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Abstract

Although Deep Convolutional Networks (DCNs) are ap-

proaching the accuracy of human observers at object recog-

nition, it is unknown whether they leverage similar visual

representations to achieve this performance. To address

this, we introduce Clicktionary, a web-based game for iden-

tifying visual features used by human observers during ob-

ject recognition. Importance maps derived from the game

are consistent across participants and uncorrelated with im-

age saliency measures. These results suggest that Click-

tionary identifies image regions that are meaningful and di-

agnostic for object recognition but different than those driv-

ing eye movements. Surprisingly, Clicktionary importance

maps are only weakly correlated with relevance maps de-

rived from DCNs trained for object recognition. Our study

demonstrates that the narrowing gap between the object

recognition accuracy of human observers and DCNs ob-

scures distinct visual strategies used by each to achieve this

performance.

1. Introduction

Advances in Deep Convolutional Networks (DCNs) have

led to vision systems that are starting to rival human accu-

racy in basic object recognition tasks [9]. While a growing

body of work suggests that this surge in performance car-

ries concomitant improvement in fitting both neural data in

higher areas of the primate visual cortex (reviewed in [36])

and human psychophysical data during object recognition

[12, 21], key differences remain.

It has been suggested that the processing depth achieved

by state-of-the-art DCNs may be greater than that achieved

by the human visual system during rapid categorization [7].

It has also been shown that DCNs do not generalize well

to atypical scenes, such as when objects are presented out-

side of their usual context [23]. A recent study [30] found

evidence for qualitatively different patterns of behavior by

human observers versus DCNs during recognition. When

presented with small object crops, human participants de-
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Figure 1. Humans and DCNs utilize different visual features for

object recognition. We developed an online game called Click-

tionary to derive human importance maps for object recognition,

which we compared to feature importance maps derived from

DCNs.

pended on the inclusion of a key diagnostic image feature

to recognize the objects. In contrast, DCNs failed to ex-

hibit the same “all-or-nothing” dependence on key visual

features during object recognition. Overall, this raises the

possibility that DCNs may leverage entirely different visual

strategies than humans during object recognition.

Here, we provide direct evidence that the visual features

used by DCNs for object recognition differ markedly from

those used by human observers. We created Clicktionary, a

collaborative web-based game for identifying diagnostic vi-

sual features for human object recognition. Pairs of partici-

pants work together to identify objects: One player reveals

diagnostic image regions while the other tries to recognize

the object as quickly as possible from those image parts.

Amassing game-play data across many participants yields

importance maps for individual images. This is illustrated

in the middle panel of Figure 1: the hotter the pixel, the

more often it was selected by participants as important for

recognition. For this image of glasses, the frame was more

important for recognition than its lenses. Thus, these fea-

ture importance “hot spots” highlight key features human

observers use to recognize object images.

Using importance maps derived from Clicktionary we

show that: (1) Features identified in these maps are strongly

stereotyped across participants and also different from those
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in saliency maps derived from both attention models and

human participants. (2) Humans and DCNs favor dissimilar

visual features during object recognition, revealing a novel

difference between biological and machine vision and an

opportunity to bridge this gap.

2. Related Work

Behavioral studies: A central goal in vision science is

to understand what features the human visual system uses

to process complex visual scenes. Traditional approaches

to uncover the internal representations contributing to be-

havior include reverse correlation methods, which involves

analyzing the relationship between decisions made about a

stimulus and visual perturbations applied to it across many

trials. Reverse correlation methods have helped identify vi-

sual features that are diagnostic for faces and other synthetic

object stimuli [25, 19]. But these methods are inefficient

and typically require thousands of trials per subject to de-

duce internal representations despite little shape variabil-

ity in these object classes. Reverse correlation approaches

therefore seem impractical for characterizing visual repre-

sentations used for categorizing general classes of objects

with higher variability in stimulus appearance, location, or

lighting.

Recording eye fixations while viewing a stimulus is an-

other way of exploring visual feature importance. Patterns

of eye fixations represent observers’ efforts to center their

high-acuity fovea on salient or task-relevant information in

images [37]. Eye fixations are typically recorded during

passive image viewing, making it difficult to associate them

with object recognition. It is also difficult and costly to ac-

quire large-scale eye tracking data, leading researchers in-

stead to track computer mouse movements during task-free

viewing of images to estimate local saliency cues for fixa-

tions [17, 11].

Cognitive psychologists have traditionally used similar-

ity judgments between image pairs to study visual repre-

sentations. Recent work has used this approach to compare

representations between humans and representative DCNs,

finding good agreement between the two [21]. Related work

has also evaluated the ability of DCNs to predict memora-

bility [6] and the typicality of individual images [16].

Computational models: A growing body of research

sought understanding of the visual features used by DCNs

for object recognition. There is no gold standard, but pop-

ular methods fall into one of three groups. Sensitivity anal-

yses use either gradient-based approaches [38, 27] or sys-

tematic perturbations of the stimulus to estimate local pixel-

wise contributions of visual features to a classification de-

cision [38]. Decision analyses such as layer-wise relevance

propagation (LRP) provide a global estimate of a pixel’s re-

sponsibility to the classification decision. A third approach

adopted by methods like class activation mapping (CAM) is

to optimize DCN visualizations for class-discriminability,

yielding reliable object localization [39]. A representative

methods from each approach is used here to derive impor-

tance maps from DCNs for comparison with those derived

from human observers.

Web-based games for data collection: There is a his-

tory of leveraging the wisdom of crowds through web-

based applications to gather data for computer-vision stud-

ies. Closely related to Clicktionary is the ESP game for

identifying objects in real-world images [33] and the Peek-

a-boom game for locating them [34]. In both of these

games, participants work together to recognize an image of

an object. We take particular inspiration from Peek-a-boom,

where one participant in a pair reveals parts of an image to

elicit a classification response from the other participant.

Clicktionary alters the mechanics of Peek-a-boom in two

keys ways that make it more suitable for measuring feature

importance in object images. (1) Clicktionary has a high

resolution interface that lets participants more selectively

reveal visual features for object recognition. (2) Click-

tionary controls for image revelation strategies from teach-

ers that could introduce confounds into the resulting feature

importance maps, such as “salt and peppering” the screen

with clicks, waiting long intervals between clicks, or send-

ing visual hints back and forth as in the original Peek-a-

boom game.

Another web-based game with a similar goal as Click-

tionary is Bubbles [5], which surveys features in images

useful for distinguishing between two object categories. In

this single-player game, participants first familiarize them-

selves with multiple “training” exemplars from two image

categories. Participants are then presented with a blurred

“test” exemplar and asked to sharpen pixels that are most

informative for identifying the correct category. This design

does not effectively scale to the number of object categories

that we test here, and the interface obscures the extent to

which revealed local features versus the “gist” of the blurred

test image supported its recognition.

Similar game-like interfaces have also been used to ex-

plore other facets of human perception as in [29] where

players take turns outlining important objects in real-world

scenes and guessing their identities. Another example is [4],

where participants sharpened parts of a scene image that

they deemed important for answering questions about the

scene. The game style has also been used to answer ques-

tions in biological and physical sciences, including predict-

ing protein structure [3] or neuronal connectivity [13].

3. The Clicktionary game

Clicktionary was constructed to identify visual features

that are diagnostic for human observers during visual recog-
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Figure 2. Overview of Clicktionary. Pairs of participants, one

teacher and one student, play together to categorize objects. The

teacher uses the mouse to place “bubbles” on the image to reveal

regions to the student, who types the category name of the ob-

ject. Bubble densities computed across participants at each pixel

location yields importance maps that identify visual features diag-

nostic for recognition.

nition. Upon starting the game, players provided informed

consent, read instructions, and were placed into a virtual

waiting room. The waiting room contained a scoreboard

listing the performance of the most successful teams to play

the game. Our hope was to provide an incentive for play-

ers to compete with each other in order to collect the highest

quality behavioral data possible. Participants were automat-

ically paired in the waiting room1. Once the game began,

players collaborated over a series of rounds to name the cat-

egory of an object image (Figure 2).

Players accomplished this by alternating between two

different roles over many game rounds. In each round,

one player was the teacher, who viewed the intact image,

and the other was the student, who viewed a blank image.

The teacher revealed regions of the object in the image that

were thought to be informative for the student to recognize

it (whose role is detailed below).

The teacher revealed informative image regions by click-

ing on the image and then dragging the mouse across it,

as if painting. Translucent blue boxes on the teacher’s im-

age marked regions that were visible to the student. Each

1If no one else entered the waiting room within 120 secs, players played

against a DCN opponent. These data were not included in the current study.

of these image regions, revealed to the student by the

teacher, were 18 × 18 pixels. We refer to these revealed

image patches hereafter as “bubbles” [8, 5]. Images were

300× 300 pixels.

The mechanics controlling how teachers bubbled im-

ages were constructed to maximize our ability to identify

minimal object features. Teachers were instructed to care-

fully choose where they began bubbling because once they

started, the process did not stop until the student recognized

the image. Bubbles were continuously placed at the posi-

tion of the teacher’s mouse cursor, leading to the feeling of

“painting” these bubbles on the image. To ensure that all

teachers bubbled at a relatively consistent rate, bubbles ap-

peared under the mouse cursor at a random time interval

ranging between 50 msecs and 300 msecs.

Each bubble after the first was placed within the radius

of the one preceding it. This meant that teachers could eas-

ily and precisely bubble in the image, but could not change

the speed at which the bubbles were placed. This also kept

teachers from using a “salt-and-pepper” strategy to skip

around the screen when bubbling. We felt this design choice

was crucial for controlling against this and other bubbling

strategies that would likely have yielded faster game play

but also hindered our ability to capture minimal object fea-

tures. For example, it is possible that students could have

inferred object category clues from the shapes created by

the bubbles themselves.

In contrast to the teacher, the student began each round

viewing a blank version of the teacher’s image and a text

box for guessing its object category. As the teacher bub-

bled image regions, corresponding locations of the student’s

blank image were unveiled to reveal content. Note that hav-

ing students begin each round with a blank rather than a

blurred version of the image ensured that they only derived

object information from image regions bubbled by their

teachers. Students were instructed to name the basic-level

category of the object. For instance, the desired response

for an image of a border collie was “dog”. We also accepted

subordinate-level category labels to expedite game play.

To provide teams of players incentive to work as quickly

and efficiently as possible, their performance and the av-

erage performance of the top-10 scoring teams was visi-

ble throughout the game. Team performance was measured

as the number of image bubbles placed by teachers before

students recognized the image. While there was no ex-

plicit penalty for wrong answers, participants achieved bet-

ter scores by avoiding them. If a team finished the game in

the top-10 they were congratulated and shown their ranking.

Incorrect guesses caused a red outline to appear around

the image viewed by both student and teacher. For cor-

rect guesses, images were briefly outlined in green before

proceeding to the next round. If a student could not figure

out the object’s class, there was a skip button that penalized
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Figure 3. Heatmaps depicting object feature importance for humans and machines. From left to right: importance maps on images from

Experiments 1, 2, and 3 (the black box was added for emphasis), layer-wise relevance propagation maps (LRP) from VGG16, class

activation mapping (CAM) on VGG16, sensitivity analysis on VGG16, predicted saliency from DeepGaze II, and bottom-up saliency.

the team’s performance with the equivalent of 100 bubbles.

Student and teacher switched roles after each round. The

game was played for 110 rounds, with a different image

each round. Each pair played on a random ordering of im-

ages.

By design participants could not communicate, but we

included features to make the game feel more collaborative.

These included real-time notifications of what each player

in the pair was doing at any point in time: bubbling, typing,

correct and incorrect responses, or considering which part

of the image to bubble first.

Each game lasted about 20 minutes and participants were

only allowed to play once. Participants were recruited

through Amazon Mechanical Turk or from introductory

computer science or cognitive science classes, and reim-

bursed approximately $8.00/hr.

We created importance maps through a two-step proce-

dure. First, individual bubble maps were created for every

image played by a Clicktionary participant pair (lower-right

corner, Figure 2). Second, feature importance maps were

derived as the average number of bubbles at each image

pixel across all participant pairs (top-right corner, Figure 2).

4. Comparing importance maps derived from

humans versus DCNs

We validated the reliability of feature importance maps

derived from Clicktionary and used them to systematically

compare the features used by humans and DCNs to catego-

rize representative objects. We used rank-order correlation

throughout to measure these associations because impor-

tance maps are sparse and do not satisfy normality assump-

tions (no click map passed a Kolmogorov-Smirnov test for

normality). All tests for significance used independent sam-

ple t-tests with two-tailed p-values.

Reliability of Clicktionary data: We first ran two rounds

of the Clicktionary game which are hereafter referred to as

Exp. 1 and Exp. 2. Forty-six participants took part in Ex-

periment 1 and 14 participants in Experiment 2. Both Exp.

1 and Exp. 2 included the ten original images used in [30],

for possible comparison with the MIRCs (graciously pro-

vided by the authors; data not shown). In addition, each ex-

periment had participants judge a different set of 100 object

images taken from the validation set of the 2012 ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) [22].
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Figure 4. Importance map features vary according to how effi-

ciently a participant pair recognized images. On the left, the mean

importance map from pairs with above-median efficiency in recog-

nizing glasses (i.e. faster recognition). On the right, the mean im-

portance map from below-median pairs. The above image is rep-

resentative of the typical differences found between these groups.

Images for each experiment were selected from 10 cate-

gories, 5 animate and 5 inanimate. For Exp. 1, we chose

representative categories for animate objects: border collie,

bald eagle, great white shark, and sorrel; and inanimate ob-

jects: airliner, school bus, speedboat, sports car, and trailer

truck. For Exp. 2, we chose the 5 animate and 5 inanimate

categories that were the most difficult for VGG16 [28] to

categorize (top-1 accuracy). These were english foxhound,

husky, miniature poodle, night snake, and polecat; cassette

player, missile, screen, sunglasses, and water jug.

We measured the inter-participant and inter-experiment

consistency of the importance maps extracted from the

Clicktionary game to validate the effectiveness of these

maps at capturing visual features for object recognition.

Inter-participant consistency was measured by splitting par-

ticipants into two random groups and then recording the

rank-order correlation between each group’s mean impor-

tance maps. Each experiment’s inter-participant consis-

tency was found by taking the mean score across 1000 it-

erations of this procedure. We found ρ = 0.88 (p <0.001)

in Exp. 1 and ρ = 0.79 (p <0.001) in Exp. 2. We also mea-

sured consistency between participants in Exp. 1 vs. Exp.

2 on the MIRC images that each group saw. Again, there

was a strong correspondence between importance maps de-

rived from these 10 images for participants across the two

independent experiments even though Exp. 2 had roughly a

third as many participants as Exp. 1 (ρ = 0.55, p <0.001).

Despite the strong agreement we observed between

Clicktionary participants, we found that importance maps

were affected by player performance. Applying a median

split to the number of bubbles it took for pairs to recognize

objects revealed qualitatively different importance maps for

the two groups (Figure 4). As expected, maps from the effi-

cient group (i.e. number of bubbles below the median split)

had significantly stronger inter-participant correlations than

the inefficient group for both experiments (Exp. 1: ρ
EFFICIENT

= 0.94 versus ρ
INEFFICIENT

= 0.89, p <0.001, and Exp. 2:

ρ
EFFICIENT

= 0.92 versus ρ
INEFFICIENT

= 0.84, p <0.001). The ef-

ficient group also yielded quantitatively sparser maps than

the inefficient group, which we measured as the kurtosis

of each groups mean importance map for every image2.

For both experiments, the average kurtosis across images

was significantly greater for the efficient group than the in-

efficient group, indicating that the distribution of the effi-

cient group’s importance maps were more peaked and car-

ried stronger “hotspots” than the inefficient group: Exp. 1:

β2EFFICIENT
= 49.51 versus β2 INEFFICIENT

= 34.47, p <0.001; Exp.

2: β2EFFICIENT
= 20.27 versus β2 INEFFICIENT

= 9.73, p <0.001).

These results suggest that although Clicktionary’s feature

importance maps are stereotyped across participants, the

underlying visual strategies are nevertheless somewhat var-

ied. More work is needed to better characterize the exact of

visual features and strategies used to generate these maps.

Weak correlation between Clicktionary and DCN data:

A key objective of this study was to compare importance

maps derived from human participants and DCNs. In sup-

port of this, we produced DCN heatmaps of object impor-

tance for each of the images used in Clicktionary. This was

done using VGG16, a variant of the popular VGG architec-

ture [28]. We calculated heatmaps for this model using three

representative methods: a sensitivity analysis [38], LRP [1],

and CAM [39].

Strikingly, there was only a weak relationship be-

tween Clicktionary importance maps and LRP derived from

VGG16 (ρ = 0.33, p <0.001; Figure 5). Although this

correlation was significantly greater than 0, it was signifi-

cantly weaker than each experiment’s inter-participant cor-

relations. This was measured as the proportion of itera-

tions of the inter-participant randomization procedure de-

scribed above that yielded smaller correlations than the

mean LRP correlation: inter-participant Exp. 1 > LRP,

p <0.001; inter-participant Exp. 2 > LRP, p <0.001. In

addition, importance maps did not correlate with feature

importance maps from a sensitivity analysis performed on

VGG16 (ρ = 0.03, n.s.; inter-participant Exp. 1 > sensi-

tivity, p <0.001; inter-participant Exp. 2 > sensitivity, p

<0.001).

We also produced DCN heatmaps based on the CAM

method [39] because it is designed to localize objects rather

than reflect DCN decision processes. Implementing CAM

requires modifying a DCN, replacing its fully connected

layers with a single layer that maps its convolutional fea-

tures to categories. We trained the CAM layer for 100

epochs on a subset of ILSVRC12 (150,000 images to-

2Because kurtosis measures distributional characteristics, it is robust to

the total number of clicks made by each group and controls for potential

circularity in this analysis.
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Figure 5. Correlations between Clicktionary feature importance maps, DCN feature importance, and visual saliency. Each dot represents

the mean correlation between Clicktionary and a feature importance source for individual image categories. For reference, inter-participant

correlations are plotted in dashed lines for Experiment 1, Experiment 2, and Experiment 3. Not all image categories are represented by

each feature importance source: importance maps from a bottom-up saliency algorithm and DeepGaze II were derived for images from

Experiments 1 and 2, whereas human saliency was only measured on images in Experiment 3. Independent samples t-tests measured

deviation from 0. ***: p <0.001

tal), and selected the weights that yielded maps with the

strongest correlation with human feature importance maps

derived from Clicktionary. Even with this optimization pro-

cedure in place, feature importance maps from CAM were

uncorrelated with either Clicktionary experiment. We found

a correlation ρ = 0.10 (n.s.) in Exp. 1 and ρ = 0.06 (n.s.)

in Exp. 2 (inter-participant Exp. 1 > CAM, p <0.001; inter-

participant Exp. 2 > CAM, p < 0.001).

Lack of association between Clicktionary data and

saliency measures: We considered the extent to which

Clicktionary maps were consistent with visual saliency

maps. Because theory holds that attention is driven by both

bottom-up and top-down mechanisms [10], we compared

importance maps to saliency maps derived from models

for both kinds of attention, referred to hereafter as bottom-

up saliency [10]3 and top-down attention derived from the

DeepGaze II model [15].

Importance maps were not correlated with either bottom-

3The algorithm for predicting bottom-up saliency maps was tuned to

have qualitatively similar sparsity as the importance maps.

up saliency (ρ = 0.00, n.s.) or eye fixation predicted

by DeepGaze II (ρ = 0.03, n.s.; Figure 5). Inter-

participant correlations for each experiment were also sig-

nificantly stronger than correlations between Clicktionary

feature importance maps and either measure of saliency

(inter-participant Exp. 1 > bottom-up saliency, p <0.001;

inter-participant Exp. 2 > bottom-up saliency, p <0.001;

inter-participant Exp. 1 > DeepGaze II, p <0.001; inter-

participant Exp. 2 > DeepGaze II, p <0.001).

To better estimate the similarity between Clicktionary

feature importance maps and visual saliency we ran an ad-

ditional round of the Clicktionary game (hereafter referred

to as Exp. 3) to directly compare its importance maps

to human saliency maps from the SALICON dataset [11].

SALICON contains a subset of images from the Microsoft

COCO image dataset, and for exp. 3 we used images from

categories that were also in ILSVRC, which allowed us to

also compare feature importance maps from this experiment

with DCNs. In total Exp. 3 had 8 total object categories, 4

animate and 4 inanimate, as well as the 10 images from [30]

(90 total). Image categories were bird, cat, elephant, and ze-

bra; couch, dining table, refrigerator, and umbrella.
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Figure 6. Human feature importance maps from Exp. 3 contrasted

with human saliency maps and DCN importance (LRP) for the

same images. Note that human feature importance maps from

Clicktionary are both qualitatively unique from the others and

strongly stereotyped.

As with the other two Clicktionary experiments, there

was strong inter-participant correlation for the 12 partici-

pants in Exp. 3 (ρ = 0.85, p <0.001). Consistent with the

computational models for visual saliency, there was weak

correlation between Clicktionary and human saliency data:

ρ = 0.14 (p <0.001; even after adjusting the saliency maps

to have similar resolution as the importance maps; Figure

6).

5. Discussion

Clicktionary is a novel approach for estimating feature

importance maps derived from human participants. The

proposed method overcomes some of the limitations of ex-

isting psychophysical methods including reverse correlation

and other image classification methods for measuring inter-

nal representations used by human observers to recognize

objects (see [18] for a review). We have described what is,

to our knowledge, the first systematic study of feature im-

portance maps derived from human participants using natu-

ral images over multiple object categories.

To summarize our main findings: We found little or no

overlap between importance maps and image saliency maps

predicted by attention models (Exp. 1 and 2) or derived

from human participants (Exp. 3). This suggests that impor-

tance maps reflect neural mechanisms that are, to some de-

gree distinct from those that guide attention and eye move-

ments. This is a necessary distinction to make because it

means that importance maps can provide insight into our

understanding of biological vision in ways that extant com-

putational models cannot.

It is important to note that importance maps are gener-

ated through a process that necessarily depends on atten-

tion: Teachers’ clicks reflect a continuous ranking of the im-

portance of image features for recognition. However, this is

distinct from typical methods for measuring (or predicting)

attention in two ways. First, saliency is usually measured

passively or in a search task, whereas importance maps take

advantage of the teacher’s ability to select relevant features,

trading image saliency for feature diagnosticity. Second, the

interplay of teacher and student identifies the point at which

visible features become sufficient to trigger recognition.

Our current method for visualizing importance maps

across participant pairs remains relatively simple – poten-

tially disregarding important information through averag-

ing. We expect that future work in developing a more nu-

anced approach to measuring importance maps and better

characterizing students’ recognition processes will prove

useful for further characterizing visual strategies for both

humans and DCNs. In support of this, Clicktionary feature

importance maps can be downloaded from clickme.ai/

about.

We found a weak association between importance maps

and LRP maps derived from VGG16. This indicates that

there is at least some overlap between the visual features

used by humans and DCNs for object categorization. How-

ever, the magnitude of this association was less than half

of what was found within Clicktionary participants, demon-

strating that object representations of DCNs and humans are

still meaningfully different.

These findings support our key assertion: visual strate-

gies used by humans and DCNs during object recognition

are not aligned. Importance maps capture mostly distinct

information from DCNs, as measured by either LRP or a

sensitivity analysis. Clicktionary feature importance maps

were also at best weakly associated with either model- or

human-derived salience maps of object images.

How can we close the gap between human and DCN vi-

sion? One possibility is by creating a dataset of importance

maps that is large and diverse enough to be included in ob-

ject recognition training routines of DCNs. We have cre-

ated clickme.ai to achieve this goal, and future work

incorporating its feature maps into object recognition train-

ing routines represents a novel opportunity to rectify the

mismatch in visual strategies between humans and DCNs
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revealed by Clicktionary.

There is strong evidence that human-derived information

can help machine performance in vision tasks, particularly

for images depicting atypical views or containing many oc-

clusions. Researchers have found that in cases like these

human perceptual judgments can augment the performance

of vision models [35], resulting in significant gains in face

recognition and localization [24, 2, 14], action recognition

[31], object detection and segmentation [20, 26, 32].

Overall, the present work makes significant contributions

to our understanding of biological vision and reveals a sig-

nificant gap between feature importance for humans and

machines. We believe that these findings will inspire new

directions in DCN research and help narrow the gap be-

tween biological and computational vision.
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Predicting protein structures with a multiplayer online game.

Nature, 466(7307):756–760, 5 Aug. 2010. 2

[4] A. Das, H. Agrawal, C. Lawrence Zitnick, D. Parikh, and

D. Batra. Human attention in visual question answering: Do

humans and deep networks look at the same regions? 11 June

2016. 2

[5] J. Deng, J. Krause, and L. Fei-Fei. Fine-Grained crowd-

sourcing for Fine-Grained recognition. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

580–587, June 2013. 2, 3

[6] R. Dubey, J. Peterson, A. Khosla, M.-H. Yang, and

B. Ghanem. What makes an object memorable? In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 1089–1097, 2015. 2

[7] S. Eberhardt, J. Cader, and T. Serre. How deep is the feature

analysis underlying rapid visual categorization? In Neural

Information Processing Systems, 2016. 1

[8] F. Gosselin and P. G. Schyns. Bubbles: a technique to re-

veal the use of information in recognition tasks. Vision Res.,

41(17):2261–2271, Aug. 2001. 3

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Computer Vision and Pattern

Recognition, 2016. 1

[10] L. Itti and C. Koch. Computational modelling of visual at-

tention. Nature Review Neuroscience, 2(3):194–203, 2001.

6

[11] M. Jiang, S. Huang, J. Duan, and Q. Zhao. SALICON:

Saliency in context. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1072–1080, June

2015. 2, 6

[12] S. R. Kheradpisheh, M. Ghodrati, M. Ganjtabesh, and

T. Masquelier. Deep networks can resemble human feed-

forward vision in invariant object recognition. Scientific Re-

ports, 6:32672, Sept. 2016. 1

[13] J. S. Kim, M. J. Greene, A. Zlateski, K. Lee, M. Richardson,

S. C. Turaga, M. Purcaro, M. Balkam, A. Robinson, B. F. Be-

habadi, M. Campos, W. Denk, H. S. Seung, and EyeWirers.

Space-time wiring specificity supports direction selectivity

in the retina. Nature, 509(7500):331–336, 15 May 2014. 2

[14] A. Kovashka, O. Russakovsky, L. Fei-Fei, and K. Grauman.

Crowdsourcing in computer vision. Foundations and Trends

in Computer Graphics and Vision, 10(3):177–243, 2016. 8
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