
   

 

 

Abstract 

In this paper, we present the theory of reduced 

biquaternion algebra to represent color images and to 

develop efficient vector processing methods. We apply this 

theory to the field of face recognition in a principal 

component analysis (PCA) framework. We develop a novel 

PCA method based on reduced biquaternion to make full 

use of the face color cues. Moreover, we derive new 

mathematical results on the computation of the 

eigenvalues/eigenvectors of the data scatter matrix. We 

also extend this method to two-dimensional color PCA to 

combine the face spatial and color information. 

Experiments on several public-domain color face 

benchmark datasets demonstrate the higher performance 

of the proposed methods compared to regular PCA and 

like methods.  

1 Introduction 

The perception of color plays a paramount role to 

humans since they routinely use color to sense the 

environment, recognize objects, and convey information. 

However, early image processing research was devoted to 

processing binary then grayscale images. It was many 

years later when researchers have started to direct their 

attention to color images, motivated by the emergence of 

affordable color image acquisition hardware and the 

advent of affordable computation power to process these 

images. However the idea to think of a color image as a 

set of parallel, independent grayscale images dominated 

the first color processing techniques. Unfortunately, such 

an idea ignores the correlation between color components 

and the distribution of energy among them. A more recent 

category of color image processing methods processes all 

components of a color image simultaneously where each 

pixel can be treated as a vector. Such color vector 

processing methods are capable of implicitly accounting 

for the correlation that exists between the color 

components. 

In this paper we are interested in color vector 

processing methods and their application to face 

recognition using principal component analysis (PCA)-

like methods. Face recognition is a research domain that 

has traditionally received significant attention and still 

been a hot research topic with several important 

applications. One of the classical and successful 

approaches to face recognition is PCA. PCA is a well-

established linear dimension-reduction technique. It finds 

the directions along which the original data are projected 

into a lower dimensional space with minimal 

reconstruction error. Based on PCA theory, Turk and 

Pentlant [1] presented in their 1991 seminal paper the 

eigenface method for face recognition. To apply this 

method, a color image should be transformed first into a 

grayscale image. As such, the color information is totally 

lost, the drawback on which some later research [21] 

stressed by proving that color cues indeed contribute to 

face recognition, especially when shape cues of the images 

are progressively degraded.  

Years later, Yang et al [2] proposed the so-called two-

dimensional principal component analysis (2DPCA), 

which enhances the original PCA method and does not 

transform the face image matrix into a vector before 

processing. This method showed better recognition 

accuracy due to the utilization of the natural spatial 

information of the face images. However the method was 

applicable only to the grayscale version of the color image 

thus still missing the color information.  

In order to make use of the color information, some 

works have been recently developed. In 2015 Xiang et al 

[3] introduced two PCA-based methods to improve the 

accuracy on dealing with color images. The first method—

called color PCA (CPCA)—represents a face image as a 

2D matrix where each row represents a color channel and 

has as many columns as the number of image pixels. 

Despite its ability to deal with color information, it 

destroys the spatial information when the image pixels are 

flattened as a row. The second method—denoted here by 

C2DPCA—represents the three components of a pixel as a 

basic unit called color value. This method also defines a 

set of basic operations that can be applied on these color 

values in order to find the data scatter matrix and its 

eigenvectors. However some of these operations have no 

meaningful or well-justified definitions.  

Adopting another strategy, several studies [4-6] have 

demonstrated that the concept of quaternions from the 

domain of hypercomplex numbers is well adapted to color 

images by encoding the pixel’s color components into the 
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three imaginary parts of a quaternion (Q) number. As 

such, the color face image can be represented as a 2D 

quaternion matrix, on which a set of well-defined 

algebraic operations can be applied in the typical PCA 

framework.  Although quaternions find popular uses in 

computer graphics and computer vision, in particular for 

calculations involving 3D rotations, they have a key 

drawback; their multiplication is noncommutative [13]. 

This leads to the existence of left and right eigenvalues 

(and eigenvectors), which generally have different values. 

Moreover, the eigenvalues of a quaternion matrix are 

infinite [13]. These facts complicate the process of finding 

the optimal projection directions in the PCA framework. 

Inspired by the theory of hypercomplex algebras, in this 

paper we propose to use the concept and theory of reduced 

biquaternions, as another branch of hypercomplex 

algebras, to represent color images and develop efficient 

vector processing methods based on them. 

A reduced biquaternion (B) shares with a quaternion the 

property of having one real part and three imaginary parts. 

Both of them have unique but different definitions of norm 

and conjugation and have individual representation forms. 

More importantly, B numbers have some key advantages 

over Qs. For one, their multiplication is commutative [13].   

That means the right and left eigenvalues (eigenvectors) of 

a B matrix are equal and finite. In addition, the complexity 

of computing several operations on B numbers is lower 

than on Q numbers, e.g., multiplication and eigenvalues 

computation. This leads to faster algorithms compared to 

those for Qs. It is important to note here that Bs have the 

problem of not forming a division system [14]. However 

this disadvantage has almost no influence on many 

practical applications of Bs including the one we show in 

this paper. 

Another key contribution of this paper is the derivation 

of several mathematical results on the computation of the 

eigenvalues/eigenvectors of a B matrix and their norm. 

Based on these derivations, we devise a lower-complexity 

(and thus faster) algorithm to find the best eigenvectors 

(projection directions) of the data scatter matrix.  

The concept and theory of B algebra presented here can 

be applied for color image processing in a holistic manner, 

thus accounting for the correlation that exists between the 

color components of a pixel. While the developed theory 

and methods are applicable to several practical problems 

and applications, another distinctive feature of this paper 

is that we apply it here for the first time to the problem of 

color face recognition in a PCA framework. We develop 

first a 1D PCA method, called BPCA, which vectorizes a 

color matrix into a B vector before feature extraction and 

classification. Furthermore, we develop a 2D version, 

called 2DBPCA, to exploit the natural spatial information 

of the face image and needs no vectorization. Both 

developed methods are evaluated on three public-domain 

color face datasets and compared to several existing 

techniques in the literature in terms of accuracy and speed.  

The experimental results demonstrate the outperformance 

of the developed methods. It is important to stress here 

that while we are aware of the successful application of a 

B representation of color images for template matching 

and edge detection [15], it is to the best of our knowledge 

that the theory developed here has not been reported 

before. Additionally, we are not aware of any B-based 

PCA approach to color face recognition.   

The rest of this paper is structured as follows. Section 2 

briefly reviews quaternion and reduced biquaternion. In 

Section 3, the proposed color face recognition methods 

will be presented. The experimental results of the color 

face recognition methods will be reported in Section 4. 

Finally, conclusions are drawn in Section 5. 

2 Hypercomplex Algebras 
A complex number is a number that consists of a real part 

and an imaginary part and expressed as: ݂ = ݈ + ݉݅, (1) 

where	݈	and	݉ ∈ ℝ	and i satisfy ݅ଶ = −ͳ. Let ℂ denotes 

the set of complex numbers. Complex numbers found a 

connection between the pure algebra and the geometry of ℝଶ. This connection inspires to construct the 2n 

dimensional hypercomplex numbers (ݑଶ௡ሻ from two n–

dimensional hypercomplex numbers (ݑ௡, ଶ௡ݑ :௡) usingݒ = ௡ݑ +  ௡݁, (2)ݒ

where ݁ଶ = ͳ	ݎ݋ − ͳ. For example, the 4D hypercomplex 

numbers (h) can be constructed from complex numbers: ℎ = ଵݖ + ଶ݆ݖ = ܽ + ܾ݅ + ݆ܿ + ݀݇, 

where	ݖଵand	ݖଶ߳	ℂ, ܽ, ܾ, ܿ,	and	݀	߳	ℝ, ݅, ݆,	and	݇ = ±ͳ. 

The first step towards this direction was made by William 

Hamilton in 1843 [7] discovering the four-dimensional 

(4D) quaternions (Q) after having tried for years with the 

case n = 3. A year later Hamilton proposed quaternions 

with complex coefficients called biquaternions that are not 

commutative in multiplication and don’t form a division 

algebra. In 1990, the reduced biquaternions (B), were first 

introduced by Schütte and Wenzel [8]. They have four 

elements as conventional quaternions, and the 

multiplication rule is commutative. In 1992, Ell [9] 

defined the double-complex algebra with commutative 

multiplication. In 1996, Davenport [10] proposed the four 

dimensional commutative hypercomplex algebras (HCA4). 

In 1998 and 1999, Sommer et al. extend the HCA to any 

2n dimensions [11]. 

The major difference between B, double-complex 

algebra, and HCA4 is the choice of square root of 1, where ݆ଶ = ͳ in B, ݅ଶ = ͳ in double-complex algebra, while ݇ଶ = ͳ in HCA4. 

In our work we focus on quaternion and reduced 

biquaternion numbers. In next subsections we describe 

them in more details. 
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2.1 Quaternion numbers (Q) 

A quaternion number	ݍ ∈ ℚ, where	ℚ	is the set of all 

quaternions, consists of four components: one real part 

and three imaginary parts. It is represented as: ݍ = ௥ݍ + ௜݅ݍ + ௝݆ݍ +  ௞݇, (3)ݍ

where	ݍ௥ , ௜ݍ , ௝ݍ 	and	ݍ௞ 	 ∈ ℝ  and i,  j, and k are satisfying: ݅ଶ = ݆ଶ = ݇ଶ = −ͳ, ݆݅ = −݆݅ = ݇,		 ݆݇ = −݆݇ = ݅, ݇݅ = −݅݇ = ݆. (4) 

Unlike real or complex numbers, multiplication of 

quaternion is not commutative as predicted from (4). The 

multiplication of p and q defined as: ݍ݌ = ൫݌௥ݍ௥ − ௜ݍ௜݌ − ௝ݍ௝݌ − ௜ݍ௥݌௞൯ +൫ݍ௞݌ + ௥ݍ௜݌ + ௞ݍ௝݌ − ௝ݍ௥݌௝൯݅ +൫ݍ௞݌ − ௞ݍ௜݌ + ௥ݍ௝݌ + ௞ݍ௥݌௜൯݆ +൫ݍ௞݌ + ௝ݍ௜݌ − ௜ݍ௝݌ +  .௥൯݇ݍ௞݌
(5) 

Quaternion is a division system, where the division of p 

and q exists and ݌ ⁄ݍ ∈ ℚ given that ݍ௥ଶ + ௜ଶݍ + ௝ଶݍ + ௞ଶݍ ≠Ͳ.The norm of a quaternion is given by: |ݍ| = ටݍ௥ଶ + ௜ଶݍ + ௝ଶݍ +  ,௞ଶݍ
(6) 

which satisfies |ݍ݌| =  The conjugate of a .|ݍ||݌|

quaternion is denoted as ݍത and is defined as (similar to 

complex numbers) ݍത = ௥ݍ − ௜݅ݍ − ௝݆ݍ − ௞݇ݍ (7) 

A quaternion matrix is a matrix whose all elements are 

quaternion numbers. Several properties can be defined for 

quaternion matrices. For example, the Hermitian transpose 

of quaternion matrix P is ۾ு = ሺ۾ഥሻ். One such interesting 

property is that for an ݊ × ݊ quaternion matrix P there are 

left and right eigenvalues [12], since multiplication is not 

commutative. That is, we have ܠ۾௥ = ௟ܠ۾ ௥ߣ௥ܠ =  ௟, (8)ܠ௟ߣ

where λr, λl are right and left eigenvalues, xr and xl are 

right and left eigenvectors. ߣ௟and	࢘ߣ ∈ ℚ and they may 

not be equal. Moreover, the eigenvalues of a quaternion 

matrix are infinite. If λ is an eigenvalue of P, then every 

element of the set		߬ =   quaternion	 unit	 is any		݌		:ଵି݌ߣ݌}

with	|݌| = ͳ} is also an eigenvalue of P [13]. The right 

eigenvalue can easily computed for any ݊ × ݊ quaternion 

matrix, while some authors [12, 14] showed that finding 

the left eigenvalues for matrices with ݊ ൒ Ͷ is rather 

difficult. 

2.2 Reduced Biquaternion numbers (B) 

A reduced biquaternion number ܾ ∈ ९ (where ९ is the 

set of reduced biquaternions) is expressed in the form: ܾ = ܾ௥ + ܾ௜݅ + ௝ܾ݆ + ܾ௞݇ (9) 

where ܾ௥ , ܾ௜ , ௝ܾ , and	ܾ௞ ∈ ℝ and i, j, and k conform to the 

rules: ݅ଶ = ݇ଶ = −ͳ, ݆ଶ = ͳ, ݆݅ = ݆݅ = ݇, ݆݇ = ݆݇ = ݅, ݅݇ = ݇݅ = −݆ (10) 

It is obvious from the previous equation that the 

multiplication rule of B is commutative, which is the 

major difference between Bs and Qs. 

B is not a complete division system [8]. For example, 

for two special B numbers ݁ଵ = ଵା௝ଶ , ݁ଶ = ଵି௝ଶ  the form ܿଵ݁ଵor	ܿଶ݁ଶ (where c1 and c2 are any complex numbers) is 

a divisor of zero and doesn’t have a multiplication inverse. 

Thus there is no solution for the variable z in: ݖݑ = ͳ, if ݑ = ܿଵ݁ଵor	ܿଶ݁ଶ, (11) 

while z has infinite solutions in: ݖݑ = Ͳ, if ݑ = ܿଵ݁ଵor	ܿଶ݁ଶ. (12) 

If the norm of B was defined similar to those of 

complex and quaternion numbers, it would be |ܾ|∘ = ටܾ௥ଶ + ܾ௜ଶ + ௝ܾଶ + ܾ௞ଶ, (13)

 

which unfortunately leads to |ܾܿ|∘ ≠ |ܾ|∘|ܿ|∘. 
Accordingly, the B norm is defined as [15]: |ܾ| = ቀ൫ܾ௥ଶ + ܾ௜ଶ + ௝ܾଶ + ܾ௞ଶ൯ଶ− Ͷ൫ܾ௥ ௝ܾ + ܾ௜ܾ௞൯ଶቁଵ ସൗ ൒ Ͳ, (14) 

which indeed satisfies |ܾܿ| = |ܾ||ܿ|	(see [15] for proof). 

However the norm as defined in (13) is sometimes used by 

authors (e.g., [13, 15]) due to its lower computation cost 

and similarity to the norm of complex numbers and 

quaternions. To avoid this confusion, we call it the weak 

norm and denote it by	|. |∘, while the term ‘norm’ always 

refers to the definition in (14). The norm has similar but 

not identical properties to its counterpart in complex 

numbers, see [15, 16] for more details. In the same way, if 

the conjugate of ܾ	 ∈ 	९	was defined in the same way of 

the conjugate of quaternions, it would be തܾ = ܾ௥ − ܾ௜݅ −௝ܾ݆ − ܾ௞݇, which does not satisfy ܾതܾ ∈ ℝ. Therefore the 

conjugate of ܾ	is taken as [15] തܾ = |௕|మ௕ , 
(15) 

where	ܾିଵis the reciprocal (multiplicative inverse) of b 

and can be computed as shown below if |ܾ| ≠ Ͳ. The 

conjugation of B is a nonlinear operation, so 

that	ሺܾ + ܿሻതതതതതതതതത ≠ തܾ + ܿ̅. 
The Hermitian transpose of a B matrix P (a matrix 

whose all elements are B numbers) is computed in the 

same way as quaternion, where ۾ு = ሺ۾ഥሻ். 

The B numbers can be represented in three forms [13, 

15]: e1-e2 forms, matrix representations, and polar forms. 

While the polar forms are often used to describe the 

geometric meaning of B numbers, the former two can 

easily explain many concepts of B, such as addition, 
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multiplication, inverse and norm. In this work, we heavily 

employ the e1-e2 forms, which are irreducible 

representation for Bs.  

Davenport [10] defined two nonzero numbers that are 

idempotent elements and defined as:  ݁ଵ = ሺͳ + ݆ሻ ʹ⁄ , ݁ଶ = ሺͳ − ݆ሻ ʹ⁄ , such that ݁ଵ݁ଶ = Ͳ, ݁ଵ௡ = ݁ଵ, and	݁ଶ௡ = ݁ଶ. (16) 

A B number can be represented in the form ܾ = ሺܾ௥ + ܾ݅௜ሻ + ݆൫ ௝ܾ + ܾ݅௞൯ = 	 ܿ௔ + ݆ܿ௕ = ܿଵ݁ଵ + ܿଶ݁ଶ, 

(17)

where	ܿ௔ = ܾ௥ + ܾ݅௜ , ܿ௕ = ௝ܾ + ܾ݅௞ , 			ܿଵ = ܿ௔ + ݆ܿ௕  and ܿଶ = ܿ௔ − ݆ܿ௕  are all complex numbers. The two elements 

e1 and e2 can be geometrically explained as the null cone 

of Minkowsky space [17]. This form can reduce the 

complexity of some operations. For example, we need 

only 8 real multiplications (compare to 16 real 

multiplications in case of Q multiplication) to calculate the 

multiplication of two Bs. Moreover, the reciprocal of b 

can be computed using e1–e2 forms as: ܾିଵ = ܿଵି ଵ݁ଵ + ܿଶି ଵ݁ଶ, (18) 

where the reciprocal of b exists if and only if the inverse 

of c1 and c2 exists [8]. 

A reduced biquaternion matrix can be decomposed into 

four components and it is often represented using e1 – e2 

forms. For example, a B ݊ × ݊ matrix Y can be 

represented in the form ܇ = ሺ܇௥ + ௜ሻ܇݅ + ݆൫܇௝ + ௞൯܇݅ = 	۱௔ + ݆۱௕= ۱ଵ݁ଵ + ۱ଶ݁ଶ, (19) 

where	۱௔ = ௥܇ + ௜܇݅ , ۱௕ = ௝܇ + ,௞܇݅ ۱ଵ = ۱௔ + ݆۱௕ , and ۱ଶ = ۱௔ − ݆۱௕ are all complex matrices. The addition and 

multiplication of two matrices are calculated by two 

additions and two multiplications of two matrices.  

The eigenvalues and eigenvectors of any B matrix are 

finite since the multiplication is commutative. There are n2 

eigenvalues and eigenvectors of any B matrix that can be 

computed using e1 – e2 as [13] ܇ሺܠଵ݁ଵ + ଶ݁ଶሻܠ = ሺߣଵ݁ଵ + ଵ݁ଵܠଶ݁ଶሻሺߣ + ,ଶ݁ଶሻܠ (20) 

where λ1 and λ2 (x1 and x2) are the eigenvalues 

(eigenvectors) of C1 and C2, respectively. 

Note that the eigenvalues of an	݊ × ݊ quaternion matrix 

requires the computation of the eigenvalues of an 

equivalent ʹ݊ × ʹ݊ complex matrix [12], while the 

eigenvalues of an	݊ × ݊ B matrix is computed using two ݊ × ݊ complex matrices. Thus, the complexity of 

computing the eigenvalues of B matrix is lower than that 

of quaternion matrix. 

3 Reduced Biquaternion Approach to 

Color Face Recognition 
Each pixel in a color image consists of three channels (red, 

green, and blue). These channels can be represented as the 

three imaginary parts of a B number.  Thus, any pixel of a 

color image can be represented as: ݍ = Ͳ + ݅ݎ + ݆݃ + ܾ݇, (21)

where		ݎ, ݃, and	ܾ ∈ ℝ and represent red, green, and blue 

(often after being normalized through division by 255) 

components of a pixel, respectively. 

In this section, we use the B representation of color face 

image to propose color face recognition algorithms based 

on 1D PCA and 2D PCA. 

3.1 1D Reduced Biquaternion Principal 

Component Analysis (BPCA) 

The first approach we propose is based on the well-known 

PCA algorithm [1]. Let’s consider a 2D	݉ × ݊color face 

image I represented as a 1D B vector Г∈ ९௠௡ obtained by 

stacking the columns of I on top of one another. Let the 

training set consists of M images each of size	݉ × ݊. For 

each image Г௦	in the training set, the B representation is: Г௦ = Ͳ + ௦݅ܚ + ௦݆܏ + ݏ,௦݇܊ = ͳ, ʹ, ͵, …  (22) ,ܯ,

where r, g, and bare vectors that represent red, green, and 

blue values of image pixels. The training set can be 

represented as an	݉݊ ×  B matrix A. The main idea of ܯ

PCA is to find a vector that best explains the distribution 

of face image within the whole image space. PCA depends 

on finding the covariance (scatter) matrix	۵ଵ஽ ∈ ९௠௡×௠௡: ۵ଵ஽ = ͳܯ෍൫Г௦ − Г෨൯൫Г௦ − Г෨൯ுெ
௦ୀଵ ,  

(23) 

where Г෤ is the average face of the training set and ሺ. ሻு 

operator denotes the Hermitian transpose. The size (݉݊ ×	݉݊) of ۵ଵ஽ will make finding its eigenvalues and 

eigenvectors computationally intractable for typical image 

sizes. Since the number of images in the training set is 

often much less than the dimension of the space (ܯ <݉݊ሻ, then a common practice [1] is recommended to 

reduce the computation cost. First, the eigenvalues and 

eigenvectorsܞ௦ ∈ ९ெ of the ܯ  are	ۯ்ۯ matrix ܯ×

computed. Then the covariance matrix G1D will have the 

same eigenvalues, and its eigenvectors ܝ௦ ∈ ९௠௡ (also 

known as the eigenfaces) are computed by pre-multiplying 

the vectors	ܞ	by A: ܝ௦ = ݏ	,௦ܞۯ = ͳ, ʹ, … ,  (24) ,ݐ

where	ݐ ൑  is the number of selected eigenvectors ܯ

corresponding to the largest eigenvalues in terms of the 

norm as defined in (14), see the implementation note 

below. 

A new face image Г projected into the face space by ߱௦ = ௦்ܝ ൫Г − Г෨൯, ݏ = ͳ, ʹ, … , (25) .ݐ

These weights form a feature vector ષ =[߱ଵ, ߱ଶ, … ܶ[ݐ߱, ∈ ९௧ that describes the contribution of 

eigenfaces in representing Г. Suppose that ષ j denotes the 
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feature vector representing the j-th training face image, 

then the class of the j-th training image that minimizes ݀൫Г, Г࢐൯ = ൭෍ห߱௦ −߱௦௝หଶ௧
௦ୀଵ ൱ଵ ଶൗ , ݆ = ͳ, …  (26) ,ܯ,

is the class that Г belongs to (nearest neighbor 

classification), where the norm is defined as given in (14). 

This proposed B-based representation of face images is 

illustrated in Figure 1, where each image can be 

represented as a linear combination of the best t 

eigenvectors in addition to the mean image. 

Implementation note: As discussed above, finding the 

eigenvectors of ۵ଵ஽  would involve computing the 

eigenvectors of the ܯ  ,Being a B matrix .ۯ்ۯ	matrix ܯ×

this latter matrix, as mentioned in the previous section, 

will have ܯଶ(not just ܯ) B eigenvalues and eigenvectors. 

This would increase the computational cost of finding 

them and identifying their best subset, especially if the 

training set is large in size. Since we are actually 

interested in finding only the t largest eigenvalues along 

with their corresponding eigenvectors, all ܯଶ eigenvalues 

are computed then a quick selection algorithm [22] can be 

employed to return those t largest in terms of the norm. 

The time complexity of this will be ܱሺܯଶݐሻ.We propose 

to use a more efficient, faster algorithm for the same sake. 

To outline this algorithm, we need to prove first a key 

result. 

Result 1: If λ = λଵeଵ + λଶeଶ, where λଵand	λଶ are complex 

numbers, then |λ|ଶ = |λଵ||λଶ|, where |. |denotes the norm 

defined in (14). 

Proof: Let λଵ = ܽ + ܾ݅, 	and	λଶ = ܿ + ݀݅. Then, ߣ = ଵଶ [ሺܽ + ܿሻ + ሺܾ + ݀ሻ݅ + ሺܽ − ܿሻ݆ + ሺܾ − ݀ሻ݇]. 
Using the norm defined in (14), |ߣ| = ൤ͳͶ ሺܽଶ + ܾଶ + ܿଶ + ݀ଶሻଶ − ͳͶ ൫ܽଶ + ܾଶ − ሺܿଶ + ݀ଶሻ൯ଶ൨ଵ ସൗ

 						= ൤ͳͶ ሺ|ߣଵ|ଶ + ଶ|ଶሻଶߣ| − ͳͶ ሺ|ߣଵ|ଶ − ଶ|ଶሻଶ൨ଵߣ| ସൗ
 Thus,	|ߣ|ଶ =  ∎ (27)														ଶ|ߣ||ଵߣ|

The algorithm we propose to use is based on the idea 

that taking the logarithm of the norm of the eigenvalues of 

the B matrix, from (27), will produce the sum of the 

logarithms of the norms of the eigenvalues of two 

complex matrices. This will transform the problem here 

into a classical, challenging problem in computer science 

called X+Y sorting [22, 23], which is often formally stated 

as follows: Given two finite sets X and Y, the problem is 

to order all pairs (x, y) in the Cartesian product X × Y by 

the key x + y. 

We first outline the proposed algorithm, and then derive 

its performance complexity. 

Algorithm 1: To find the t largest eigenvalues of anܯ  .B matrix Y and their corresponding eigenvectors	ܯ×

a) Represent the matrix Y using the e1-e2 form as 

explained in(19):	܇	 = ۱ଵ݁ଵ + ۱ଶ݁ଶ, where ۱ଵ and ۱ଶ 

are two complex matrices.  

b) Compute the ܯ complex eigenvaluesof ۱ଵ in the set ࣭ఈand their corresponding eigenvectors {ܝ௦}௦ୀଵெ , and 

the ܯ complex eigenvalues ఉ࣭of		۱ଶ and their 

corresponding eigenvectors  {ܞ௦}௦ୀଵெ . 

c) Order the two sets ࣭ఈ and ఉ࣭	independently in 

decreasing order in terms of the usual norm of complex 

numbers using a quicksort algorithm [22].  

d) Compute the set ࣭ఈఖ = {logሺ|ߙ| + ߳ሻ ߙ| ∈ ࣭ఈ , ߳ >Ͳ}	and ఉ࣭ఖ = ൛logሺ|ߚ| + ߳ሻ ߚ| ∈ ఉ࣭ , ߳ > Ͳൟ.	߳ is a small 

number to avoid the logarithm of 0. 

e) Run the X+Y kth selection algorithm [24] on the two 

sets ࣭ఈఖ and ఉ࣭ఖ to obtain the t largest pairwise sums of 

all pairs in the Cartesian product of the two sets  ࣭ఈఖand ఉ࣭ఖ. Let the obtained pairs form the set ఒ࣭. 

f) Compute the set of eigenvalues {ߣ௭}, of ܇ from all ߣ௭ = ଵ݁ߙ + ,ଶ݁ߚ ∀ሺߙ, ሻߚ ∈ ఒ࣭,	ݖ = ͳ,… ,  .ݐ
g) Compute the eigenvectors {ܠ௭} of ܇	from ܠ௭ = ଵ݁ܝ ,ߙcorresponding to ∀ሺ	ܞ and	ܝ	for every	ଶ,݁ܞ+ ሻߚ ∈ఒ࣭,	where ݖ = ͳ,… ,  .ݐ
Result 2: Algorithm 1 has a time complexity of ܱሺݐܯ   .ሻܯlogܯ+
Proof: The algorithm first sorts the two M-sized sets of the 

eigenvalues of each matrix ۱ଵ and ۱ଶ using a quicksort 

algorithm [22]. This requires ܱሺܯlogܯሻ complexity. The 

X+Y selection algorithm [24] works on the two sorted sets 

to select the kth (ͳ ൑ ݇ ൑  largest element of ࣭ఈఖ + ఉ࣭ఖ	ሻݐ

over their Cartesian product in time ܱሺܯሻ [24]. For 

obtaining all ݐ elements, the complexity is ܱሺݐܯሻ. In total, 

the overall time complexity of the algorithm is ܱሺݐܯ  ∎ .ሻ complexityݐଶܯሻ. This is considerably less than the original ܱሺܯlog	ܯ+

3.2 2D Reduced Biquaternion Principal 

Component Analysis (2DBPCA) 

This technique is based on the 2DPCA algorithm [2]. In 

this algorithm we present a 2D	݉ × ݊color face image I as 

a 2D B matrix		ϵ	९௠×௡, where each element is a B 

number that represents a pixel. As such each image in the 

training set can be represented as: 

௦ = Ͳ + ௦݅܀ + ௦݆ࡳ + ۰௦݇,ݏ = ͳ, ʹ, …  (28) .ܯ,

where ܀, ۵,	and	۰ ∈ ℝ௠×௡, M is the number of images in 

training set. The idea is to project the image matrix Φ onto 

an n-dimensional reduced biquaternion column vector v 

by the following transformation: ܝ = ܞ (29) 
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to obtain an m-dimensional projected vector u. The main 

problem here is how to determine a good projection vector 

v. The 2DPCA algorithm proves that the best projection 

vector v is the eigenvector of the image covariance matrix 

G2D corresponding to the largest eigenvalue. G2D can be 

evaluated as: ۵ଶ஽ = ͳܯ෍൫௦ − ෩൯ு൫௦ −෩൯ெ
௦ୀଵ , (30) 

where Φs is the sth training image, ෩  is the average image 

of all training samples, and ሺ. ሻு operator denotes the 

Hermitian transpose. Selecting only one optimal 

projection vector is not enough, therefore a set of the 

optimal projection vectors v1, v2, …,vt corresponding to the 

largest t eigenvalues are selected. Then the t principal 

components u1, u2, …,ut of the image  are obtained from: ܝ௦ = ൫ − ෩൯ܞ௦,					 ݏ	 = ͳ, ʹ, … ,  (31) .ݐ

It should be noted that the principal component ܝ௦ ∈९௠	is a B vector, while the principal components of 

BPCA (from (25)) are scalar B numbers. 

For classification, suppose we have an image Φ with 

principal components ܝ૚, ,૛ܝ … , ࢐૚ܝ ௧. Suppose thatܝ , ࢐૛ܝ , … , ࢐௧ܝ  are the principal components of the j-th 

training image Φj. Then the class of the j-th training image 

that minimizes ݀൫,௝൯ = ቀ∑ ∑ หܝ௧௟ − ࢐௧௟ܝ หଶ௠௟ୀଵ௧௧ୀଵ ቁଵ ଶൗ
, (32) 

where |. |	denotes the norm described in(14), is the class 

that Φ belongs to (i.e., nearest neighbor classification).  

4 Experimental Results 
The performance of our color face recognition methods is 

evaluated using three standard, public color face 

databases. The GATech database [18] was used to 

examine the performance when the facial expression, 

lighting condition, and scale are varied. The FERET 

database [19] is used to evaluate the system performance 

where there is a variation in viewing direction. The FEI 

database [20] is employed to test the performance under 

conditions where the pose and expression are varied. Eight 

face recognition methods are compared in our experiments 

covering two groups of methods. The first group includes 

1D PCA-based methods, such as the grayscale PCA[1], 

CPCA[3], the quaternion-based QPCA [4,6] (our 

implementation is based on the quaternion Matlab toolbox 

[25]), and the proposed reduced biquaternion-based 

method (BPCA). The second group consists of 2D PCA-

based methods: grayscale 2DPCA [2], C2DPCA [3], and 

the proposed 2DBPCA. We added to this group our own 

development of a new version (called 2DQPCA) of the 

QPCA [4,6] algorithm based on the 2DPCA algorithm. 

We compare between all these methods in terms of 

recognition accuracy and run times. All methods are 

implemented in Matlab 2015 and run on an Intel core i7 

CPU 2.5GHz, 8GB RAM pc. Due to space constraints, we 

report in this paper the results on the FERET and FEI 

databases. 

4.1 Experiment on FEI Database 

The FEI Database [20] contains 2800 images of 200 

individuals, each with several head poses spanning about 

180 degrees. Each image is 6ͶͲ × Ͷ8Ͳ pixels. In this 

experiment we used 65 individuals (because the 

quaternion Matlab toolbox [25] in QPCA could not handle 

more subjects; other implemented methods did not have 

this constraint) with the head poses indicated in Figure 2, 

where figures c, e, h, k, and m are selected for training, 

and the remaining samples are selected for testing. All 

images are resized to ͵Ͳ × ͶͲ pixels.  

The accuracy results of the 1D methods are graphed in 

Figure 3 when the number of eigenfaces is varied from 10 

to 90 in steps of 20. This figure indicates that the 

performances of BPCA and CPCA are much better than 

QPCA and PCA. The performance of BPCA is slightly 

better than CPCA, where the average recognition accuracy 

of BPCA was 92.85% versus 91.73% for CPCA. Figure 4 

shows the results of the 2D methods. 2DPCA still has the 

worst accuracy. C2DPCA and 2DQPCA have close 

performances achieving a peak accuracy of 95.85% at 3 

eigenvalues. 2DBPCA has a solid performance peaking to 

an accuracy of 98% using 7 eigenvalues.  

We also study the time (in seconds) taken for feature 

extraction and classification of test images by each 

method. Expectedly, the grayscale-based methods (PCA 

and 2DPCA) are the fastest due to the fewer and simpler 

computations involved. At 90 eigenfaces, PCA and CPCA 

need 17.09s and 70.20s, respectively, while BPCA and 

QPCA take 136.20s and 134.31s, respectively. It is 

 
Figure 1:  B-based face representation: Column (a) represents 

original color image. Column (b) shows the weights as 

computed from Eq.(25). Column (c) is the real components of 

the eigenfaces represented as grayscale images.  Column (d) is 

the imaginary components of the eigenfaces represented as color 

images.  First row shows the real and imaginary parts of the 

mean face image ෩ of the training data. 
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important to stress that without using Algorithm 1 (i.e., 

using plain selection on ܯଶ eigenvalues) BPCA would 

take 221.37s. 2D methods are generally slower than the 

1D methods since the principal components of 1D 

methods are scalars while those of 2D methods are 

vectors. Using only 9 eigenfaces, 2DPCA needs 21.23s 

whereas C2DPCA, 2DBPCA, and 2DQPCA need 973.35s, 

791.37s, and 948.86s, respectively. 

4.2 Experiments on FERET Database 

The FERET database [19] contains a large amount of face 

images. We construct a subset of the database consisting 

of 115 individual, each having four images. Figure 5shows 

some samples of this database. Two images (fa and rb) are 

selected for training while fb and rc are selected for 

testing. All images are resized to	Ͷ8 × ͵ʹ	pixels.Figure 

6shows the recognition accuracies of the 1D methods 

when the number of eigenfaces is changed till 90 in steps 

of 20. This experiment shows that PCA still has the worst 

accuracy, while CPCA and QPCA have better and very 

close performances. BPCA starts off with a close 

performance to PCA, but improves rapidly after 30 

eigenfaces and beyond. The accuracy of BPCA reaches 

74.35% at 90 eigenfaces, while the respective accuracies 

of CPCA and QPCA are only 71.3% and 70.44% using the 

same number of eigenfaces. The 2D group performance is 

illustrated in Figure 7when the number of eigenfaces is 

changed from 1 to 9 in steps of 2. One can notice that 

2DBPCA has the highest overall accuracy. The remaining 

methods have significantly lower performances that tend 

to decrease somewhat when adding more eigenfaces.  

Similar to the previous experiment, PCA and CPCA are 

still the fastest where they take 5.52s and 27.58s using 90 

eigenfaces while BPCA and QPCA need 56.27s and 

41.81s, respectively. 2DBPCA is (about 1.25x) faster than 

2DQPCA as 2DBPCA takes 254.49s using 9 eigenfaces 

while 2DQPCA take 317.26s. 

5 Conclusions 
In this paper, we have introduced the theory of reduced 

biquaternions to represent color images and to develop 

efficient vector processing methods. The representation is 

quite new and expands the set of useful tools for color 

image processing. Moreover, we have derived several new 

mathematical results on the computation of the 

eigenvalues/eigenvectors of a B matrix and their norm 

where we proved that the squared norm of eigenvalue of a 

B matrix equals product of norms of two complex 

numbers. Also we developed a lower-complexity, faster 

algorithm to find the best eigenvectors based on a novel 

transformation of the problem into X+Y sorting problem. 

We have applied the developed theory—for the first 

time— to the problem of color face recognition in a PCA 

framework. After developing a 1D PCA method, we have 

devised a 2D version to exploit the natural spatial 

information of the face images.  

Our extensive experimental results on three public-

domain benchmark face datasets show that the proposed 

method of 2DBPCA has achieved the best overall 

performance among all methods. The method exploits the 

natural spatial information of the face images as well as 

the color information. It also proved to be faster than the 

quaternion-based counterpart method [4, 6]. Our current 

research is directed to building upon the developed B 

theory to develop several novel color image processing 

solutions. One underway direction is to apply the B theory 

into a collaborative and sparse representation framework 

[5] for better color face recognition. 
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