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Abstract

In human visual saliency, top-down and bottom-up in-

formation are combined as a basis of visual attention. Re-

cently, deep Convolutional Neural Networks (CNN) have

demonstrated strong performance on RGB salient object

detection, providing an effective mechanism for combining

top-down semantic information with low level features. Al-

though depth information has been shown to be important

for human perception of salient objects, the use of top-down

information and the exploration of CNNs for RGB-D salient

object detection remains limited. Here we propose a novel

deep CNN architecture for RGB-D salient object detection

that utilizes both top-down and bottom-up cues. In order to

produce such an architecture, we present novel depth fea-

tures that capture the ideas of background enclosure, depth

contrast and histogram distance in a manner that is suit-

able for a learned approach. We show improved results

compared to state-of-the-art RGB-D salient object detec-

tion methods. We also show that the low-level and mid-

level depth features both contribute to improvements in re-

sults. In particular, the F-Score of our method is 0.848 on

RGBD1000, which is 10.7% better than the current best.

1. Introduction

In computer vision, visual saliency attempts to predict

which parts of an image attract human attention. Saliency

can be used in the context of many computer vision prob-

lems such as compression [7], object detection [19], visual

tracking [20], and retargeting images and videos [25]. In re-

cent years, research has focused on salient object detection,

finding salient objects or regions in an image (e.g., [1, 3]).

Most existing salient object detection methods are based

on RGB images. However, depth plays a strong role in

human perception, and it has been shown that human per-

ception of salient objects is also influenced by depth [14].

Figure 1. Comparing our RGB-D salient object detector output

with other salient object detection methods. An example of which

both low-level feature from color and depth, and high level seman-

tic information are important.

Thus, RGB-D salient object detection methods have been

proposed [6, 13, 21, 22, 24] and have demonstrated supe-

rior performance in comparison to RGB-only methods.

In theory, humans adopt both bottom-up and top-down

strategies for saliency [10]. While many salient object de-

tection methods adopt a bottom-up strategy [6, 8, 13, 21,

24], recently, top-down methods through machine learning

have demonstrated superior performance [15, 18, 22, 30].

Recent papers have tackled top-down learning for RGB

salient object detection using deep CNN [15, 18, 30].

However, it is not yet clear whether combining top-

down information using deep CNNs is effective for RGB-D

saliency detection. The approach of this paper is premised

on observations of the performance of state-of-the-art ap-

proaches in salient object detection. Top-down informa-

tion plays an important role in human attention [10], and
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has been shown to be effective in RGB salient object de-

tection. Further, in RGB-D salient object detection, the

effectiveness of background enclosure and of depth con-

trast have been demonstrated [6]. Finally, deep CNNs have

been shown to be effective for RGB salient object detec-

tion [15, 18, 30] particularly in introducing top-down infor-

mation.

This paper makes three major contributions. (1) We pro-

pose a novel learning architecture that provides the first

complete RGB-D salient object detection system utilizing

both top-down and bottom-up methods. (2) We introduce

the background enclosure distribution, BED, a novel mid-

level depth feature that is suitable for learning based on the

idea of background enclosure. (3) We introduce a set of low

level features that are suitable for learning that incorporate

the idea of depth contrast and depth histogram distance.

We show that our new approach produces state-of-the-

art results for RGB-D salient object detection. Further, we

evaluate the effectiveness of adding depth features, and of

adding the mid-level feature in particular. In ablation stud-

ies, we show that incorporating our low-level features based

on depth contrast lead to better performance than RGB

saliency alone, and that adding our new mid-level feature,

BED, improves results further.

2. Related Work

Saliency detection to model eye movements began with

low-level hand-crafted features, with classic work by Itti et

al. [10] being influential. A variety of salient object detec-

tion methods have been proposed in recent years, we focus

on these as more relevant to our work.

RGB Salient object detection In RGB salient object de-

tection, methods often measure contrast between a region

versus its surrounds, locally and/or globally [5, 10]. Con-

trast is mostly computed with respect to appearance-based

features (e.g., color, texture, and intensity edges) [4, 12].

RGB salient object detection using deep CNNs Re-

cently, methods using deep CNNs have obtained strong re-

sults for RGB salient object detection. Wang et al. [28]

combine local information and a global search. Often

the networks make use of deep CNN networks for object

classification for a large number of classes, specifically

VGG16 [26] or GoogleNet [27]. Some utilize these net-

works for extracting the low features [15, 16, 18]. Lee et

al. incorporate high-level features based on these networks,

along with low level features [15]. This approach to incor-

porating top-down semantic information about objects into

salient object detection has been effective.

RGB-D Salient Object Detection Compared to RGB

salient object detection, fewer methods use RGB-D values

for computing saliency. Peng et al. calculate a saliency map

by combining low, middle, and high level saliency infor-

mation [21]. Ren et al. calculate region contrast and use

background, depth, and orientation priors. They then pro-

duce a saliency map by applying PageRank and an MRF

to the outputs [24]. Ju et al. calculate the saliency score

using anisotropic center-surround difference and produce a

saliency map by refining the score applying Grabcut seg-

mentation and a 2D Gaussian filter [13]. Feng et al. im-

prove RGB-D salient object detection results based on the

idea that salient objects are more likely to be in front of their

surroundings for a large number of directions [6].

Most existing RGB-D methods use hand-crafted param-

eters, such as for scale and weights between metrics. How-

ever, real world scenes contain unpredictable object ar-

rangements for which fixed hand coded parameters may

limit generalization. A preliminary paper uses only low-

level color and depth features [22].

Datasets Two datasets are widely used for RGB-

D salient object detection, RGBD1000 [21] and

NJUDS2000 [13]. The RGBD1000 dataset contains

1000 RGB-D images captured by a standard Microsoft

Kinect. The NJUDS2000 dataset contains around 2000

RGB-D images captured by a Fuji W3 stereo camera.

3. A novel deep CNN architecture for detecting

salient objects in RGB-D images

In this section, we introduce our approach to RGB-D

salient object detection. Our novel deep CNN learning ar-

chitecture is depicted in Figure 2. We combine the strengths

of previous approaches to high-level and low-level feature-

based deep CNN RGB salient object detection [15], with a

depth channel, incorporating raw depth, low level cues to

capture depth contrast, and a novel BED feature to capture

background enclosure.

3.1. BED Feature

High-level and low-level features have been shown to

lead to high performance for detecting salient objects in

RGB images in a deep CNN framework [15]. We also

know that the effective encoding of depth input can improve

convergence and final accuracy where training data is lim-

ited [9]. Here we add a novel mid-level feature that aims to

represent the depth enclosure of salient regions for a learn-

ing approach, called the Background Enclosure Distribution

(BED) . BED relies on learning rather than hand-coded pa-

rameters that limit generalization.

Our proposed BED feature captures the enclosure dis-

tribution properties of a patch, that is, the spread of depth

change in the surrounds, based on the idea that salient ob-

jects are more likely to be in front of their surroundings in

a large number of directions. BED is inspired by LBE for

salient object detection, which has been shown to be an ef-

fective hand-crafted feature for non-learned salient object

detection [6].
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Figure 2. The whole architecture of our method. We extract ten superpixel-based handcrafted depth features for inputs (Section 3.1 and

3.2). Then we combine the depth features by concatenating the output with RGB low-level and high-level saliency features output (Section

3.3 and 3.4). Finally, we compute the saliency score with two fully connected layers.

Figure 3. The concepts of the foreground function f(P, t) and the

opposing background function g(P, t). For example, f(P, t) =
θ
a1+θ

a2

2π
and g(P, t) = θ

a3

2π
at point A.

For each superpixel P , we define a foreground function

f(P, t) that measures the spread of directions (the integral

over angle) in which P is in front of its background set

defined by the threshold t, consisting of all patches with

greater depth than depth(P ) + t. Specifically, f computes

the portion of angles θ ∈ [0, 2π) for which the line emanat-

ing from P with angle θ intersects this background set. We

also define an opposing background function g that mea-

sures the size of the largest angular region in which the su-

perpixel is not in front of its background set.

We aim to measure the distribution of f and g over a

range of background thresholds (i.e., t) to provide a stable

representation of background enclosure. The distribution

functions are given by:

F (P, a, b) =

∫ b

a

f(P, t)dt (1)

G(P, c, d) =

∫ d

c

1− g(P, t)dt, (2)

where (a, b) and (c, d) are some range of depth. We define a

quantization factor q over the total range of depth of interest

denoted by σ. Our BED feature consists of two distribution

sets F and G:

F(P, σ, q) = {F (P, r, r − σ/q)|r ∈ {σ/q, 2σ/q, ..., σ}} (3)

G(P, σ, q) = {G(P, r, r − σ/q)|r ∈ {σ/q, 2σ/q, ..., σ}} . (4)

This provides a rich representation of image structure that

is descriptive enough to provide strong discrimination be-

tween salient and non salient structure.

We construct a 20 × 20 feature layer for each of these

distribution slices. This results in 2q feature layers for our

BED feature.

3.2. Low­level Depth Features

In addition to background enclosure, we also capture the

idea of depth contrast, that has been shown to be effective in

previous work [13, 22, 24]. Moreover, we utilize the depth

histogram distance which is inspired by a color histogram

distance in ELD-Net [15]. The extracted features are illus-

trated in Table 1 and Figure 4.

We use the SLIC algorithm [2] on the RGB image to seg-

ment it into superpixels (approximately 18×18 superpixels

per image). In every learning step, we focus on one super-

pixel, calculate how salient the superpixel will be, compare

it with ground truth, and perform back propagation.
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Depth feature name The number of the features

Depth of focused superpixel 1

Depth of the grid pixel 1

Depth contrast 1

Histogram distance 1

BED features 6

Table 1. The depth features extracted from the focused superpixel

and a grid cell.

Figure 4. Our four 20× 20 depth feature layers.

For every focused superpixel, we calculate the average

depth value to form a 20 × 20 layer of these values. This

layer contains the same values. We also subdivide the im-

age into 20 × 20 grid cells and calculate the average value

for each to form a 20 × 20 layer. To capture depth con-

trast (local and global) that has been shown to be effective

in RGB-D saliency, we create a 20 × 20 contrast layer be-

tween the depth of the superpixels and grid cells. We com-

pute the contrast layer simply by subtracting the average

depth value of each grid cell from the average depth value

for each superpixel. Finally, we calculate the difference be-

tween the depth histogram of the focused superpixel and

grid cells. This is a new depth feature inspired by the dif-

ference of color histogram in ELD-Net [15]. We divide the

entire range of depth values into 8 intervals and make the

histogram of the distribution of the depth values of each su-

perpixel and grid cell. To measure histogram contrast, we

calculate the χ2 distance between focused superpixel and

the grid pixel features. This is captured in Equation (5):

h(x, y) =
1

2

8
∑

i=1

(xi − yi)
2

(xi + yi)
, (5)

where xi is the number of depth values in quanta i for the

superpixel, and yi is the number of depth values in the range

i for the grid cell. These features are also inspired by the

RGB features that are shown to be effective in the original

version of ELD-Net [15].

3.3. RGB low and high level saliency from ELD­Net

To represent high-level and low-level features for RGB,

we make use of the extended version of ELD-Net [15].

We choose ELD-Net because this method is one of the

state-of-the-art RGB saliency methods and, as can be

seen, the network architecture can be extended to RGB-D

saliency. From personal correspondence, Lee et al. pub-

lished the source code for a better performing method in

https://github.com/gylee1103/ELDNet. Rather than using

VGG-Net [26] as per the ELD-Net paper, this version uses

GoogleNet [27] to extract high level features, and does not

incorporate all low-level features.

3.4. Non­linear combination of depth features

The low-level feature maps and the BED feature maps,

as described in Section 3.1 and 3.2, need to be combined

for detecting salient objects. In order to combine these fea-

tures well, we use three convolutional layers to form depth

feature outputs.

3.5. Concatenation of Color and Depth Features

In order to effectively extract color features, we make use

of the pretrained caffemodel of ELD-Net [15] to initialize

the weights of color features. The calculated 1 × 20 × 20
color feature layer is concatenated with the depth feature

outputs as shown in the Figure 2.

We then connect the 1× 20× 20+1× 20× 20 concate-

nated output features with two fully connected layers and

calculate the saliency score for the focused superpixel. We

calculate the cross entropy loss for a softmax classifier to

evaluate the outputs as:

E = −
{

p log p̂+ (1− p) log(1− p̂)
}

, (6)

where p is the calculated saliency score of the focused su-

perpixel and p̂ is the average saliency score for the ground

truth image.

4. RGB-D saliency detection system

We develop above-mentioned our learning architecture

for salient object detection based on the Caffe [11] deep

learning framework. For faster learning, our training uses

CUDA on a GPU.
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Figure 5. Developing input images from a depth image. The raw

depth seems very dark because this map illustrates actual dis-

tances.

Figure 6. Extracting feature values of the focused superpixel from

various input images.

4.1. Preprocessing on depth and color images

Since we concatenate the color and depth values, we

want to synchronize the scale of depth values with color

values. Hence, if required, we normalize the depth value

to the same scale, i.e., 0 to 255, before extracting depth

features. Depth values of RGBD1000 [21] are represented

with greater bit depth and so require normalization. On

NJUDS2000 [13] the scale of depth values are already 0

- 255, and so are not modified.

After normalization, we resize the color and depth im-

ages to 324×324. Figure 5 and 6 represent these processes.

4.2. Superpixel Segmentation

We use gSLICr [23], the GPU version of SLIC, to seg-

ment the images into superpixels. We divide each image

into approximately 18 × 18 superpixels, following Lee et

al. [15]. Note that gSLICr may combine small superpixels

with nearby superpixels [23].

4.3. Extracting low­level depth features

Following this, we create four 20×20 layers from each of

the low-level depth features. The first consists of the aver-

age value of the spatially corresponding focused superpixel

for each of the 20×20 inputs; the second is composed from

the average depth values of 20×20 grid cells; the third layer

consists of the difference of depth values between the mean

depth of the focused superpixel and the mean depth of each

of the grid cells; and the last layer consists of the histogram

distance between the superpixel and grid cells. Figure 4 il-

lustrates these processes.

4.4. Extracting BED features

In order to calculate BED features efficiently, we pre-

compute them. Three channels are computed for each of

equation (3) and (4), where q = 3 over the intervals between

0, σ
3

, 2σ
3

, σ where σ is the standard deviation of the mean

patch depths. The calculated values are connected to our

architecture in the same way as loading color images. For

each focused superpixel, we calculate each BED feature, for

a total of six 20× 20 feature maps. These are concatenated

with depth to form a (4+6)×20×20 feature input for each

focused super pixel. Figure 5 illustrates these processes.

5. Experimental Evaluation

We evaluate our architecture’s performance on two

datasets: RGBD1000 [21] and NJUDS2000 [13]. On

RGBD1000, we randomly divide the dataset into 600 im-

ages for a training set, 200 images for a validation set, and

200 images for a test set. On NJUDS2000, we randomly

divide the datasets into 1200 images for a training set, 385

images for a validation set, and 400 images for a test set.

The results are compared against other state-of-the-art

RGB-D saliency detection methods: local background en-

closure (LBE) [6]; multi-scale depth-contrast (LMH) [21];

saliency based on region contrast and background, depth,

and an orientation prior (GP) [24]; and anisotropic center-

surround depth based saliency (ACSD) [13]. We com-

pare our results also with RGB saliency detection systems:

DRFI [12] and DSR [17] which produce good scores [3].

We also add two state-of-the-art CNN-based RGB saliency

detection approaches: saliency from low and high level fea-

tures (ELD) [15]; and the Deep hierarchical saliency net-

work (DHS) [18]. For evaluating all of the above methods,

we use the same our test split. Finally, we compare our

results with a CNN-based RGB-D salient object detection

method (DF) [22]. As DF is learning based and uses ran-

domly sampled train and test splits, we refer their reported

score.

5.1. Evaluation Criteria

Like the other state-of-the-art RGB-D salient detection

methods [6, 21, 22, 24], we calculate the precision-recall

curve and mean F-score for evaluating our results. The F-
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score is calculated as a following equation:

Fβ =
(1 + β2)Precision×Recall

β2 × Precision+Recall
(7)

where β = 0.3 to place more emphasis on precision [1].

5.2. Experimental Setup

To help address the scarcity of RGB-D salient object

datasets, we enhance the training datasets by flipping and

rotating images. We made 16 rotated images by rotating the

image by 22.5 degree in each step. Each of these is also

flipped. As a result, the enhanced training dataset has 32

times as many images as the original. For RGBD1000 [21]

we make 19200 training images from 600 original images

and for [13], 38400 training from 1200 original images.

We perform training with the datasets augmented with

rotated and flipped images, and then train with the original

images only. In both cases, we use Adadelta optimizer [29]

for updating weights.

For training with the augmented datasets, we set the base

learning rate as 0.05, a decay constant ρ as 0.9, and the con-

stant ǫ as 1e-08. The weights for ELD [15] can be initial-

ized with a fine-tuned caffemodel. However, this is not suit-

able for depth, because the weights for depth are initialized

randomly. This means the weights for depth need a higher

learning rate compared to weights of ELD. We set the base

learning rate for depth as 0.5. We decrease the base learning

rate in every 10000 iterations by multiplying the base learn-

ing rate by 0.1. We perform 50000 training iterations on

RGBD1000 [21] and NJUDS2000 [13]. 1000 superpixels

are used for training in every step. Next we train with the

original images only. This is because we assume that the

most salient object may change for some images or their

saliency maps may become incorrect when the images are

flipped or rotated. We set the all base learning rate to 0.01, a

decay constant ρ to 0.9, and the constant ǫ to 1e-08. We per-

form 900 training iterations on RGBD1000 [21] and 1000

iterations on NJUDS2000 [13]. 1000 superpixels are used

for training in every step. These parameter values were de-

termined by performance on validation datasets.

5.3. Results

Our learning architecture outperforms other RGB-D

salient object detection methods (Figure 8a and 8b, Table

2). Our method is particularly effective for high recall rates

with respect to other methods. Our approach outperforms

the results of bottom-up approaches such as LBE [6] and

LMH [21] (Figure 8a and 8b). In addition, compared to

other top-down RGB salient object detection systems such

as ELD-Net [15] and DHSNet [18], our approach performs

better on the P-R curve and F-score. Our model also gives a

better score than other top-down RGB-D salient object de-

tection system such as DF [22].

RGBD1000 NJUDS2000

DRFI [12] 0.6017 0.6291

DSR [17] 0.5529 0.6000

LMH [21] 0.6756 0.6010

ACSD [13] 0.5618 0.6859

GP [24] 0.7232 0.6418

LBE [6] 0.7306 0.7419

ELD [15] 0.7248 0.7646

DHS [18] 0.7875 0.8172

DF [22] 0.7823 0.7874

Ours 0.8476 0.8213

Table 2. Comparing average F-measure score with other state-of-

the-art saliency methods on two datasets.

Precision Recall F-measure

Ours 0.8341 0.8437 0.8213

with mean depth (Ours) 0.8507 0.8406 0.8333

Table 3. Replacing the superpixel histogram with mean depth im-

proves results for NJUDS2000 [13] where depth data is noisy.

Precision Recall F-measure

RGB only (ELD) 0.7003 0.9274 0.7248

RGB+LD (Ours) 0.8410 0.8914 0.8407

RGB+LD+BED (Ours) 0.8483 0.8908 0.8476

Table 4. Comparing scores with different input features on

RGBD1000 [21]. Note that LD means Low-level Depth Features.

Precision Recall F-measure

RGB only (ELD) 0.7665 0.8449 0.7646

RGB+LD (Ours) 0.8308 0.8418 0.8166

RGB+LD+BED (Ours) 0.8341 0.8437 0.8213

Table 5. Comparing scores with different input features on

NJUDS2000 [13]. Note that LD means Low-level Depth Features.

On the NJUDS2000 [13], we perform training without

using χ2 distance of histogram difference of the depth of

the superpixel and grid cells, and using the average depth

of the superpixel instead. This is because the quality of the

depth images is not as good on NJUDS2000 datasets, as the

depth images are captured by stereo camera. This change

leads to an improvement in performance. (Figure 8b and

8d, Table 3) We name this method as Ours* in Figure 7. In

general, this may be an effective approach if training data

has noisy depth.

Our model is fast. Using Intel Core i7-6700 and GPU

TITAN X, our model takes around 0.1 second per one image

to calculate salient regions after BED features are obtained.

Calculating BED features takes around 1 second per image

with an unoptimized single threaded CPU implementation.
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Figure 7. Comparing performance of our methods with other RGB-D saliency methods. The PR curve of our method and the other current

RGB-D salient object detection methods on (a) RGBD1000 and (b) NJUDS2000. The F-score of our method and the other current methods

on (c) RGBD1000 and (d) NJUDS2000.

We evaluate the contribution of the separate components

of our method, the low level depth features including the

novel depth histogram comparison, and the BED features.

We perform training in the same architecture other than

these features, perform the same training, and use the same

measures of performance. Tables 4 and 5 shows the re-

sults. The tables contain average precision, recall, and F-

measure of ELD-Net [15], our network using the low level

depth features with ELD-Net, and our full architecture. As

can be seen, the contribution of the low level depth fea-

tures and BED are strong, and BED further contributes to

an increase in the already high scores. On the RGBD1000

dataset, precision increases well while holding the same re-

call. On NJUDS2000 datasets, precision increases and re-

call rate also increases slightly. Figure 8 shows the output

of our architecture with the other state-of-the-art methods.

6. Conclusion

In this paper, we proposed a novel architecture that pro-

vides the first complete RGB-D salient object detection sys-

tems using a deep CNN. Human visual attention is medi-

ated by top-down and bottom-up information, and it has

been shown that depth influences attention. This paper uses

a CNN to incorporate top-down and bottom-up informa-

tion for detecting RGB-D salient objects. We incorporate a

novel mid-level feature, BED, to capture background enclo-

sure, as well as low level depth cues that incorporate depth

contrast and depth histogram distance, and color features.

Our results demonstrate that our novel architecture outper-

forms other RGB-D salient object detection methods. Fur-

ther, we show that adding low-level depth and BED each

yield an improvement to the detection results.

2755



Figure 8. Comparing outputs of our architecture against DHS [18], ELD [15], LBE [6], GP [24]. Note that G.T. means Ground Truth.
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