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Abstract

The colours used in a painting are determined by artists

and the pigments at their disposal. Therefore, knowing who

made the painting should help in determining which colours

to hallucinate when given a colourless version of the paint-

ing. The main aim of this paper is to determine if we can

create a colourisation model for paintings which generates

artist-specific colourisations. Building on earlier work on

natural-image colourisation, we propose a model capable

of producing colourisations of paintings by incorporating a

conditional normalisation scheme, i.e., conditional instance

normalisation. The results indicate that a conditional nor-

malisation scheme is beneficial to the performance. In ad-

dition, we compare the colourisations of our model that is

trained on a large dataset of paintings, with those of com-

petitive models trained on natural images and find that the

painting-specific training is beneficial to the colourisation

performance. Finally, we demonstrate the results of stylistic

colour transfer experiments in which artist-specific colouri-

sations are applied to the artworks of other artists. We

conclude that painting colourisation is feasible and bene-

fits from being trained on a dataset of paintings and from

applying a conditional normalisation scheme.

1. Introduction

Image colourisation is the task of hallucinating a colour

image given a greyscale image. This task is clearly under-

constrained in that a pixel with a given greyscale value can

be assigned a number of different colours. Nonetheless, for

most natural images there are colours which are much more

likely than others, e.g., given a tropical beach scene we can

all imagine that the sky and water are blue, the sand a light

tan, and the palm leaves green. In other words, the seman-

tics of the image region impose constraints on what would

be plausible colours. If we are able to recognise what is

depicted, we may be able to suggest a plausible colouri-

sation. Recent work has shown that Convolutional Neural

Networks (CNN) can obtain sufficient visual understanding

(a) “View in the Woods” (b) “Evening; Red Tree”

Figure 1. Examples of two paintings depicting a similar scene,

but with very different colour usage. Left is “View in the Woods”

(“Bosgezicht”) by Jan van Kessel (courtesty of the Rijksmuseum)

and right “Evening; Red Tree” (“Rode boom”) by Piet Mondrian

(courtesy of the Gemeentemuseum Den Haag).

to perform automatic image colourisation [15, 28, 3, 8, 10].

Depending on the type of image other factors than the

image semantics might play a role in determining the like-

lihood of colours. For paintings the idiosyncratic use of

colours by the artist greatly influences the likelihood of

colours. While (realistic) paintings are often intended as

realistic representations of natural scenes, the geographical,

historical, and economical availability of colourants might

have restricted the artist’s use of colour. Additionally, and

maybe more important to painters; their choice of colours

is often guided by aesthetic considerations [16]. As such

we pose that due to the inherent complexity of colouring

paintings it is necessary to take into account both the image

semantics, and the artist’s palette. An example of the influ-

ence the artist’s palette has on the used colours can be seen

in Figure 1, showing two similar scenes, one with realistic

colours and the other with seemingly unrealistic colours.

An image colourisation model might learn to take the

artist’s palette into account in the following two ways. The

first way of taking the artist’s palette into account is by

acquiring a model of the artist’s style. Previous work has

shown that CNNs are capable of acquiring a model of the

artist’s style [26]. Therefore, the model could learn to

recognise which visual content is artist-specific, and use this

to facilitate artist-specific colourisation. The second way of
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taking the artist’s palette into account, is to condition (part

of) the CNN on the artist, and explicitly enforce that it ac-

quires an artist-specific mapping.

In this paper, we compare these two approaches for pro-

ducing artist-specific colourisations of paintings. Our re-

sults indicate that explicitly conditioning the network makes

it possible to influence the colourisation, but that surpris-

ingly even without this explicit signal the network is able to

hallucinate plausible colours.

The remainder of this paper is organised as follows. Sec-

tion 2 reviews previous work on image colourisation, nor-

malisation, and computational art analysis. In Section 3

we describe the details of our approach. Followed by Sec-

tion 4 in which the results are presented, as well as a number

of qualitative comparisons of the colourisation results for

various models. In Section 5 we discuss several questions

which arose during this work. Finally in Section 6 we con-

clude by stating that the approach presented is capable of

producing highly diverse visually appealing colourisations

of paintings.

2. Previous work

This section reviews earlier work pertaining to our

colourisation approach: image colourisation, normalisation,

and computational art analysis.

2.1. Image Colourisation

Work on image colourisation can be divided into user-

based approaches and fully automatic approaches. User-

based approaches rely on interaction (e.g., provide scribbles

or reference images) with the user, whereas fully automatic

approaches aim to provide a colourised image without user

interaction, see [1] for a comprehensive overview.

Recent work on fully automatic image colourisation has

shown that Convolutional Neural Networks (CNN) are ca-

pable of producing visually appealing colourisation results

[15, 28, 3, 8, 10]. CNN-based fully automatic approaches

can be categorised into two groups: (1) per-pixel descriptor

approaches [2, 15] and (2) encoder-decoder type architec-

tures [8, 28, 3, 10]. The per-pixel descriptor approach con-

sists of passing the input image through a (pretrained) CNN

and extracting a hypercolumn descriptor [7] for each pixel.

The per-pixel descriptors are subsequently fed to a classi-

fier that predicts the colour based on the descriptor. Hy-

percolumns describe the region around the pixel at differ-

ent scales, incorporating a large amount of context, which

results in accurate predictions. However, densely extract-

ing hypercolumns from an image is very memory intensive,

making it expensive to train an end-to-end system. Larsson

et al. [15] propose to extract the hypercolumns from a sub-

set of randomly chosen locations, but only show that this

works for fine-tuning a network, not for training a network

from scratch.

In contrast, so called encoder-decoder architectures have

shown very promising results when trained from scratch

[10]. Typically, this type of architecture consists of an en-

coder which follows a traditional CNN layout, i.e., sev-

eral layers which have an increasing number of filters and

a decreasing spatial resolution. Followed by a decoder

which either upsamples using interpolation (e.g., nearest-

neighbour, bilinear, or bicubic), or deconvolution (i.e., frac-

tional strided convolution) [27]. Encoder-decoder architec-

tures are trained in either a Generative Adversial setting

[10], or with a pixel-wise loss [8, 28, 3].

2.2. Normalisation

Most modern CNN make use of Batch Normalisation

(BN) for each nonlinear unit in the network. BN reduces

internal covariate shift (changes in the distribution of the

inputs for a layer, due to weight updates in preceding lay-

ers) and accelerates training [9]. Given a batch of size T ,

BN normalises each channel c of its input x ∈RT×C×W×H

such that it has zero-mean and unit-variance. Formally, BN

is defined as:

ytijk = γi

(

xtijk − µi

σi

)

+ βi. (1)

where µi and σi describe the mean and standard devia-

tion for channel Ci across the spatial axes W and H , and

the batch of size T Additionally, for each channel there is a

pair of learned parameters γ and β, that scale and shift the

normalised value such that they may potentially recover the

original activations if needed [9]. BN is applied in a dif-

ferent way training and testing. Ideally we would calculate

µi and σi on the whole dataset prior to training, but as they

depend on the incrementally learned weight values of pre-

ceding layers this is not possible. Instead, during training

µi and σi are calculated on the actual batch and added to

moving averages. The resulting averages are used during

testing.

In recent work on style transfer, it was shown that ac-

counting for instance-specific contrast improves generation

results [25]. The approach, called Instance Normalisation

(IN), modifies BN in the following two ways: (1) IN cal-

culates µi and σi for each specific instance rather than for

the entire batch as in BN. (2) IN does not maintain moving

averages, and is applied identically during training and test-

ing. We expect that IN might also be beneficial for painting

colourisation, or even image colourisation in general, be-

cause uniform contrast changes should not alter the colouri-

sation substantially. Moreover, a dataset of paintings con-

sists of samples generated from different distributions (i.e.,

painters), as such we expect it is very unlikely that a single

mean and variance are sufficient to adequately normalise the

activations without introducing artifacts.
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More recently, there has been work on extending feed-

forward style transfer [12] to deal with multiple styles by

conditioning the shifting and scaling parameters on the style

[4]. Conditional Instance Normalisation (CIN) modify IN

such that the γ and β parameters are N ×C matrices rather

than length C vectors, where N is equal to the number of

styles being modelled. In this work we will use CIN to mod-

ify the colour use of different artists, by conditioning the

shifting and scaling parameters on the artist.

2.3. Computational art analysis

There is large body of work on the computational anal-

ysis of artworks, while a large portion of this work is con-

cerned with learning characteristics of artists for classifica-

tion [11, 13, 26], an increasing body of work is emerging

which tries to capture artist-specific characteristics for gen-

erative purposes [5, 25, 4]. This latter type of work, is gen-

erally concerned with style transfer (i.e., given a style im-

age S and a content image C produce a single image with

style Sstyle and content Ccontent). In this work we are only

concerned with the colour aspects of the style.

2.4. Our Contributions

In this work we make the following three contributions:

(1) We present an image colourisation model1 building on

components from previous works, which we apply and eval-

uate on a dataset of paintings. (2) We compare various

normalisation schemes, investigating the influence of batch

versus instance normalisation, and conditional versus un-

conditional normalisation. (3) We show that the models

using conditional and ‘unconditional’ instance normalisa-

tion utilise their visual understanding of image regions in

an artist-specific way, resulting in visually appealing and

diverse colourisations of paintings.

3. Method

In this work we use a ‘encoder-decoder’-style convo-

lutional neural network to perform end-to-end colourisa-

tion of paintings, with the additional goal of learning the

artist’s unique palette. To explicitly learn the artist’s palette,

or colour use, we add Conditional Instance Normalisation

(CIN) to the network, where the γ and β parameters are

conditioned on the artist.

3.1. Loss

For image colourisation the goal is to learn a mapping

Ŷ = F (X) from a greyscale image X ∈ R
H×W to a colour

image Y , where the pixel lightness values are taken to rep-

resent the greyscale image, and H,W are the image width

and height respectively. Typically colour images are rep-

resented in RGB colour space that combines colour infor-

1https://github.com/Nanne/conditional-colour

mation with luminance (intensity) information, luminance

is encoded in the mean of the R, G, and B channels.

For image colourisation the CIE Lab colour space is

more appropriate, because it represents luminance (L) as

a channel separate from the two colour channels a and b.

Colourisation in Lab colour space means mapping the L

channel of an image to the Lab channels. In CIE Lab, a

represents colours along the red-green axis and b along the

blue-yellow axis. Both CIE Lab colour values are contin-

uous valued. Hence, colourisation could be formulated as

a regression task. However, previous work has shown that

formulating colourisation as a regression task tends to result

in desaturated colours [15, 28]. This is most likely due to

the tendency of regression to favour the mean when deal-

ing with a multimodal distribution across colours, i.e. if a

colour regression model is trained on a database of t-shirts,

where half of the t-shirts are completely white, and the other

half are completely black it will probably favour grey at test

time.

A common solution to deal with this limitation of regres-

sion is to reformulate the task as a classification task, by dis-

cretising the target, and effectively predicting a histogram

across colour bins for each pixel. We discretise the a and b

channels separately by binning the axes with Q equal-width

bins, where we set Q = 32 following [15]. Therefore, Y

becomes a four dimensional matrix Y ∈ [0, 1]H×W×Q×2,

and the loss effectively becomes the sum of the cross en-

tropy loss for both the a and the b channel.

3.2. Class rebalancing

Zhang et al. [28] show that during training it is pos-

sible to re-weight the loss at each pixel, following an ap-

proach akin to sample weighting. The loss at each pixel is

re-weighted based on a weighting factor determined by the

rarity of the target colour. This approach prevents the loss

function from being dominated by highly common colours

and is similar to the approach described in [3].

Following the procedure describe in [28] we estimate the

empirical probability distribution of colours in the discre-

tised space p ∈ ∆Q on the training set, which is smoothed

with a Gaussian kernel Gσ . Subsequently, the contribution

of the probability-weighted distribution is parameterised by

λ ∈ [0, 1]. More formally, Zhang et al. [28] define the

weighting factor w ∈ R
Q as:

w ∝

(

(1− λ)(Gσ ◦ p) + λ)−1 (2)

Unlike [28] we have discretised the a and b channels sep-

arately, therefore we also have separate losses for the a and

b channels. Subsequently, we weight the channels indepen-

dently using weighting factors wA and wB respectively. We

used the values of λ = 1

2
and σ = 5 following [28].
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Figure 2. Visualisation of the network architecture. Conv refers to

a convolution layer, and Up to an upsampling layer. The network

input is 224× 224 and the output is 224× 224× 2Q. The bottom

arrows between matching layers in the encoder and decoder indi-

cate skip connections. Skip connections differ from regular con-

nections in that they are concatenated to the output of the matching

layer, integrating lower-level features at a higher spatial resolution

to upsampled higher-level features.

3.3. Network architecture

The network architecture used for our colourisation

model is based on the “U-Net” architecture[19] used in

[10], and is shown in Figure 2. The U-Net architecture is

an encoder-decoder architecture with skip connections be-

tween matching layers in the encoder and the decoder. The

skip connections enable a direct mapping between layers

at the same spatial scale. This allows the encoder-decoder

path of the network to model the mapping from the grey val-

ues to colours, without being responsible for a reconstruc-

tion of all image details. We modified U-Net by replac-

ing the upsampling (de)convolution layers with upsampling

by means of nearest-neighbour interpolation, followed by a

convolutional layer, as described in [4]. This upsampling

method helps to avoid high spatial frequency noise [4] and

‘Checkerboard’ artifacts [17]. The kernel size for all convo-

lutional layers was set to 4× 4, and all convolutional layers

in the encoder use a stride of 2. All layers use a ReLU

nonlinearity, except the last layer which is followed by a

softmax activation function.

The network outputs a colour histogram for each pixel,

to convert this to an actual colour we take the ‘expectation’

over the histogram i.e., the weighted sum of the colour bins

[15]. This results in smooth colour transitions and avoids

the discontinuities obtained when taking the colour of the

highest bin.

3.4. Training details

For training we use ADAM [14] (α = 0.001, β1 =
0.9, β2 = 0.999), and all the weights are initialised using

Xavier weight initialisation [6]. In terms of data augmenta-

tion we perform random horizontal flips, take 224 × 224
pixel crops, and introduce a random uniform brightness

shift on the L channel in the interval [−d, d). The value

of d was chosen to be smaller than noticeable to human ob-

servers i.e., the colour difference (∆E) was smaller than 1
[23].

4. Experiment

To evaluate our colourisation model we compare the per-

formances of the following seven approaches on a painting

dataset:

1. Greyscale - Baseline using greyscale versions of im-

ages (i.e., original L channel and ab channels set to 0).

2. Larsson et al. [15] - A CNN based approach using

sparse hypercolumns trained on natural images.

3. Zhang et al. [28] - An encoder-decoder style network

trained on natural images and paintings.

4. Ours BN - Our model using Batch Normalisation

trained on paintings.

5. Ours IN - Our model using Instance Normalisation

trained on paintings.

6. Ours CIN - Our model using Conditional Instance

Normalisation trained on paintings, conditioned on

1.678 artists.

7. Ours randomised-CIN - Our model with Conditional

Instance Normalisation, using a random artist rather

than the actual. If conditioning on the artist works then

we would expect this to perform worse than our CIN

model.

For each of the seven approaches, we compute the micro-

averaged root mean square error (RMSE) across all pixels in

ab space, and macro-averaged the peak signal to noise ratio

(PSNR) in RGB space per image. The greyscale approach

functions as a baseline by providing no colourisation, i.e.

all zero ab values.

The second and third approach (by Larsson et al. and

Zhang et al.), are originally trained on a dataset of natural

image (the ImageNet dataset) [20], and not on paintings.

Both approaches incorporate copies of the first layers from

a trained VGG-16 model [24], and are state-of-the-art (nat-

ural) image colourisation models. To compare the influence

of the training data we fine-tune model2 by Zhang et al. [28]

on our painting dataset. There are two motivations for fine-

tuning, (1) the performance of the models trained on natural

images show how well such models generalise to paintings.

(2) Fine-tuning the model allows us to compare the bene-

fits of training on paintings, and how our model compares

to this model in a comparable setting. For the four vari-

ations of our model the scores reveal the effectiveness of

the different normalisation schemes, where the randomised-

CIN is used as an extra validation of the CIN model. If the

randomised-CIN model performs worse than the CIN model

2We were unable to perform any type of training with the model by

Larsson et al.
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we can infer that the conditioning is effective. In addition,

we perform qualitative evaluations of the best performing

colourisation approach and demonstrate the transfer of the

colour style of one artist onto an artwork of another artist.

In the remainder of this section we will introduce the

dataset used for the experiment, and present the results the

different approaches obtain.

4.1. Painting colourisation dataset

The painting colourisation performances is evaluated on

the “Painters by Numbers” dataset as published on Kag-

gle3. This dataset is a collection of images collected from

different sources, though the majority was retrieved from

“Wikiart” a repository which was used in a number of previ-

ous publications involving computational artwork analysis

[21, 22].

A portion of the images included in this dataset are

colourless or contain very little colour. For most of these

images this is because they are drawings on paper, and while

the paper might not be purely white, a greyscale prediction

would often be very close to the ground truth. Nevertheless,

we chose to keep these images in the dataset as we feel they

are inherent to the task, and fine-tuning the cut-off point for

how much colour is desirable might arbitrarily influence the

task.

From the “Painters by Numbers” dataset we select the

subset of artists who have at least 5 artworks in the dataset,

which results in a dataset consisting of 101.580 photo-

graphic reproductions of artworks produced by a total of

1.678 artists. Subsequently we divide the dataset into a

training, validation, and test set used for training the model,

evaluating stopping criteria, and reporting evaluation per-

formances respectively. Both the test and validation set con-

sist of 5000 images obtained by stratified random sampling.

4.2. Painting colourisation

In this section the results on the main image colourisa-

tion task in this work are described. All results are measured

using the micro-averaged root mean square error (RMSE)

across all pixels in ab space, and the macro-averaged peak

signal-to-noise ratio (PSNR) across images in RGB space.

Results of the comparison between the seven approaches

described in Section 4 in Table 1 show that our model

achieves the highest performance according to RMSE. On

this dataset all models score below the PSNR baseline, de-

spite our model achieving the highest performance of all

models. We suspect that the high PSNR for the baseline is

an artifact of the colourless images in the dataset, and the

calculation of this metric in RGB space. Nevertheless, we

pose that the metric remains useful to compare performance

between approaches.

3https://www.kaggle.com/c/painter-by-numbers

Table 1. Painting colourisation results measured using RMSE

across all pixels, and PSNR in RGB space. The goal is to have

a low RMSE, and a high PSNR. “Greyscale” is a baseline which

provides no colourisation.

Method RMSE PSNR

Greyscale 0.175 24.66

Trained on natural images

Larsson et al. [15] 0.168 22.18

Zhang et al. [28] 0.163 22.29

Fine-tuned on paintings

Zhang et al. [28] 0.175 21.65

Trained on paintings

Ours BN 0.146 23.26

Ours IN 0.149 23.31

Ours CIN 0.145 23.34

Ours Randomised CIN 0.164 22.31

Our model outperforms the baseline regardless of the

normalisation scheme, and it outperforms the two previ-

ous colourisation approaches (by Larsson et al. and Zhang

et al.) regardless of whether they were trained on natu-

ral images or fine-tuned on paintings. Nonetheless, there

are differences in performance between the normalisation

schemes. With CIN performing slightly better than IN and

BN, both in terms of RMSE and PSNR. Moreover, from

the comparison between CIN and randomised-CIN we can

learn that conditioning on the correct artist is important, in

that using a random artist results in a deteriorated perfor-

mance, which demonstrates that the CIN model learns to

colourise in an artist-specific manner.

For a qualitative comparison between our models we

show three sets of the colourisation results, the first set in

Figure 3 shows the best case performance, the second set

in Figure 4 the worst case, and the third set in Figure 5

the expected performance. These sets were created based

on the RMSE obtained by the best performing model (Ours

CIN). In Figure 3 we show the colour paintings in the best

case. The best performances were obtained for a few na-

tively greyscale paintings/drawings contained in the dataset.

These will be discussed separately. The presence of these

paintings/drawings is presumably also the cause for the high

PSNR for the greyscale baseline.

When comparing the colourisations in Figure 3 we can

observe that all three normalisation schemes produce plau-

sible colourisations, despite not always exactly matching

the ground truth. It appears that the IN and BN model pro-

duce colours which are more typical for the entire dataset,

whereas CIN produces colours which closer match the orig-

inal: a more saturated red in the first row, greys/silvers in-

stead of browns in the third row, and a yellow sky rather

than a blue sky in the last row. These results are in line with

what we would expect as differences between these models.

The cases for which we obtain the worst RMSE are those
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Original Input Ours CIN Ours IN Ours BN

Figure 3. Example colourisation results on Painters by Numbers.

Colour images with lowest RMSE according to our CIN model.

Original Input Ours CIN Ours IN Ours BN

Figure 4. Example colourisation results on Painters by Numbers.

Shown examples have the highest RMSE according to our CIN

model.

shown in Figure 4. For these (abstract) artworks there ap-

pears to be little to no visual semantics that provide clues

about the colours used. The experimental use of colour by

abstract artists such as Mark Rothko (in the second row)

makes colourisation virtually impossible.

In order to see the expected performance of the CIN

model we present the images shown in Figure 5, which were

randomly sampled from around the median RMSE. These

images show that the colourisations for both CIN and IN

are very consistent with the original, although all models

predict the jacket in the artwork on the second row to be red

rather than blue. However, given that there is no indication

in the input which colour it should be, and either colour is

equally plausible we would consider this a good colourisa-

Original Input Ours CIN Ours IN Ours BN

Figure 5. Example colourisation results on Painters by Numbers.

Shown examples were randomly sampled from around the median

RMSE for our CIN model.

Original Input Ours CIN Ours IN Ours BN

Figure 6. Example colourisation results on Painters by Numbers.

Images with lowest RMSE according to our CIN model.

tion. The colourisations produced by BN are not far behind,

though they seem to be less spatially consistent.

In Figure 3 we showed the colour images for which the

CIN model obtained the lowest RMSE. As stated, the lowest

RMSE scores were obtained for the natively greyscale im-

ages shown in Figure 6. The best hallucination for natively

greyscale paintings and drawings, is reproduction of the in-

put input (with potentially a slight uniform hue change). It

appears all models are able to learn to generate a greyscale

reproduction, though with slight hue differences. In hind-

sight, we could have removed the natively colourless or

almost colourless artworks from the Painters by Numbers

dataset to make the colourisation task more consistent.

For qualitative comparison between our best performing

model (CIN) and the models by Larsson et al. [15] and

Zhang et al. [28] we show three images in Figure 7 for

which the absolute difference in RMSE between our CIN

model and the Larsson et al. [15] model is the largest.

From these images we can observe that this mainly concerns

abstract artworks for which a human observer would have

difficulty picking the most plausible colourisation. Fortu-

nately, our CIN model has artist-specific information, there-

fore it can produce a reasonable colour, despite the lack of
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Original Input Ours CIN Larsson [15] Zhang [28]

Figure 7. Example colourisation results on Painters by Numbers.

Images where our CIN model outperforms [15] with the biggest

RMSE difference.

semantic information in the image.

4.3. Stylistic colour transfer

In the previous section we have shown that the perfor-

mances of normalisation schemes are very similar. For gen-

erative purposes, the CIN model has an additional advan-

tage in that we can choose in which colour style to ren-

der the artwork. As a result, we can transfer the colour

style of one artist onto an artwork of another artist. In this

section we perform a qualitative comparison of a number

of artworks on which we applied stylistic colour transfer.

As the sources for our colour transfer experiments, we se-

lected the colour styles of Maria Primachenko and Mark

Rothko, because of their prominent use of colour. Note that

this approach differs from what is commonly referred to as

colour transfer, in that we learn the style of an artist from

a database of images, rather than from a single reference

image [18].

The stylistic colour transfer visualisations can be found

in Figure 8. These columns (from left to right) show the

greyscale input to the model, the original artwork in colour,

a colourisation produced conditioned on the actual artist,

a colourisation conditioned on Maria Primachenko, and a

colourisation conditioned on Mark Rothko.

The first row shows an artwork by Roy Lichtenstein. The

colourisation conditioned on his colour style is not very

close to the original. Still, it does match the colour palette

of many of his other artworks. The colourisation condi-

tioned on Maria Primachenko is much more yellow, with

some purple highlights. The colourisation conditioned on

Mark Rothko is mainly in shades of red and orange. A sim-

ilar pattern can be observed in the next rows, for the colouri-

sations of an artwork by Marc Chagall, and one artwork by

Louisa Matthiasdottir.

For all artworks we can observe that the three colourisa-

tions differ strongly, illustrating the artist-specific effect of

the CIN model.

5. Discussion

The main aim of this paper was to determine if we can

create a colourisation model for paintings which can deal

with the inherent complexity of the task due to the influence

of both image semantics and the artist’s palette. Our results

indicate that automatic colourisation models can produce

plausible colourisations for paintings, and that performing

the colourisation in an artist-specific manner appears bene-

ficial. In what follows, we discuss (1) artist-specific colouri-

sation, (2) normalisation schemes, (3) the use of paint-

ings (rather than natural images) for training a colourisation

model, and (4) evaluation of painting colourisation models.

(1) Artist-specific colourisation. We aimed to learn a rep-

resentation of the artists colour usage such that we could do

artist-specific colourisation. We compared an approach to

do this explicitly (CIN) with two approaches which might

be able to do this implicitly (BN and IN). Our results show

that while the CIN approach can be used to explicitly al-

ter the colourisation, the IN (and to a lesser extent the BN)

approach appear to recognise the artist and use this as an in-

formation source for the colourisation. Therefore, we pose

that the minor difference in performance between CIN and

IN is due to the ability of the IN approach to recognise the

artist or the art style to a sufficient extent, such that it is not

necessary to explicitly pass this as a signal to the network.

(2) Normalisation Schemes. We found the difference in

performance between the normalisation schemes to be very

small. CIN offers some additional functionality in that we

can influence the colourisation, at the cost of extra (condi-

tional) parameters. Moreover, while in the work of [4] CIN

is used to achieve impressive style transfer results, we pose

that the representational power of the scale and shift param-

eters in CIN is insufficient to capture the full complexity of

an artist’s palette. Therefore, the main difference between

the normalisation schemes seem to come down to satura-

tion levels and small colour variations. Still, the benefits

of CIN are very clear and give a definite improvement in

performance for painting colourisation. It would be worth-

while to investigate whether this is the case as well for other

image colourisation tasks. This is left to future work.

(3) Use of paintings for training. It could be argued

that a painting specific colourisation model is not necessary,

as applying realistic colours learned from natural scenes

should be sufficient to produce satisfactory results. Our re-

sults indicate that the visual structure in paintings is dif-

ferent to such a large extent that image colourisation mod-

els trained on natural scenes only generalise to paintings

which are (hyper)realistic, and do not recognise the struc-

ture in more abstract paintings. Our results indicate that

fine-tuning such a network does not help to overcome this,
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Figure 8. Stylistic colour transfer results. For three greyscale images we show the colourisation results of conditioning on the actual artist

(third column) on Maria Primachenko (fourth column), and on Mark Rothko (last column).

rather that it appears to worsen the results. Additionally,

besides differences in image structure for abstract paintings,

these paintings also tend to use a different palette than found

in nature, making it necessary to train a model specifically

for this task. Although the model itself could be a generi-

cally applicable model, such as the model presented in the

current paper.

(4) Evaluation of painting colourisation. A notable prob-

lem for image colourisation is how to do the evaluation.

While quantitative measures, such as the ones used in this

work, given an indication of the performance of the model,

they have a number of pitfalls. These pitfalls mainly con-

cern the bias of these measures to prefer greyscale over a

wrong colour, even when the saturation levels match the

ground truth (i.e., greyscale is preferred over blue when the

ground truth is green). To overcome this, a number of works

have employed user studies [28, 10], or external evaluation

by means of a classification task [28]. For painting colouri-

sation the former is hindered by the presence of abstract

paintings for which naive users have difficulty judging the

plausibility. The latter approach leads to incomparable re-

sults when applied to our work as our conditional model re-

ceives information about who the artist is, which might give

it an unfair advantage. How to accurately evaluate colouri-

sation models remains an open question.

6. Conclusion

In this work we proposed an image colourisation model

capable of producing colourisations of paintings specific to

the colour style of an artist. While the model’s performance

was demonstrated on paintings and artists, we pose that it is

a general approach which could be applied to a wide vari-

ety of image colourisation tasks, as none of the components

are specific to the painting domain. However, we pose that

for cultural heritage applications the conditional aspect is

most useful, as there is often a creative human component

which determines the image appearance. In conclusion, our

model is capable of producing plausible colourisations of

paintings, and is highly diverse when varying the artist on

which the colourisation is conditioned.
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