitable for this

large scale GZSC problem e.g., our approach improves by

5% best competitors for the Flat-Hit 1 metric on the 2-hop

scenario.

3.5. Classical Zero­Shot Classification task

In this last section, we follow the protocol of the standard

ZSC task: during training, only data from seen classes are

available while at test time new images (from unseen classes

only) have to be assigned to one of the unseen classes.

As explained in the introduction, the recent ZSC litera-

ture [2, 6, 5, 32] mostly focuses on developing a good em-

Table 5: Zero-shot classification accuracy (mean±std) on

5 runs. We report results with VGG-19 and GoogLeNet

features. SUN dataset is evaluated on 2 different splits (see

3.1). * [8] features extracted from an MIT Places[45] pre-

trained model.

Feat. Method aP&Y AwA CUB SUN

Lampert et al. [22] - 60.5 39.1 -/44.5

Akata et al. [2] - 66.7 50.1 -/-

Changpinyo et al. [8] - 72.9 54.7 90.0/62.8*

G
o

o
g

L
e

N
et

[3
6

]

Xian et al. [41] - 71.9 45.5 -

Ours. 55.34 77.12 60.10 85.50/56.41

Lampert et al. [22] 38.16 57.23 - 72.00/-

Romera-Paredes [32] 24.22 75.32 - 82.10/-

Zhang et al. [43] 46.23 76.33 30.41 82.50/-

Zhang et al. [44] 50.35 80.46 42.11 83.83/-

Wang et al. [39] - 78.3 48.6 -/-

Bucher et al. [5] 53.15 77.32 43.29 84.41/-

V
G

G
-V

er
y

D
ee

p
[3

4
]

Bucher et al. [6] 56.77 86.55 45.87 86.21/-

Ours. 57.19 87.78 59.70 88.01/-

bedding for comparing attributes and images. One of our

motivations for generating training images was to make the

training of discriminative classifiers possible, assuming it

would result in better performance. This section aims at

validating this hypothesis on the regular ZSC task.

Table 5 summarizes our experiments, reporting the ac-

curacy obtained by state of the art methods on the 4 ZSC

datasets, with 2 different deep image features. Each entry is

the mean/standard deviation computed on 5 different runs.

With the VGG network, our method give above state-of-

the-art performance on each dataset, with a noticeable im-

provement of more than 15% on CUB. On the SUN dataset,

Changpinyo et al. [8]’s seems to give better performance

but used the MIT Places dataset to learn the features. It has

been recently pointed out in sec. 5.1 of Xiang et al. [42] that

this database ”intersects with both training and test classes

of SUN, which could explain their better results compared

to ours.

4. Conclusions

This paper introduces a novel way to address Zero-

Shot Classification and Generalized Zero-Shot Classifica-

tion tasks by learning a conditional generator from seen data

and generating artificial training examples for the categories

without exemplars, turning ZSC into a standard supervised

learning problem. This novel formulation addresses the two

main limitation of previous ZSC method i.e., their intrin-

sic bias for Generalized Zero-Shot Classification tasks and

their limitations in using discriminative classifiers in the

deep image feature space. Our experiments with 4 gener-

ative models and 5 datasets experimentally validate the ap-

proach and give state-of-the-art performance.
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