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Abstract

Visual attention modeling has recently gained momen-

tum in developing visual hierarchies provided by Convolu-

tional Neural Networks. Despite recent successes of feed-

forward processing on the abstraction of concepts form raw

images, the inherent nature of feedback processing has re-

mained computationally controversial. Inspired by the com-

putational models of covert visual attention, we propose the

Selective Tuning of Convolutional Networks (STNet). It is

composed of both streams of Bottom-Up and Top-Down in-

formation processing to selectively tune the visual represen-

tation of convolutional networks. We experimentally eval-

uate the performance of STNet for the weakly-supervised

localization task on the ImageNet benchmark dataset. We

demonstrate that STNet not only successfully surpasses the

state-of-the-art results but also generates attention-driven

class hypothesis maps.

1. Introduction

Inspired by physiological and psychophysical findings,

many attempts have been made to understand how the vi-

sual cortex processes information throughout the visual hi-

erarchy [6, 15]. It is significantly supported by reliable

evidence [9, 12] that information is processed in both di-

rections throughout the visual hierarchy: the data-driven

Bottom-Up (BU) processing stream convolves the input

data using some forms of information transformation. In

other words, the BU processing stream shapes the visual

representation of the input data via hierarchical cascading

stages of information processing. On the other hand, the

task-driven Top-down (TD) processing stream is perceived

to modulate the visual representation such that the task re-

quirements are completely fulfilled. Consequently, TD pro-

cessing stream plays the role of projecting the task knowl-

edge over the formed visual representation to achieve task

requirements.

Bottop-Up Processing

Top-Down Processing
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Figure 1. STNet consists of both BU and TD processing streams.

In the BU stream, features are collectively extracted and trans-

ferred to the top of the hierarchy at which label prediction is gen-

erated. The TD processing, on the other hand, selectively activate

part of the structure using attention processes.

In recent years, while the learning approaches have been

matured, various models and algorithms have been devel-

oped to present a richer visual representation for various

visual tasks such as object classification and detection, se-

mantic segmentation, action recognition, and scene under-

standing [1, 7]. Regardless of the algorithms used for rep-

resentation learning, most attempts benefit from BU pro-

cessing paradigm, while TD processing has very rarely been

targeted particularly in the computer vision community. In

recent years, convolutional networks, as a BU processing

structure, have shown to be quantitatively very successful

on the visual tasks targeted by popular benchmark datasets

[16, 25, 11, 10].

Attempts in modeling visual attention are attributed to

the TD processing paradigm. The idea is using some form

of facilitation or suppression, the visual representation is se-

lected and modulated in a TD manner [27, 17]. Visual atten-

tion has two modes of execution [4, 14]: Overt attention at-

tempts to compensate for the lack of visual acuity through-

12715



out the entire field of view in a perception-cognition-action

cycle by the means of an eye-fixation controller. In the

nutshell, the eye movement keeps the highest visual acuity

at the fixation while leaving the formed visual representa-

tion intact. Covert attention, on the other hand, modulates

the shaped visual representation, while keeping the fixation

point unchanged.

We strive to account for both the BU and TD processing

in a novel unified framework by proposing STNet, which

integrates attentive selection processes into the hierarchi-

cal representation. STNet has been experimentally evalu-

ated on the task of object localization. Unlike all previ-

ous approaches, STNet considers the biologically-inspired

method of surround suppression [26] to selectively deploy

high-level task-driven attention signals all the way down to

the early layers of the visual hierarchy. The qualitative re-

sults reveal the superiority of STNet on this task over the

performance of the state-of-the-art baselines.

The remaining of the paper is organized as follows. In

Section 2, we review the related work on visual attention

modeling in the computer vision community. Section 3

presents the proposed STNet model in details. Experiments

are conducted in Section 4 in which STNet performance is

qualitatively and quantitatively evaluated. Finally, the paper

is ended by a conclusion in Section 5.

2. Related Work

In recent years, the computer vision community has

gained momentum in improving the evaluation results on

different visual tasks by developing various generations of

deep learning models. convolutional networks have shown

their superiority in terms of the learned representation for

tasks inherently related to visual recognition such as object

classification and detection, semantic segmentation, pose

estimation, and action recognition.

Among various visual attention models [2], covert vi-

sual attention paradigm involves the scenario in which eye

movement is not considered throughout the modeling ap-

proach. Fukushima’s attentive Neocognitron [8] proposes

that attention can be seen as a principled way to recall noisy,

occluded, and missing parts of an input image. TD pro-

cessing is realized as a form of facilitatory gain modulation

of hidden nodes of the BU processing structure. Selective

Tunning Model of visual attention [28], on the other hand,

proposes TD processing using two stages of competition in

order to suppress the irrelevant portion of the receptive field

of each node. Weights of the TD connections, therefore, are

determined as the TD processing continues. Furthermore,

only the BU hidden nodes falling on the trace of TD pro-

cessing are modulated while leaving all the rest intact.

Various attempts have been made to model an implicit

form of covert attention on convolutional networks. [24]

proposes to maximize the class score over the input image

using the backpropagation algorithm for the visualization

purposes. [29] introduces an inversed convolutional net-

workto propagate backward hidden activities to the early

layers. Harnessing the superiority of global AVERAGE

pooling over global MAX pooling to preserve spatial cor-

relation, [31] has defined a weighted sum of the activities of

the convolutional layer feeding into the global pooling layer.

Recently, an explicit notion of covert visual attention has

gained interest in the computer vision community [3, 30]

for the weakly-supervised localization task. Having inter-

preted ReLU activation and MAX pooling layers as feed-

forward control gates, [3] proposes feedback control gate

layers which are activated based on the solution of an op-

timization problem. Inspired closely by Selective Tunning

model of visual attention, [30] formulates TD processing

using a probabilistic interpretation of the Winner-Take-All

(WTA) mechanism. In contrast to all these attempts that

the TD processing is densely deployed in the same fashion

as BU processing, we propose a highly sparse and selective

TD processing in this work.

The localization approach in which the learned repre-

sentation of the visual hierarchy is not modified is com-

monly referred to as weakly supervised object localization

[24, 18, 31, 3, 30]. This is in contrast with the supervised

localization approach in which the visual representation is

fine-tunned to better cope with the new task requirements.

Additionally, Unlike the formulation for the semantic seg-

mentation task [20, 19, 21], bounding box prediction forms

the basis of performance measure. We evaluate experimen-

tally STNet in this paradigm and provide the evidence that

selective tuning of convolutional networks better addresses

object localization in the weakly-supervised regime.

3. Model

3.1. STNet

An integration of the conventional bottom-up processing

by convolutional networks with the biologically-plausible

attentive top-down processing in a unified model is pro-

posed in this work. STNet consists of two interactive

streams of processing: The BU stream has the role of form-

ing the representation throughout the entire visual hierar-

chy. Apparently, information is very densely processed

layer by layer in a strict parallel paradigm. The BU path-

way processes information at each layer using a combina-

tion of basic operations such as convolution, pooling, ac-

tivation, and normalization functions. The TD stream, On

the other hand, develops a projection of the task knowledge

onto the formed hierarchical representation until the task

requirements are fulfilled. Depending on the type of the

task knowledge, the projections may be realized computa-

tionally using some primitive stages of attention processing.

The cascade flow of information throughout both streams is
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layer by layer such that once information at a layer is pro-

cessed, the layer output is fed into the next adjacent layer as

the input according to the hierarchical structure.

Any computational formulation of the visual hierarchy

representing the input data can be utilized as the structure

of the BU processing stream as long as the primary visual

task could be accomplished. Convolutional neural networks

trained in the fully supervised regime for the primary task of

object classification are mainly focused in this paper. Hav-

ing STNet composed of a total of L layers, the BU pro-

cessing structure is composed of ∀l ∈ {0, . . . , L}, ∃ zl ∈

R
Hl

×W l
×Cl

, where z
l is the three dimensional feature vol-

ume of hidden nodes at layer l with the dimension of width

W l, height H l and Cl number of channels.

3.2. Structure of the Top-Down Processing

Based on the topology and connectivity of the BU pro-

cessing stream, an interactive structure for the attentive TD

processing is defined. According to the task knowledge,

the TD processing stream is initiated and consecutively tra-

versed downward layer by layer until the layer that satisfies

task requirements is reached. A new type of nodes is de-

fined to interact with the hidden nodes of the BU processing

structure. According to the TD structure, gating nodes are

proposed to collectively determine the TD information flow

throughout the visual hierarchy. Furthermore, they are very

sparsely active since the TD processing is tuned to activate

relevant parts of the representation.

The TD processing structure consists of ∀l ∈

{0, . . . , L}, ∃ g
l ∈ R

Hl
×W l

×Cl

, where g
l is the three di-

mensional (3D) gating volume at layer i having the exact

size of it’s hidden feature volume counterpart in the BU pro-

cessing structure. We define function RF (z) to return the

set of all the nodes in the layer below that falls inside the

receptive field of the top node according to the connectivity

topology of the BU processing structure.

Having defined the structural connectivity of both the

BU and TD processing streams, we now introduce the atten-

tion procedure that locally processes information to deter-

mine connection weights of the TD processing structure and

consequently the gating node activities at each layer. Once

the information flow in the BU processing stream reaches

the top of the hierarchy at layer L, the TD processing is ini-

tiated by setting the gating node activities of the top layer

as illustrated in Fig. 1. Weights of the connections between

the top gating node gL and all the gating node in the layer

below within the RF (gL) are computed using the attentive

selection process. Finally, the gating node activities of layer

L − 1 are determined according to the connection weights.

This attention procedure is consecutively executed layer by

layer downward to a layer the task requirements are ful-

filled.
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Figure 2. Schematic Illustration of the sequence of interactions be-

tween the BU and TD processing streams using the three-stage

attention process.

3.3. Stages of Attentive Selection

Weights of the connections of the BU processing struc-

ture are learned by the backpropagation algorithm [23] in

the training phase. For the TD processing structure, how-

ever, weights are computed in an immediate manner us-

ing the deterministic and procedural selection process from

the Post-Synaptic (PS) activities. We define ∀ glw,h,c ∈

gl , PS(glw,h,c) = RF (zlw,h,c)⊙klc, where PS(g) is the dot

product of two similar-size matrices, one representing the

receptive field activities, and the other, the kernel at channel

c and layer l.
The selection process has three stages of computation.

Each stage processes the input PS activities and then feed

the selected activities to the next stage. In the first stage,

noisy redundant activities that interfere with the defini-

tion of task knowledge are determined to get pruned away.

Among the remained PS activities, the most informative

group of activities are marked as the winners of the se-

lection process at the end of the second stage. In the last

stage, the winner activities are normalized. Once multi-

plicatively biased by the top gating node activity, the activ-

ities of the bottom gating nodes are updated consequently.

Fig. 2 schematically illustrates the sequence of actions be-

ginning from fetching PS activities from the BU stream to

propagating weighted activities of the top gating node to the

lower layer.

Stage 1: Interference Reduction

The main critical issue to accomplish successfully any

visual task is to be able to distinguish relevant regions from

irrelevant ones. Winner-Take-All (WTA) is a biologically-

plausible mechanism that implements a competition be-

tween input activities. At the end of the competition, the

winner retains it’s activity, while the rest become inactive.

The Parametric WTA (P-WTA) using the parameter θ is de-

fined as P -WTA(PS(g), θ) = {s | s ∈ PS(g), s ≥
WTA(PS(g)) − θ}. The role of the parameter θ is to

establish a safe margin from the winner activity to avoid

under-selection such that multiple winners will be selected
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Figure 3. Modular diagram of the interactions between various

blocks of processing in both the BU and TD streams.

at the end of the competition. It is remarkably critical to

have some near optimal selection process at each stage to

prevent the under- or over-selection extreme cases.

We propose an algorithm to tune the parameter θ for an

optimal value at which the safe margin is defined based a

biologically-inspired approach. It is biologically motivated

that once the visual attention is deployed downward to a

part of the formed visual hierarchy, those nodes falling on

the attention trace will eventually retain their node activi-

ties regardless of the intrinsic selective nature of attention

mechanisms [22, 27]. In analogy to this biological finding,

the Activity Preserve (AP) algorithm optimizes for the dis-

tance from the sole winner of the WTA algorithm at which

if all the PS activities outside the margin are pruned away,

the top hidden node activity will be preserved.

Algorithm 1 specifies the upper and lower bounds of the

safe margin. The upper bound is clearly indicated by the

sole winner given by the WTA algorithm, while the lower

bound is achieved by the output of the AR algorithm. Con-

sequently, the P-WTA algorithm returns all the PS activities

that fall within this range specified by the upper and lower

bound values. They are highlighted as the winners of the

first stage of the attentive selection process. Basically, the

set W 1st, returned from P-WTA algorithm, contains those

nodes within the receptive field that most participate in the

calculation of the top node activity. Therefore, they are the

best candidates to initiate the attentive selection processes

of the layer below. The size of the set of winners at this

point, however, is still large. Apparently, further stages of

selection are required to prohibit interference and redundant

TD processing caused by the over-selection phenomenon.

Stage 2: Similarity Grouping

In the second stage, the ultimate goal is to apply a

more restrictive selection procedure in accordance with

the rules elicited from the task knowledge. Grouping of

the winners according to some similarity measures serves

as the basis of the second stage of the attentive selec-

Algorithm 1 Parametric WTA Optimization

1: NEG(PS) = {s | s ∈ PS(g), s ≤ 0}
2: POS(PS) = {s | s ∈ PS(g), s > 0}
3: SUM(NEG) =

∑
ni∈NEG(PS) ni

4: buffer = SUM(NEG)
5: i = 0
6: while i ≤ |POS(PS)|, buffer < ǫ do

7: buffer+ = SORT (POS(PS))[i]
8: i+ = 1
9: end while

10: return SORT (POS(PS))[i− 1]

tion process. Two modes of selection at the second

stage are proposed depending on whether the current layer

of processing has a spatial dimension or not: Spatially-

Contiguous(SC) and Statistically-Important(SI) selection

modes respectively. The former is applicable to the Con-

volutional layers and the latter to the Fully-Connected(FC)

layers in a typical convolutional network.

There is no ordering information between the nodes in

the FC layers. Therefore, one way to formulate the rela-

tive importance between nodes is using the statistics cal-

culated from the sample distribution of node activities. SI

selection mode is proposed to find the statistically impor-

tant activities. Based on an underlying assumption that the

node activities have a Normal distribution, the set of win-

ners of the second stage is determined by W 2nd = {s| s ∈
W 1st, s > µ + α ∗ σ}, where µ and σ are the sample

mean and standard deviation of W 1st respectively. The

best value of the coefficient α is searched over the range

{−3,−2,−1, 0,+1,+2,+3} in the second stage based on

a search policy meeting the following criteria: First, the size

of the winner set W 2nd at the end of the SI selection mode

has to be non-zero. Second, the search iterates over the

range of possible coefficient values in a descending order

until |W 2nd| 6= 0. Furthermore, an offset parameter O is

defined to loosen the selection process at the second stage

once these criteria are met. For instance, if α is +1 at the

end of the SI selection mode, the loosened α will be −1 for

the offset value of 2. The effects of loosening SI selection

mode is experimentally demonstrated in Sec. 4.

Convolutional layers, on the other hand, benefit from

stacks of two dimensional feature maps. Although the or-

dering of feature maps in the third dimension is not meant

to encode for any particular information, 2D feature maps

individually highlight spatial active regions of the input do-

main projected into a particular feature space. In other

words, the spatial ordering is always preserved throughout

the hierarchical representation. With the spatial ordering

and the task requirement in mind, SC selection mode is pro-

posed to determine the most spatially contiguous region of

the winners based on their PS activities.

SC selection mode first partitions the set of winners
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Architecture Lprop OFC OBridge α δpost
ST-AlexNet pool1 3 3 0.2 µA

ST-VGGNet pool3 2 0 0.2 µA

ST-GoogleNet pool2/3x3 s2 0 - 0.2 µA

Table 1. Demonstration of the STNet configurations in terms of

The hyperparameter values. Lprop is the name of the layer at

which the attention map is calculated. OFC and OBridge are

the offset values of the SI selection mode at the fully-connected

and bridge layers respectively. α is the trade-off multiplier of the

SC selection mode. δpost represents the post-processing threshold

value of the attention map.

W 1st into groups of connected regions. A node has eight

immediate adjacent neighbors. A connected region Ri,

therefore, is defined as the set of all nodes that are recur-

sively in the neighborhood of each other. Out of all the

number of connected regions, the output of the SC selec-

tion mode is the set of nodes W 2 that falls inside the winner

connected region. It is determined by the index i such that

î = argmaxi α ∗
∑

rj∈Ri
PSrj (g) + (1−α) ∗ |Ri|, where

PSrj (g) is the PS activity of node rj among the set of all

PS activities of the top node g, and the value of multiplier α
is cross-validated in the experimental evaluation stage for a

balance between the sum of PS activities and the number of

nodes in the connected region. Lastly, SC selection mode

returns the final set of winners W 2nd = {s| s ∈ Rî}. The

argument that W 2nd could better address task requirements

in comparison to W 1st is experimentally supported in 4.

Having determined the set of winners W 2nd out of the

set of all nodes falling inside the receptive field of the top

node RF (g), it is straightforward to compute values of

the both active and inactive weight connections of the TD

processing structure.The inactive weight connections have

value zero. In Stage 3, the mechanism to set the values of

the active weight connections from W 2nd will be described.

Stage 3: Attention Signal Propagation

Gating nodes are defined to encode for attention signals

using multiple level of activities. The top gating node prop-

agates the attention signal proportional to the normalized

connection weights to the layer below. Having the set of

winners W 2nd for the top gating node g, PSW 2nd(g) is

the set of PS activities of the corresponding winners. The

set of normalized PS activities is defined as PSnorm =
{s′| s ∈ PSW 2nd(g), s′ = s/

∑
si∈PS

W2nd (g)
si}. Weight

values of the active TD connections are specified as follows:

∀ i ∈ W 2nd, wig = PSi
norm, where wig is the connection

from the top gating node g to the gating node i in the layer

below, and PSi
norm is the PS activity of the winner node i.

At each layer, the attentive selection process is per-

formed for all the active top gating nodes. Once the winning

set for each top gating node is determined and the normal-

ized values of the corresponding connection weights to the

layer below are computed, the winner gating nodes of the

Model AlexNet VGGNet GoogleNet

Oxford[24] - - 44.6

CAM[31] 48.31 48.11 48.12

Feedback[3] 49.6 40.2 38.8

MWP[30] 41.71 40.61 38.7

STNet 40.3 40.1 38.6

Table 2. Comparison of the STNet localization error rate on the

ImageNet validation set with the previous state-of-the-art results.

The bounding box is predicted given the single center crop of the

input images with the TD processing initialized by the ground truth

category label. (1) Results calculated using the publicly published

code by [31, 30]. (2) Based on the result reported by [30].

layer below are updated as follows: ∀ i ∈ {1, . . . , |gl|},
∀ j ∈ {1, . . . , |W 2nd

i |}, gl−1
j + = wji ∗ gli. The updating

rule ensures that the top gating node activity is propagated

downward such that it is multiplicatively biased by weight

values of the active connections.

4. Experimental Results

Top-down visual attention seems necessary for the com-

pletion of sophisticated visual tasks for which only Bottom-

Up information processing is not sufficient. This implies

that tasks such as object localization, visual attribute ex-

traction, and part decomposition require more processing

time and resources. STNet, as a model benefiting from both

streams of processing, is experimentally evaluated on object

localization task in this work.

STNet is implemented using Caffe [13], a library origi-

nally developed for convolutional networks. AlexNet [16],

VGGNet(16) [24], and GoogleNet [25] are the three con-

volutional network architectures that are applied to define

the BU processing structure of STNet. The model weight

parameters are retrieved from the publicly available convo-

lutional network repository of Caffe Model Zoo in which

they are pre-trained on ImageNet 2012 classification train-

ing dataset [5]. For the rest of the paper, we refer to STNet

utilized with AlexNet as the base architecture of the BU

structure as ST-AlexNet. This similarly applies to VGGNet

and GoogleNet.

4.1. Implementation Details

Bounding Box Proposal: Having an input image fed

into the BU processing stream, a class specific attention

map for category k at layer l is created. It is a resultant

of the TD processing stream initiated from the top gating

layer with the one-hot encoding of category k. Once the

attention signals are completely propagated downward to

layer l, the class specific attention map is defined by col-

lapsing the gating volume g
l ∈ R

Hl
×W l

×Cl

at the third di-

mension into the attention map Al
k ∈ R

Hl
×W l

as follows:

Al
k =

∑
i∈Cl gli, where Cl is the number of gating sheets

at layer l, and gli is a 2D gating sheet. We propose to post-
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Figure 4. Illustration of the predicted bounding boxes in comparison to the ground truth for ImageNet images. In the top section, STNet is

successful to localize the ground truth objects. The bottom section, on the other hand, demonstrates the failed cases. The top, middle, and

bottom rows of each section depict the bounding boxes from the ground truth, ST-VGGNet, and ST-GoogleNet respectively.

process the attention map by setting all the small collapsed

values below the sample mean value of the map to zero.

We propose to predict a bounding box from the thresh-

olded attention map Âl
k using the following procedure. Ap-

parently, the predicted bounding box is supposed to enclose

an instance of the category k. If layer l is somewhere in

the middle of the visual hierarchy, Âl
k is transformed into

the spatial space of the input layer. In the subsequent step,

a tight bounding box around the non-zero elements of the

transformed Âl
k is calculated. Nodes inside the RF of the

gating nodes at the boundary of the predicted box are likely

to be active if the TD attentional traversal further continues

processing lower layers. Therefore, we choose to pad the

tight predicted bounding box with the half size of the accu-

mulated RF at layer l. We calculate accurately the accumu-

lated RF size of each layer according to the intrinsic prop-

erties of the BU processing structure such as the amount of

padding and striding of the layer.

Search over Hyperparameters: There a few number

of hyperparameters in STNet that are experimentally cross-

validated using one held-out partition of the ImageNet vali-

dation set. It contains 1000 images which are selected from

the randomly-shuffled validation set. The grid search over

the hyperparameter space finds the best-performing config-

uration for each convolutional network architecture.

The SI selection mode is experimentally observed to per-

form more efficiently once the offset parameter O is higher

than zero. The offset parameter has the role of loosening

the selection process for the cases under-selection is very

dominant. Furthermore, we define the bridge layer as the

one at which the 3D volume of hidden nodes collapses into

a 1D hidden vector. SI selection procedure is additionally

applied to the entire gating volume of the bridge layer in

order to prevent the over-selection phenomenon. Except

GoogleNet, the other two architectures have a bridge layer.

Further implementation details regarding all three architec-

tures are given in the supplementary document.

Hyperparameters such as the layer at which the best lo-

calization result is obtained, the multiplier of the SC selec-

tion mode, and the threshold value for the bounding box

proposal procedure are all set by the values obtained from

the cross-validation on the held-out partition set for all three

convolutional networks. Having the best STNet configura-

tions given in Table 1, we measure STNet performance on

the entire ImageNet validation set.

4.2. Weakly Supervised Localization

The significance of the attentive TD processing in STNet

is both quantitatively and qualitatively evaluated on the Im-

ageNet 2015 benchmark dataset for the object localization

task. The experimental setups and procedures have been

considerably kept comparative with previous works.

Dataset and evaluation: Localization accuracy of

STNet is evaluated on the ImageNet 2015 validation set

containing 50,000 images of variable sizes. The shortest

side of each image is reduced to the size of the STNet in-

put layer. A single center crop of the size equal to the input

layer is then extracted and sent to STNet for bounding box

prediction. In order to remain comparative with the previ-

ous experimental setups for the weakly supervised localiza-

tion task [3, 30], the ground truth label is provided to initiate

the TD processing. A localization prediction considers to be

correct if the Intersection-over-Union (IoU) of the predicted

bounding box with the ground truth is over 0.5.

Quantitative results: STNet localization performance

surpasses the previous works with a comparative testing

protocol on the ImageNet dataset. For all three BU archi-

tectures, Table 2 indicates that STNet quantitatively outper-

forms the state-of-the-art results [24, 31, 3, 30]. The results

imply that not only has the localization accuracy improved

2720



Figure 5. Demonstration of the attention-driven class hypothesis maps for ImageNet images. In both top and bottom sections, rows from top

to bottom represent ground truth boxes on RGB images, the CH map from ST-VGGNet, and the CH map from ST-GoogleNet respectively.

but also significantly less number of nodes are active in the

TD processing stream. The finding is in sharp contrast to

all the previous approaches that densely seek a locally opti-

mum state of the TD structure.

Comparison with Previous Works: One of the factors

distinguishing STNet from other approaches is the selective

nature of the TD processing. In gradient-based approaches

such as [24], the gradient signals, which are computed with

respect to the input image rather than the weight parameters,

are deployed densely downward to the input layer. Decon-

vnet [29] is proposed to reverse the same type and extent

of processing as the feedforward pass originally for the pur-

pose of visualization. The Feedback model [3] similarly

defines a dense feedback structure that is iteratively opti-

mized using a secondary loss function to maintain the la-

bel predictability of the entire network. Similarly, attention

signals are densely propagated through positive weight con-

nections biased by the normalized PS activities in the MWP

model [30]. Additionally, MWP suffers from the lack of the

three-stage attentive selection process.

In contrast, the TD structure of STNet remains fully in-

active except for a small portion that leads to the attended

region of the input image. We empirically verify that not

only has the localization accuracy been improved in STNet,

but also on average around 0.3% of the TD structure is ac-

tive. This implies comparative localization results can be

obtained with faster speed and less wasted amount of com-

putation in the TD processing stream. Furthermore, it is

worth noting that ST-AlexNet localization performance is

very close to the two other high capacity models despite the

shallow depth and simplicity of the network architecture.

Qualitative Analysis: The qualitative results provide

insights on the strengths and weakness of STNet as illus-

trated in Fig. 4. Investigating the failed cases, we are

able to identify two extreme scenarios: under-selection and

over-selection scenarios. The under-selection scenario is

caused by the inappropriate learned representation or im-

proper configuration of the TD processing, while the over-

selection scenario mainly is due to either multi-instance or

what we call Correlated Accompanying Object cases. A

large bounding box enclosing multiple objects is proposed

as a result of over-selection. Neither streams of STNet are

tuned to systematically deal with these extreme scenarios.

4.3. Class Hypothesis Visualization

We show that gating node activities can further be pro-

cessed to visualize the salient regions of input images for an

activated category label. Following a similar experimental

setup to the localization task in Table 1, an attention-driven

Class Hypothesis (CH) map is created from the transformed

thresholded attention map. We simply increment by one the

pixel values inside the accumulated RF box centered at each

non-zero pixel of the attention map. Once iterated over all

non-zero pixels, the CH map is smoothed out using a Gaus-

sian filter with the standard deviation σ = 6. Fig. 5 qual-

itatively illustrates the performance of STNet to highlight

the salient parts of the input image once the TD processing

stream is initiated with the ground truth category label. Fur-

ther details regarding the visualization experimental setups

are given in the supplementary document.

Comparison of convolutional networks: We observed

in Sec. 4.2 that the localization performance of the ST-

GoogleNet surpasses both ST-AlexNet and ST-VGGNet.

The qualitative experimental results using CH maps in Fig.

5 further shed some light on the inherent nature of this dis-

crepancy. Both AlexNet and VGGNet benefit from a coher-

ently increasing RF sizes along the visual hierarchy such

that at each layer all hidden nodes have a similar RF size.

Consequently, the scale at which features are extracted co-

herently changes from layer to layer. On the other hand,

GoogleNet is always taking advantage of intermixed multi-

scale feature extraction at each layer. Additionally, 1x1 con-
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Figure 6. The critical role of the second stage of selection is il-

lustrated using CH visualization. In the top row of each section,

images are presented with boxes for the ground truth (blue), full-

STNet predictions (green), and second-stage-disabled predictions

(red). In the second and third rows of each section, CH maps from

the full and partly disabled STNet are given respectively.

volutional layers act as high capacity parametrized modules

by which any affine mixture of features could be computed.

In the TD processing, we treat such layers as regular fully-

connected layers in all experiments.

Context Interference: The learned representation of

convolutional networks strongly relies on the background

context over which the category instances are superimposed

for the category label prediction of the input image. This is

expected since the learning algorithm does not impose any

form of spatial regularization during the training phase. Fig.

6 depicts the results of the experiment in which we purpose-

fully deactivated the second stage of the selection process at

FC layers. Furthermore, the winner with the highest PS ac-

tivity is remained active among all winners and the rest are

set inactive at the end of the first stage of FC layers such

that there is always one winner at each layer. Deactivating

the second stage on the convolutional layers deteriorates the

capability of STNet to sharply highlight the salient regions

relevant to objects in the TD processing stream. The results

implies that the learned representation heavily relies on the

features collected across the entire image regardless of the

ground truth. The SC mode of the second stage helps STNet

to visualize the coherent and sharply localized confident re-

gions. The CH visualization demonstrates the essential role

of the second stage to deal with the redundant and disturb-

ing context noise for the localization task.

Correlated Accompanying Objects: The other short-

coming of the learned representation emphasized by CH vi-

sualization is that the BU processing puts high confidence

on the features collected from the regions belonging to cor-

Figure 7. We demonstrate using ST-VGGNet the confident region

of the accompanying object highly correlating with the true object

category. The top row of each section contains images with the

ground truth (blue) and predicted (red) boxes. CH maps highlight

the most salient regions in the bottom row of each section.

related accompanying objects. They happen to co-occur

extremely frequently with the the ground truth objects in

the training set on which convolutional networks are pre-

trained. Similar to the previous experiment, the modified

version of the first stage for FC layers is used, while the

convolutional layers benefit from the original 3-stage se-

lection process. Fig. 7 reveals how STNet misleadingly

localize with the highest confidence the accompanying ob-

ject that highly correlates with the ground truth object. As

soon as the visual representation confidently relates the cor-

related accompanying object with the true category label,

over-selecting for the bounding box prediction will be in-

evitable. The multi-instance scenario and such cases are the

two sources of the over-selection phenomenon in the local-

ization task. We credit these two sources of over-selection

to the pre-trained representation obtained from the uncon-

strained backpropagation learning algorithm.

5. Conclusion

We proposed an innovative framework consisting of the

Bottom-Up and Top-Down streams of information process-

ing for the task of object localization. We formulated the

Top-Down processing as a cascading series of local at-

tentive selection processes each consisting of three stages:

First inference reduction, second similarity grouping, and

third attention signal propagation. We demonstrated ex-

perimentally the efficiency, power, and speed of STNet to

localize objects on the ImageNet dataset supported by the

significantly improved quantitative results. Class Hypothe-

sis maps are introduced to qualitatively visualize attention-

driven class-dependent salient regions. Having investigated

the difficulties of STNet in object localization, we believe

the visual representation of the Bottom-Up stream is one of

the shortcomings of this framework. The significant role of

the selective Top-Down processing in STNet could be fore-

seen as a promising approach applicable in a similar fashion

to other challenging computer vision tasks.
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