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Abstract

Symmetry is a ubiquitous concept that can help to un-

derstand the structure of real objects. One of the main chal-

lenging problems in the analysis of symmetry is the robust-

ness against high partiality, i.e., when the support of the

symmetry in the input geometry is small. In this paper, we

address the problem of finding the partial axial symmetry of

3D objects through the analysis of surface descriptors with

invariance to partiality. These descriptors are used to re-

duce the search space of axial symmetric correspondences,

and allows us to design an effective and efficient algorithm

to detect the generator axis of the symmetry. Our algorithm

collects enough evidence of the presence of the axial sym-

metry in a consensus-based approach. Our algorithm can

also identify the support of the axial symmetry. Our exper-

iments show the robustness of our method in challenging

scenarios. We show that our method is good to generate

plausible restorations of damaged cultural heritage objects.

1. Introduction

Most objects around us exhibit some kind of symmetry.

It can be attributed to many reasons, but it is mainly due to

the fact that symmetry is an underlying characteristic that

provides structure. This structure can in turn be used to

understand high-level information about an object such as

functionality, the process of construction, or even the beauty

on it. Since one of the ultimate goal of computer vision is to

let computer understand their environment through a visual

stimulus, the symmetry analysis seems to be a helpful task

to support other high-level tasks such as reconstruction or

recognition.

We are interested in the analysis of axial symmetry. This

interest arises from the concern of analyzing archaeological

objects. We have noticed a predisposition of people in an-

cient cultures to make objects of daily use that show axial

symmetry. The shape is due to the use of a pottery wheel in

the construction of the objects. In general, the objects show

a axially symmetric structure (the main body of the object)

plus additional features (handles and ornaments). Unfor-

tunately, many objects have been buried for a long time,

which has caused severe damage to the pieces. Therefore,

the problem consists of revealing the structure of objects

with (possibly large) missing geometry. We call this prob-

lem analysis of partial axial symmetry.

The analysis of symmetry in 3D surfaces has attracted

recent attention of computer vision and computer graphics

communities. For readers interested in the topic of symme-

try analysis, we refer to the comprehensive survey presented

by Mitra et al. [14]. According to the amount of information

we use to define the symmetry, we can find global symme-

tries and partial symmetries. The former is related to trans-

formations that apply to the entire object, while the latter

is related to transformations that apply only to a part of the

object. There are many studies that focus the attention in

global symmetries [5, 20, 10, 15, 22, 8, 6]. These methods

assume that the object is complete and the center of mass

of the object is a fixed point of the symmetric transforma-

tion. Likewise, many methods have been proposed to deal

with partial symmetries [13, 3, 24, 9, 23]. In general, these

methods try to match distinguishable local features in order

to find the transformations between parts.

On the other hand, object repair is a challenging topic

that has captured attention recently because of the increas-

ing popularity of 3D scanning devices. If the object exhibits

some sort of symmetry it is also possible to use this fact

to repair the object. In a recent article, Sipiran et al. [17]

used a matching algorithm to find symmetric correspon-

dences. They proposed a variation of the Heat Kernel Sig-

nature [19] which preserves symmetry even in the presence

of missing parts. Similarly, Mavridis et al. [11] proposed a

registration-based technique which is able to repair 3D ob-

jects by finding general symmetries using an optimization

approach. Also, Son et al. [18] presented a method to re-

construct a 3D pottery from fragments by using information
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of the symmetry axis and the profile curve of the pottery.

In this paper, we present a method to tackle the detec-

tion the partial axial symmetry in 3D shapes. Our method

uses the theory of heat diffusion over 3D surfaces to find

evidence of regularity and structure in the input shape. In

particular, we propose an algorithm that analyzes the invari-

ance of a function defined over the surface of a partial ob-

ject, to subsequently detect its circular structure with a good

approximation. We also propose a method to determine the

part of the geometry that is affected by the axial symme-

try, disregarding additional features that are not generated

by the symmetry. Finally, the detected symmetry is used to

synthesize missing geometry of input objects.

The contribution of our paper is three-fold. First, we

present a detailed formulation of the problem. It helps us to

understand the problem and find the elements that leads to

the solution. Second, we propose a robust method to com-

pute the approximate symmetry axis of objects with missing

geometry. Finally, we show the application of the proposed

method to the robust generation of plausible geometry to

repair cultural heritage objects.

The paper is organized as follows. Section 2 presents

a formal description of the problem. Section 3 describes

our method to detect the partial axial symmetry. Section 4

shows our experiments and results. Section 5 presents the

application of our method to the virtual repair of cultural

heritage objects. Finally, Section 6 concludes our work.

2. Problem formulation

Let M be a 2D manifold embedded in a 3D space. By

definition, a symmetry is a non-trivial transformation T
such that the transformation leave objects unchanged. For-

mally, T is a symmetry if T (M) = M. A relaxed version

of this definition permits a degree of error in the transforma-

tion and introduces the idea of approximate symmetry. Let

d be a function that measures the congruence of two man-

ifolds. A transformation T is said to be α-approximate if

d(T (M),M) ≤ α.

In the case of axial symmetries, the transformation T is

any rotation around the generator axis of the object. With-

out loss of generality, we use the term generator axis instead

of symmetry axis because, as we are dealing with the prob-

lem of partial symmetry, we want to denote the axis of the

object as if it would be complete. With this in mind, we

denote the transformations as T = RE,θ, 0 ≤ θ ≤ 2π, the

rotation around the generator axis E with angle θ. The gen-

erator axis is defined as a tuple E = ( ~N,C), where ~N is a

normal vector and C is a point that lies in E . Therefore, if a

manifold M exhibits axial symmetry then M = RE,θ(M),
for any angle θ. The approximate counterpart can be for-

mulated similarly.

The aforementioned definition works perfectly when the

expected symmetry is global. That is, when the complete

object is transformed and it remains unchanged. However,

there are two cases in which the definitions do not hold any-

more. The first case is when only a partial region of the

object is invariant to the transformation RE,θ. This situa-

tion can be observed in many real objects that contain an

axial symmetry in some of their sub-components. The sec-

ond case is when an object with global axial symmetry is

broken. This situation can be observed in cultural heritage

applications for example.

Hence, the partial axial symmetry can be defined as fol-

lows. A manifold M exhibits partial axial symmetry if

there exists a generator axis E and two regions M1,M2 ⊆
M such that RE,θ(M1) = M2. The problem of finding

the axial symmetry RE,θ can be interpreted as the problem

of finding the generator axis E . Nevertheless, computing the

generator axis is a complex task itself due to two reasons.

First, we do not know regions M1 and M2 in advance. A

procedure to search two regions that hold with the defini-

tion can be a time-consuming task. Second, the generator

axis do not necessarily goes through the center of mass of

the input object. This makes the problem even harder since

the search space needs to consider orientation and position

as well.

2.1. Theory of heat diffusion

Heat diffusion studies the behavior of the heat propaga-

tion over the surface of an object as a function of the elapsed

time. The analysis of the propagation is closely related to

the geometrical characteristics of objects, and therefore, the

analysis is helpful to understand 3D shapes and their com-

position. In general, the analysis of heat diffusion on a

manifold M consists of defining a vector-valued function

f : M → R
n over the surface of 3D objects such that

the function must be preserved under isometric transforma-

tions. That is, if T is a isometry between two Riemannian

manifolds M and P , then it holds that fM(x) = fP(T (x)).
If function f holds with the previous property, then we say

that f is intrinsic.

This definition can be easily extended to symmetries.

Formally, a symmetry is a self-isometry that maps points

on a 3D shape to itself. In our problem, T = RE,θ and, by

definition, for any intrinsic surface function f , the equal-

ity fM(x) = fM(RE,θ(x)) should hold. Moreover, given

a point x ∈ M, there are an infinite number of points

RE,θ(x) ∈ M such that the surface function is preserved

(for any angle θ). As consequence, we plan to use the anal-

ysis of heat diffusion in the detection of partial axial sym-

metries. To accomplish that, we must take care of the design

of an effective method to find the transformation RE,θ from

the evidence delivered by the surface function.
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3. Symmetry detection

The core of our approach is the detection of the axial

symmetry in objects with missing geometry. Figure 1 de-

picts an overview of our method to detect the partial axial

symmetry of an input object. The first step of our method

analyzes the surface of the input object to find evidence of

circular structures. Instead of performing an analysis on the

complete input mesh, we show that points sampled with a

good distribution is a good choice (see Fig. 1(a)). Thereby,

our method finds circles formed by similar points in the

space of a surface function (see Fig. 1(b)). The second step

of our method determines the dominant circular structure

through a cluster analysis performed on the circles detected

in the previous step (see Fig. 1(c)). Finally, our algorithm

can be applied to replicate the existing object and generate

missing geometry (see Fig. 1(d)).

Figure 1: Overview of our method. (a) The analysis is per-

formed over a set of well-distributed sampled points on the

surface of the object. (b) Our method computes a circle for

each sampled point according to the similarity in the sur-

face function space. (c) A clustering algorithm determines

the best set of circles from which we can obtain the genera-

tor axis. The circle in the figure is the average circle in the

best set of circles. (d) The generator axis can finally be used

to repair damaged cultural heritage objects. Best viewed in

color.

3.1. Finding supporting circles

The problem can be summarized as: given a triangle

mesh M , which exhibits partial axial symmetry, we want

to find the transformation RE,θ. Note that it is only neces-

sary to compute the generator axis E since every rotation is

obtained from the generator axis and a given angle θ.

The starting point to solve the problem is the observa-

tion that a intrinsic function fM , defined over the surface of

the object M , is invariant to the symmetry transformation

RE,θ. More specifically, if there exist two points x ∈ M
and y ∈ M and y = RE,θ(x) for some θ, then it is likely

that ‖fM (x) − fM (y)‖2 = 0. Therefore, we can use this

criterion to search points in the feature space of the surface

function. All the points with the same values of function

fM have to be generated around the generator axis E , so we

can use the points to recover the structure of the symmetry.

Nevertheless, the previous criterion is too strict and it is

useless in practice since the input shape is a discrete rep-

resentation of a continuous manifold. We thus need to re-

lax the criterion to search points with similar values in the

function fM instead of looking for exact coincidence of the

function. Additionally, recall that the symmetry of the input

object is only partial, so it is very likely that points on the

surface do not hold the diffusion similarity criterion at all.

To face this problem, our approach is to get as much rele-

vant information as possible to recover the generator axis in

a reliable way.

Our algorithm starts by computing the function fM for

every point on the surface of the input 3D shape M . To

obtain as much information as possible on the existence of

the axial symmetry, we take into account a set of points to

perform the analysis of similarity with respect to the func-

tion fM . A good set of points for the analysis is such

that it covers the entire geometry, giving the opportunity

to the algorithm to choose point that are axially symmetric.

Let P = {pi}
n
i=1

be a set of sampled points on the sur-

face of M , obtained with a farthest point sampling (FPS)

method. We chose this sampling algorithm because the re-

sulting points are well distributed in the surface and it is

simple to implement.

For every point pi ∈ P , our algorithm searches for

similar points with respect to the function fM . In prac-

tice, we use the k-nearest neighbors associated to each

point pi. That is, the search obtains a set of points Qi =
{qj ∈ M}mj=1

such that ∀k ∈ M,k /∈ Qi, it holds that

‖fM (pi) − fM (qj)‖ < ‖fM (pi) − fM (k)‖. The number

of points in Qi with a very similar value of fM will be high

if point pi belongs to the region of the object with partial

axial symmetry. In addition, the set of points Qi should be

arranged around the generator axis, forming a circle. How-

ever in practice, points are not located in a perfect circle, so

we have to find the circular structure from Qi.

Obviously, Qi could contain outliers, i.e. points lying

far from the circular structure defined by pi and the axial

symmetric correspondences. Likewise, if the input object

is not complete, Qi only contains the structure of a circular

segment. To tackle these problems, we apply the RANSAC

method to find the best circle that approximates the struc-

ture of points in Qi. Briefly, we take three random points

qa, qb and qc in Qi and compute the circle going through

the three points. The center c of the circle is the intersec-

tion of the perpendicular lines that pass through the middle

point of segments qaqb and qbqc. The radius of the circle is

r = ‖qa − c‖2. Finally, the orientation of the 3D circle is

determined by the vector
−→
N = −−→qaqb ×

−−→qbqc. Note that a 3D

circle can now be defined as the tuple (C, r,
−→
N ).

Once we compute the circle defined by the three ran-

dom points, we need to verify if the circle is a good can-

didate. For all of the remaining points in Qi, we compute

the distance to the current circle. If the distance is below

a given threshold, we count a vote for the circle. The goal
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of RANSAC is to find the circle with the highest number of

votes. As consequence, the previous process has to be exe-

cuted a number of times. Finally, the best circle is selected

as evidence of the presence of the generator axis. In all our

experiments, the RANSAC threshold is set to 0.5% of the

diagonal of the input object and the number of random cir-

cles evaluated is 500. Furthermore, as result, we obtain a set

of circles C = {(ci, ri,
−→
Ni)}

n
i=1

, one circle for each sampled

point in the analysis.

3.2. Finding the generator axis E

The set of circles C could contain spurious elements that

do not belong to circles arranged around the generator axis.

We thus need to identify the subset of circles that approxi-

mates the real axis. We present a two-step method to detect

the circles around a candidate generator axis.

Clustering by orientation

In this stage, we only group the set of circles accord-

ing to their orientation. Our approach focuses on finding

groups of circles with similar un-oriented normals. Let

Ci = (ci, ri,
−→
Ni) and Cj = (cj , rj ,

−→
Nj) two circles, we de-

fine the angular distance between Ci and Cj as

d∡(Ci, Cj) = 1−
|
−→
Ni •

−→
Nj |

‖
−→
Ni‖‖

−→
Nj‖

(1)

where • is the dot product between two vectors. We take

the absolute value of the dot product because we are only

interested in the orientation and not in the direction itself.

Note that the minimum angular distance is zero and it oc-

curs when
−→
Ni is parallel to

−→
Nj or when

−→
Ni is parallel to

−
−→
Nj . Otherwise, the maximum angular distance is one and

it occurs when
−→
Ni and

−→
Nj are orthogonal.

The previous distance is useful to find groups of normals

with similar orientation. Nevertheless, we do not know how

much groups there are in advance, so we propose an alter-

native clustering method that automatically finds good par-

titions. Our method is the medoid-based adaptation of a

histogram-based clustering proposed in [7]. The algorithm

is controlled by a few number of parameters: the maximum

spread of a cluster λ, the minimum distance between clus-

ters β and the minimum number of elements for a group to

be considered a cluster K. The algorithm 1 details the steps

to perform the clustering. The input to the algorithm is the

pair-wise distance matrix of the input elements D. Briefly,

the algorithm iterates over the set of elements, deciding in

each step whether a element must form a new cluster or it

must be assigned to an existing cluster. To perform the clus-

tering by orientation, the input elements for the clustering

are the circles in the set C and the distance used is d∡. The

output is a set of clusters, where the circles within a cluster

share their orientation.

Algorithm 1 Clustering algorithm

1: procedure CLUSTERING(D,P, α, β,K)

2: Clusters = ∅
3: while Clusters does not converge do

4: for each element pi ∈ P do

5: if |Clusters| = 0 then

6: min dist = ∞
7: else

8: Find nearest cluster to pi
9: Let min dist be the distance to the

nearest medoid

10: end if

11: if min dist ≥ β then

12: Create new cluster and add pi
13: Assign pi as the medoid of new cluster

14: else if min dist ≤ α then

15: Assign pi to nearest cluster

16: Update medoid of nearest cluster

17: end if

18: end for

19: Keep clusters with size greater than K
20: end while

21: return Clusters
22: end procedure

Identification of generator axis

A cluster of circles with coherent orientation could contain

elements that do not correspond to the generator axis. This

can happen due to bad localizations of the matches in the

surface function space. We thus need to discard the circles

that do not belong to a good candidate axis. We propose to

use the previously defined clustering method, but with a dif-

ferent distance measure. Given two circles Ci = (ci, ri,
−→
Ni)

and Cj = (cj , rj ,
−→
Nj), we define the axial distance

dE(Ci, Cj) = ‖
−→
Ni ×

−−−−−→
(ci − cj)‖+ ‖

−→
Nj ×

−−−−−→
(ci − cj)‖ (2)

If the centers of the circles Ci and Cj are collinear to

a generator axis, then the vector formed by both centers
−−−−−→
(ci − cj) will have a similar orientation to the circle nor-

mals
−→
Ni and

−→
Nj , and therefore the distance will be small.

Otherwise, if the centers are not collinear to a generator

axis, then the distance is dominated by the magnitude of

vector
−−−−−→
(ci − cj). Another way to see the behavior of this

distance is using the equivalent definition of the magnitude

of vector product
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‖
−→
Ni ×

−−−−−→
(ci − cj)‖ = ‖

−→
Ni‖‖

−−−−−→
(ci − cj)‖ sin θ (3)

where θ is the angle formed by the two vectors in the prod-

uct. Note that the centers of circles that belong to a gen-

erator axis have to be aligned to the normals, and thereby

θ is small. In our implementation, this distance is used to

identify groups of circles aligned around candidate genera-

tor axes. As result, our algorithm computes groups of cir-

cles with similar orientation and arranged around a common

axis. We consider the group with the largest number of cir-

cles as the supporting set to compute the generator axis of

the symmetry. The last step is to compute the approximate

generator axis which is defined by a normal vector and a

point lying in the axis. We take the simple average of the

normals and the centers of every circle in the final group as

generator axis.

3.3. Estimation of symmetric support

It can happen that only a part of the complete geometry is

affected by the axial symmetry. In fact, our algorithm is able

to find a good symmetric axis without explicitly computing

the supporting geometry for the symmetry. Here we show

a simple and fast procedure to estimate the region that is

affected by the axial symmetry.

The first step is to transform the input shape such that

the generator axis coincides with the Y axis of the 3D co-

ordinate system. It can be easily performed using the in-

formation of the normal found in the previous stage. The

goal of the transformation is to facilitate the search of sym-

metric correspondences around the axis. The second step

is to sort the points of the input shape in ascending order

according to the Y-coordinate of each point. Note that each

point pi = (xi, yi, zi) in the shape defines an implicit circle

around the Y axis, where the circle’s radius is
√

x2

i + z2i .

The third step is to identify the amount of geometry that is

close to the circle defined by the point pi. Our algorithm

takes advantage of the sorted set of points to reduce the

number of distance computations during the verification of

the surface.

We use a threshold λ to denote the maximum permitted

distance for a point to be included in the supporting set for

a given circle. A first set of candidate points is computed by

selecting the points on the surface with Y-coordinates in the

range [yi − λ, yi + λ]. Note that since the points are sorted

with respect to their Y-coordinate, the search of points in

the given range can be performed in O(log n) using a binary

search. The resulting set of points from the previous search

is then used to compute the real distance to the circle. Points

with a distance below the threshold λ are finally assigned

to the circle. An easy way of computing the support for

an analyzed point pi is to assign the number of supporting

points to it. A high number of supporting points means that

the point pi belongs to a axially symmetric region of the

surface.

4. Experiments and Results

In this section, we present the experiments conducted in

our research. Section 4.2 is dedicated to evaluate the best

choice of surface function in our approach, and Section 4.3

is devoted to show the results of detecting the partial axial

symmetries in real scanned 3D objects.

4.1. Experimental Setting

Here we describe the setting used for all the experiments

in the paper. We use the cotangent scheme [12] to approx-

imate the Laplace-Beltrami operator of a triangular mesh.

We compute 300 eigenvalues and eigenvectors. The number

of nearest neighbors per each sampled point in Section 3.1

is set to 200. The clustering parameters for the orientation

estimation are α = 0.005, β = 0.01 and K = 10. The clus-

tering parameters for the estimation of the axis are α = 0.2,

β = 0.4 and K = 5.

4.2. The search of a robust surface function

Our proposal is based on the observation that a surface

function defined on the object must be preserved around the

generator axis of the symmetry. Nevertheless, when objects

exhibit partial axial symmetry, the surface functions could

not work anymore. The goal in this section is to evaluate

several surface functions under a controlled situation where

we know the symmetry transformation. We conducted our

evaluation over two state-of-the-art functions: Heat Kernel

Signatures (HKS) [19] and the Integral Kernel Signature(

IKS) [17]. For the sake of completeness, we also include

other functions to our analysis. We tested the Wave Kernel

Signature [2], the SHOT descriptor [21] and the FPFH de-

scriptor [16]. SHOT and FPFH are not intrinsic, but they

provide robustness to partiality.

We built a first 3D object with a perfect axial symmetry.

The object was created from a 2D profile curve lying in the

XZ plane, which was rotated around the Y axis. For each

point in the curve, we therefore can know the set of axi-

ally symmetric points (the points obtained by rotating the

point on the curve around the Y axis). With this procedure,

we built a ground-truth, where we know which points are

mutually symmetric. In fact, each point p in the 2D curve

generates its ground-truth set Gp composed of its symmet-

ric correspondences. We then built three partial versions of

the complete object by cutting the object against a 3D cube.

The volume of the three new objects is approximately 75%,

50%, and 25% of the original 3D object. The ground-truth

of these partial objects is easily computed by removing the

elements in the original ground-truth which do not belong

to the partial object anymore.
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The evaluation determines the ability of the surface func-

tions to detect symmetric correspondences in partial shapes

and to measure the degradation against the partiality. For

our evaluation, we chose 100 points on the surface of an

object using the farthest point sampling. The first point in

the FPS sampling was chosen randomly.

Let q be a point to be analyzed and let f be the function

to be evaluated. We want to quantify the matching accu-

racy of f to detect the axially symmetric points to q. A

good alternative is to retrieve points with a similar values of

the function and to measure how much points belong to the

ground-truth Gq . Formally, we compute the overlap

O(Kq, Gq) =
|Gq

⋂

Kq|

|Gq|
, (4)

where Kq is the set of points with smaller distance to q with

respect to f . For all our experiments, we set |Kq| = |Gq|,
thereby the overlap measures the fraction of symmetric cor-

respondences retrieved by the evaluated function.

We also define an approximated measure of overlap

which introduces a degree of error in the localization of the

correspondences. This measure is defined as follows

Ot(Kq, Gq) =
|{g ∈ Gq/∃k ∈ Kq and dgeod(g, k) ≤ t}|

|Gq|
(5)

This new measure is more general since

Ot=0(Kq, Gq) = O(Kq, Gq). In addition, it is inter-

esting to evaluate the accuracy in presence of some error

because our method to detect the symmetry involves the

use of RANSAC, which is able to deal with error in

the localizations. The presented results are obtained by

averaging the overlaps over all the analyzed points.

Figure 2a shows the values of overlap for each function

where the error t varies in the range [ǫ, 10ǫ] where ǫ denotes

the median length of edges in the triangular surface of the

object. The input object has a uniform triangulation, and

therefore ǫ is a good indicator of geodesic error. This first

experiment is useful to show that every function is good to

characterize the axial symmetry when the object is com-

plete. Note that HKS is better than the other functions; the

reason is that HKS tends to give a good description of global

geometry which is not affected by partiality.

Nevertheless, the scenario is different when we compute

the accuracy in partial objects. The results are presented in

figures 2b, 2c and 2d. It seems that when we change the

global structure of a 3D object, HKS and WKS exhibit a

dramatic drop in their accuracy to detect symmetric corre-

spondences. This would be mainly due to the predominance

of low frequencies in the computation of the diffusion. It is

well known that the low frequencies in the surface of an

object are related to global information. This would be the

reason why HKS and WKS can only retrieve 20% of the
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Figure 2: Average matching accuracy of surface functions.

The plots show the impact of partial shapes in the ability

of several functions to give good matches. The percentage

means the amount of remaining geometry after cutting the

original object.

ground-truth on average, even with a high tolerance error.

Interestingly, SHOT and FPFH have a good performance

to locate symmetric correspondences in partial shapes. It

is mainly because they are designed to be robust to partial

data. However, as they are not intrinsic, we believe that the

number of false positives during the search of symmetric

correspondences could lead to a bad location of the circu-

lar structures. On the other hand, IKS is less sensitive to

global changes while maintaining a sustained behavior even

in 25% of the object. In general, the accuracy of IKS to re-

trieve points in the ground-truth is close to the 50%. This

evaluation shows that IKS is a good alternative for our anal-

ysis due to two reasons: i) it is robust to partiality and ii)

there is a guarantee to have a low number of false positives

in the matching process.

4.3. Results

We had access to a set of real damaged pottery objects

from the Larco Museum in Lima, Perú. We scanned the ob-

jects using a laser scanner. The scanned objects contain ap-

proximately half a million of points and related connectiv-

ity information (triangles). In our experiments, we simplify

the models to approximately 50,000 vertices to facilitate the
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construction of the Laplace-Beltrami operator and the sub-

sequent computation of its eigen-decomposition, which is

in turn required to compute the intrinsic function. Figure 3

shows some results of our algorithm (the results over the

complete scanned dataset will be provided in supplemen-

tal material). The six examples show the robustness of our

method to detect the approximate symmetry, even in very

challenging situations. Our algorithm is able to deal with

missing geometry and partial symmetry support at the same

time, thanks to the careful analysis of the surface function

and the search of partial circular structures.

Figure 3: Partial objects and their detected symmetry axes.

Objects from Museo Larco, Lima - Perú.

The approximation of the generator axis is good, despite

of the existence of missing large portions. The degree of

approximation is strongly related to the amount of avail-

able geometry in the analysis. Observe that there can be a

visible misalignment of the detected axis and the real sym-

metric axis. This result is expected because we know that

the ability of the surface function to detect axial correspon-

dences degrades with partiality. Even so, the approximation

is good, and therefore we can use this result to trying to

repair the object.

Figure 4: Partial objects with the identified symmetric sup-

port. Best viewed in color. Objects from Museo Larco,

Lima - Perú

Moreover, our method can compute the geometric sup-

port of the partial axial symmetry in a reliable way. Some

examples of the identification of the symmetric region can

be observed in Figure 4. We used the method described

in Section 3.3 to find the region that supports the detected

symmetry. We set the threshold λ to 1% of the diagonal of

the object.

Figure 5: Repair of damaged objects. First row: input ob-

jects. Second row: overlap between input object and the ro-

tated region of support. Third row: final repair. Best viewed

in color. Objects from Museo Larco, Lima - Perú

5. Restoration of cultural heritage objects

Our method is able to find a very good approximation

of the axial symmetry and the region of support. A natu-

ral application of our method is the generation of plausi-

ble geometry to complete damaged archaeological objects.

Once we have computed the symmetric region of the input

shape, we can apply a rotation around the detected genera-

tor axis to generate the missing part of the object. Never-

theless, since the detected symmetry is only approximated,

the overlap between the original and the rotated shapes is

not perfect. Therefore, we apply a last step of non-rigid

alignment to improve the blend between both surfaces and

enhance the smoothness in the transitions. To tackle this

problem we use the ICP-based method proposed by Am-

berg et al. [1]. This method iterates between two steps: the

determination of point correspondences and the optimiza-

tion of per-point transformations For the first step, we as-

sign a weight zero for points with correspondences farther

than 1% of the object diagonal. It avoids that the new ge-

ometry collapses to the original shape. For the second step,

we constraint the stiffness parameters, which are important

to keep the smoothness of the transformations, to low val-

ues. Typically in our application, we define a set of stiffness

parameters equally distributed between the values two and

one. As consequence, we obtain new geometry with smooth

transitions.
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Figure 6: Values of Ecompletion for the comparison of our method and the methods proposed in [17] and [11].

Figure 5 shows some examples of the repair application.

Note that our method can generate plausible geometry. For

objects with severe damage (forth column in Fig. 5), we

apply our algorithm in incremental steps until completing as

much geometry as possible. However, our algorithm has the

limitation to only replicate existing geometry. In this sense,

the algorithm is not able to repair the base in the shown

objects.

5.1. A quantitative comparison

We use the benchmark proposed in [4] which provides

data and a methodology to evaluate how robust a repair

algorithm is. The benchmark comprises 76 synthetically

fractured objects, which were originally collected from the

Hampson dataset1. We selected only 58 out of the 76 ob-

jects, which contain axial symmetry. Each object Oi is as-

sociated to a set of fragments Fi. For evaluation, one frag-

ment is discarded and the repair task must be conducted in

the remaining fragments. The idea is to measure whether

the repaired object is similar to the original object. To eval-

uate the method proposed in this paper, we used the same

evaluation protocol proposed in [4].

The evaluation criterion is the congruence between the

completed object and the ground-truth. Let Oi be an object

in the dataset and let Ci be the object repaired with our al-

gorithm after removing one fragment to the object Oi. The

evaluation measure is then defined as

Ecompletion(Oi) =
vol(Oi

⋂

Ci)

vol(Oi

⋃

Ci)
(6)

where this measure ranges from zero (no congruence) to

one (full congruence).

We compare our method with the methods proposed by

Sipiran et al. [17] and Mavridis et al. [11]. The first method

finds a few symmetric correspondences which are validated

through a vote scheme. The second method formulates the

process of finding symmetries as a sparsity-based optimiza-

tion and it was designed to deal with partial data as well.

1http://hampson.cast.uark.edu/

Figure 6 plots the Ecompletion values for each analyzed ob-

ject. In general, our method shows a better repair rate in

most of the objects (40 out of 58). In many objects, the

improvement is even close to 10%, which means that our

method recovers more significant geometry than the com-

pared methods.

6. Conclusions

In this paper, we addressed the problem of detecting the

axial symmetry in objects with partial geometry. We also

showed that our method is robust and allows us to use the

detected symmetry in the generation of missing geometry to

repair cultural heritage objects. An important aspect in our

presentation is that we showed the importance of symmetry

to recover structure from raw data. In the particular case

of axial symmetry, the formulation of the symmetry analy-

sis through the search of similarity in surface functions has

proven to be effective. The appropriate surface function can

convey rich information about the object in different scales,

which, in conjunction with a RANSAC-based matching re-

finement, can guarantee a detection with a good resilience

to partiality.

Our method still have room for improvements. In a fu-

ture work, we plan to include mid-level information in the

process of detection. For example, we can add constraints

related to the rim or distinguishable features of objects to

improve the determination of the symmetry. On the other

hand, in the application level, we plan to investigate the pos-

sibility of predicting and exporting the missing geometry to

a 3D printer. The 3D printed piece can help to archaeolo-

gists to facilitate the conservation process of damages ob-

jects.
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