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Abstract

Removing blur caused by camera shake in images has

always been a challenging problem in computer vision liter-

ature due to its ill-posed nature. Motion blur caused due to

the relative motion between the camera and the object in 3D

space induces a spatially varying blurring effect over the

entire image. In this paper, we propose a novel deep filter

based on Generative Adversarial Network (GAN) architec-

ture integrated with global skip connection and dense archi-

tecture in order to tackle this problem. Our model, while by-

passing the process of blur kernel estimation, significantly

reduces the test time which is necessary for practical appli-

cations. The experiments on the benchmark datasets prove

the effectiveness of the proposed method which outperforms

the state-of-the-art blind deblurring algorithms both quan-

titatively and qualitatively.

1. Introduction

Motion blur is a common problem which occurs predom-

inantly when capturing an image using light weight devices

like mobile phones. Due to the finite exposure interval and

the relative motion between the capturing device and the

captured object, the image obtained is often blurred. In [19],

it was shown that standard network models, trained only on

high-quality images, suffer a significant degradation in per-

formance when applied to those degraded by blur due to

defocus or subject/camera motion. Thus, there is a serious

need to tackle the issue of blurring in images. Blur induced

due to motion in images is spatially non-uniform and the

blur kernel is unknown. Due to depth variation, the seg-

mentation boundaries of the objects and the relative motion

between the camera and scene objects, estimating spatially

variant non-uniform kernel is quite difficult. In this paper,

we introduce a generative adversarial network (GAN) based

deep learning architecture to address this challenging prob-

lem. We obtain significantly better results than the state-of-

* denotes the equal contribution.

the-art algorithms proposed to solve the problem of image

deblurring.

2. Related Work

Most of the previous works in the literature tackle the

problem of camera deshaking by modelling it as a blind de-

convolution problem and using image statistics as priors or

regularizers to obtain the blur kernels. While these meth-

ods have achieved great success in benchmark datasets, re-

strictive assumptions in their methods and algorithms limit

their practical applicability. Also, most of these works in

the literature have been dedicated to solve the problem of

blind deconvolution assuming the blur kernel to be spa-

tially uniform. Very few works have been proposed to solve

this challenge by taking spatially varying blur kernel. To

tackle the problem of non-uniform blind deblurring, previ-

ous works divide the image into smaller regions and esti-

mate the blur kernels for each region separately [4]. Once

the kernels are obtained for each of the local regions in the

image, they are then deblurred and combined using OLA

(Overlap Add) method to generate the final deconvolved im-

age. Proposed works which exploit deep learning methods

first try to predict the probabilistic distribution of motion

blur information in a small region of the given image and

then try to utilize this blurring observation to recover the

sharp image [18]. Only one work to the very best of our

knowledge has attempted to directly recover the sharp im-

age from the given blurred image [16]. However, it is com-

putationally expensive as authors exploit multi-scale frame-

work to obtain the deblurred image. Therefore, we aim to

recover the artifact-free image directly without using the

multi-scale framework. An exhaustive survey of blind de-

blurring algorithms can be found in [11].

3. Proposed Method

In our model, we enable every convolutional unit in the

deep network to make independent decisions based on the

entire array of lower level activations. Unlike [12] and [16]

which use residual blocks as primary workhorses through
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Figure 1. Our Convolutional Neural Network Architecture.

Figure 2. Structure inside our Dense Block.

element-wise summation of lower level activations with

higher level outputs, we want information from different se-

mantic levels to flow unaltered throughout the network. To

achieve this, we propose a densely connected ‘generative

network’.

3.1. Model Architecture

Our architecture consists of a densely connected gener-

ator and a discriminator. The task of the generator is to re-

cycle features spanning across multiple receptive scales to

generate an image that fools the discriminator into thinking

that the generated image came from the target distribution.

Thus, we can generate visually appealing and statistically

consistent deblurred image given a blurred image. The task

of the discriminator is to correctly identify from which dis-

tribution each of its input images came from by analysing

different patches in each image to make a decision. We

elaborate both our generator and discriminator models in

detail.

3.1.1 The Generator

Unlike [6], we do not reduce the dimension of the informa-

tion and keep it constant throughout the network. While

this does give rise to memory constraints, it protects the

network from generating checkerboard artifacts found com-

monly in networks relying on deconvolution to generate vi-

sually appealing images [7]. Instead, through feature re-

use across all levels in the generator network, our model

exhibits high generation performance with a much smaller

network depth than the other CNN-based methods used for

non-uniform motion deblurring [16],[3],[18]. This enables

smoother training, faster test time and allows efficient mem-

ory usage. Our generator model as shown in Fig. 1 consists

of 4 parts which are the head, the dense field, the tail, and

the global skip connection. We describe each of them in de-

tail below.

a) The Head: We define the hyper-parameter ‘channel-rate’

(chr) as the constant number of activation channels that are

output by each convolutional layer. The value of channel-

rate is 64. The head comprises of a simple 3 × 3 convo-

lutional layer which convolves over the raw input image

and outputs 4×channel-rate (256) feature activations. This

provides sufficient first-level activation maps to trigger the

densely connected stack of layers.

b) The Dense Field: This section consists of N number

of convolutional ‘blocks’ placed sequentially one after the

other, all having their outputs fully connected with the out-

put of the layer ahead of them. The dense connection is effi-

ciently achieved in practice by concatenating output activa-

tion maps of every ith layer in the dense field with the out-

put maps of (i+1)th layer. Hence, the number of activation

maps input to the mth dense block will be equal to ‘4×chr

+ (m − 1)×chr’. The structure of a dense block is shown

in Fig. 2. The first operation is a Leaky ReLU [15] which

not only adds non-linearity to the incoming activations but

also avoids using sparse gradients which could compromize

GAN training stability. The 1× 1 convolution ‘chokes’ the

number of activation maps being convolved later to a max-

imum equal to ‘4×chr’. This conserves parameter and data

memory in the deeper layers of the dense field when the

number of raw activation channels entering will be 6×chr
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(a) Blurry Input Image (b) Ground Truth (c) Xu et al.[21] (d) Whyte [20]

(e) Sun et al. [18] (f) MBMF [3] (g) MS-CNN [16] (h) OURS

Figure 3. Comparison of deblurred images by our model and other algorihtms on one of the images taken from GoPro dataset [16].

Method PSNR (dB) SSIM MS-SSIM F-SIM UIQI IFC VIF

Ours(A) 28.0345 0.8895 0.9678 0.8943 0.9612 4.0904 0.8691

Ours(B) 28.5798 0.9090 0.9701 0.9132 0.9683 4.2458 0.8749

Ours(final) 28.9423 0.9220 0.9720 0.9248 0.9741 4.9455 0.8853
Table 1. GoPRO Test Dataset (Ablation study on generative dense-net architecture), Ours(A): Residuals at extremes, dense in the middle,

Ours(B): Dense across extremes, successive residuals in the middle.

Method MBMF [3] MS-CNN [16] OURS

Time 0.72 sec 2.2 sec 0.3 sec
Table 2. Average time to deblur the input image of size 256 ×
256× 3.

(384) or more. The convolution at the final layer of each

dense block uses ‘chr’ number of 3 × 3 × (4×chr) filters,

giving rise to ‘chr’ number of activation maps at the end of

each dense block. The 3 × 3 convolutions along the dense

field are alternated between ‘spatial’ convolution and ‘di-

lated’ convolution with linearly increasing dilation factor

[22]. We use dilated convolution [22] at every even num-

bered layer within the dense field. We have the dilation fac-

tor increasing linearly to a maximum till the centre of the

dense field and then symmetrically reducing till we arrive

at the tail. This helps to increase the receptive field at an

exponential rate with every layer while the parameter space

increases linearly and hence introduces higher disparity be-

tween the multiple scales of activation maps that arrive at

subsequent dense layers. We avoid pooling and strided con-

volution operations to keep the dimensions of the output

maps to be constant and equal to the image size through-

out the network. Adding dropout at the end of each block

helps us effectively add Gaussian noise to the input of each

layer in the generator (G) which prevents the GAN collapse

problem by enabling G to blindly model shake distributions

other than a pure delta distribution.

c) The Tail: The Tail adds the non-linearity and through
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Method PSNR (dB) SSIM MS-SSIM F-SIM UIQI IFC VIF

ResGAN [12] 24.3460 0.7678 0.8697 0.8352 0.9715 2.1568 0.7043

Pix2Pix [7] 24.5987 0.7692 0.8680 0.8379 0.9675 2.0354 0.6992

Ours(1) 24.5281 0.7625 0.8551 0.8113 0.9421 1.9805 0.6835

Ours(2) 24.5412 0.7656 0.8602 0.8310 0.9455 2.0051 0.6981

Ours(3) 24.6991 0.7677 0.8681 0.8354 0.9532 2.1143 0.7038

Ours(4) 25.4897 0.7718 0.8694 0.8417 0.9679 2.3875 0.7315

Ours(5) 26.8134 0.8081 0.8840 0.8733 0.9758 2.5892 0.7581

Ours(final) 27.0812 0.8362 0.9112 0.8936 0.9778 2.9348 0.7740
Table 3. Quantitative Comparison of Progressive Model with Benchmarks on Synthetically blurred Places Dataset. Ours(1): Without Per-

ceptual Loss, Ours(2): Without GAN (with (1)), Ours(3): Without conditional GAN (with(1,2)), Ours(4): Without global skip connection

(with(1,3)), Ours(5): Without dilated convolution (with(1,3,4)) and Ours(final): with(1,3,4,5).

Method PSNR (dB) SSIM MS-SSIM F-SIM UIQI IFC VIF Norm-NR

Xu et al.[21] 25.1858 0.8960 0.9614 0.9081 0.9527 4.1811 0.8644 0.9570

Sun et al. [18] 24.6890 0.8561 0.9308 0.8691 0.9427 4.1132 0.8430 0.9532

MBMF [3] 27.1989 0.9082 0.9617 0.9138 0.9450 4.2032 0.8699 0.9581

MS-CNN [16] 28.4496 0.9165 0.9729 0.9073 0.9693 4.1969 0.8752 0.9657

Ours (final) 28.9423 0.9220 0.9720 0.9248 0.9741 4.9455 0.8853 0.9642
Table 4. Quantitative Comparison of our method with other state-of-the-art blind deblurring algorithms on GoPro Dataset.

1 × 1 convolution increases the number of feature maps to

4×chr.

d) The Global Skip Connection: Deep generative CNNs

usually face the problem of often inadvertently memoriz-

ing high level representations of edges as it is non-trivial to

generalize over first-level features using several convolution

operations. This would lead the network to not be able to re-

trieve sharp boundaries at correct locations from the shaken

images. We concancate the output from the head of the net-

work with the output of the tail. This gives rise to a good im-

provement in generation performance because the gradients

can now flow from the tail straight to the first level convo-

lutional layer and impact the update in the lower layers [5].

But more importantly, this single connection ‘drives’ the en-

tire dense field in the centre to expend its ‘full knowledge’

of the image towards understanding the residual between

the ground truth and the blurred images. Meanwhile, it also

optimizes gabor-like features of our CNN directly from the

ground truth fed into the generator-end [23]. However, dif-

ferent from the traditional residual networks used in image

restoration models, we do not use cascaded skip summa-

tions. Instead, we pass lower level knowledge to the upper

layers through dense connection and direct the entire dense

field to solely calculate the global residual, which as ex-

periments show, enable our network to learn faster, achieve

better convergence and show significantly better deblurring

performance.

3.1.2 The Discriminator

In our GAN framework, the discriminator is the primary

agent which guides the statistics that the generator employs

to create restored images. Moreover, we do not want the

depth of the discriminator network depth so much that it

memorizes the easier task of classification. We employ a

Markovian patch discriminator [13] with 10 convolutional

layers, which is similar to a non-overlapping sliding win-

dow that tends to look for well-defined, structural features

at several local patches. This also enforces rich coloration

in the generated natural images [7].

3.2. Loss Functions

a) ℓ1 and Adverserial Loss: Traditionally, learning-

based image restoration works have used ℓ1 or ℓ2 loss be-

tween the ground truth and the rectified image as the chief

objective function [1]. In case of an adverserial framework

used for such a purpose [16], this loss is pooled with the ad-

verserial loss which measures how well the generator is per-

forming with respect to fooling the discriminator. However,

using ℓ1loss solely in deep CNN models leads to overly

smooth images, as pixel-wise error functions tend to con-

verge at the mean of all possible solutions in the image man-

ifold, whenever they encounter uncertainty [1]. This creates

dull images with not many sharp edges and most impor-

tantly, with the blur still largely intact at edges and corners.

At the same time, solely using adverserial loss does retain

edges and gives rise to a more realistic color distribution

[1]. However, it compromises on two things: it still has no

abstract idea of structure and it only has the discriminator

judging generator performance based on the output image

alone with no regard to the blurred input. We remove these

limitations by leveraging perceptual loss and adding it to the

net loss function given in Eqn. 4.

b) Perceptual Loss: We need to augment structural knowl-
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Method PSNR (dB) SSIM MS-SSIM F-SIM UIQI IFC VIF Norm-NR

Xu et al.[21] 25.95 0.7474 0.8358 0.8309 0.9563 2.4140 0.7478 0.9271

Whyte [20] 24.41 0.7312 0.8033 0.8293 0.9524 2.3910 0.7298 0.9103

Sun et al.[18] 24.58 0.7379 0.8059 0.8255 0.9393 2.3897 0.7303 0.9087

MBMF [3] 25.87 0.7420 0.8157 0.8136 0.9418 2.4385 0.7398 0.9201

MS-CNN [16] 26.79 0.7572 0.8168 0.8311 0.9535 2.4211 0.7317 0.9128

Ours (final) 27.23 0.7651 0.8217 0.8712 0.9538 2.6158 0.7597 0.9214
Table 5. Quantitative Comparison of our method with other state-of-the-art blind deblurring algorithms on Lai Dataset.

Method PSNR (dB) SSIM MS-SSIM F-SIM UIQI IFC VIF Norm-NR

Xu et al.[21] 27.47 0.7506 0.8115 0.8810 0.9642 2.5025 0.7698 0.9309

Whyte [20] 27.03 0.7467 0.8091 0.8802 0.9589 2.4556 0.7632 0.9287

Sun et al. [18] 25.12 0.7281 0.7748 0.7990 0.9401 2.1963 0.7267 0.9108

MBMF [3] 26.59 0.7418 0.8079 0.8741 0.9576 2.2407 0.7421 0.9221

MS-CNN [16] 26.51 0.7432 0.8083 0.8481 0.9587 2.2235 0.7298 0.9224

Ours (final) 27.08 0.7510 0.8120 0.8743 0.9651 2.5192 0.7718 0.9318
Table 6. Quantitative Comparison of our method with other state of the art blind deblurring algorithms on Köhler Dataset.

edge into the generator to counter the patch-wise judgement

of the Markovian discriminator. One such loss function, as

introduced in [8] is the Euclidean difference between deep

convolutional activations of the ground truth and generated

latent image which is also known as ‘perceptual loss’. This

loss term is given in Eqn. 1,

Lpercep(V GG/i,j) =
1

Wi,jHi,j

Wi,j
∑

x=1

Hi,j
∑

y=1

(φi,j(I
Groundtruth)x,y−

φi,j(GθG(I
Blurred))x,y)

2

(1)

Here, Wi,j , Hi,j are the width and height of the (i, j)th

ReLU layer of VGG-16 network [17] and φi,j is the forward

pass through VGG-16 network upto ReLU 3 3 layer.

3.2.1 Conditional adversarial framework

We feed two image pairs into the discriminator in our GAN

framework. One pair consists of the input blurred image and

the corresponding output image generated by the generator,

whereas the other pair consists of the input blurred image

and the corresponding ground truth deblurred image. This

converges with the generator modelling the conditional dis-

tribution of the latent image, given the input image, a result

that will help the generated images maintain high statistical

consistency between a given input and its output. This is es-

sentially what we need, because we want ‘G’ to maintain the

output’s dependency on the blurred input to accomodate dif-

ferent kinds and amounts of shake blur and prevent it from

swaying too far away in its effort to fool the discriminator.

Hence, we can view a conditional GAN as a ‘relevance reg-

ularizer’ in an image to image network. Mathematically,

this would change the original GAN optimization problem

used in our task which would be given by:

min
θG

max
θD

EIGroundtruth
∼ptrain(IGroundtruth)[logDθD (I

Groundtruth)]+

EIGroundtruth
∼ptrain(IGroundtruth)[log (1−DθD (GθG(I

Blurred))]

(2)

to a conditional loss function which needs to be minimized,

given by

LGenerator
ConditionalGAN = −EIǫ(IBlurred)

[

logDθD (GθG(I
Blurred)|IBlurred)]

(3)

Thus, the combined loss function for our network is,

Lnet = LGenerator
ConditionalGAN + (K1)Lpercep + (K2)LL1

(4)

where, K1 and K2 are hypermeters which are set to 145 and

170 respectively in our experiments. From Table 3, we no-

tice a significant boost in the performance across all metrics

by introducing this technique. At this stage, our network

has already outperformed the two baseline models modified

and trained for our task: a very-deep, sequential ResNet

model used by [12] and the hourglass, U-net model used

by [7]. It is worth noting that our dense model with much

fewer layers (10 dense blocks) not only outperformed, but

also converged faster than the model in [12] with 15 residual

blocks, showing that our model and the framework resonate

much better.

4. Experiments

4.1. Experimental Settings

We implemented our model with torch7 library. All the

experiments were performed on a workstation with i7 pro-

cessor and NVIDIA GTX Titan X GPU.

Network Parameters: We optimize our loss function
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(a) Blurry Input Image (b) Ground Truth (c) Xu et al.[21] (d) Whyte [20]

(e) Sun et al. [18] (f) MBMF [3] (g) MS-CNN [16] (h) OURS

Figure 4. Comparison of deblurred images by our model and other algorihtms on one of the images taken from GoPro dataset [16].

through the ADAM scheme [9] and converge it using

stochastic gradient descent (SGD). Throughout the exper-

iments, we kept the batch-size for training as 3 and fixed

base learning rate and momentum to 0.0002 and 0.9 respec-

tively. Similar to [7], we use instance normalization instead

of training batch statistics during test-time.

Experiments for further architectural considerations :

We also perform a simple ablation study over the architec-

ture of our fully evolved model to isolate which connections

in the dense net are more important towards image restora-

tion to further explore our own model. We use two sub-

dense architecures named ‘A’ and ‘B’ to do so. The results

of the ablation studies are given in the Table 1.

A) In this model, the three lower and higher extreme layers

of our ‘dense field’ are replaced with successive residuals

of [12] and [16] while the middle layers remain dense. We

noticed a significant drop in performance compared to our

final model by doing so. This is because the central part has

‘forgotten’ entry-level features which were crucial in calcu-

lating the global residual between the head and the tail.

B) Switching the locations of the residuals and the dense

layers leads to better performance than having both a fully

residual network [12] and a centrally dense network (A).

Although it is slightly outperformed by our final model, it

saves a dramatic amount of GPU memory by cutting down

a lot of data concatenation. Hence, dense connections work

best when connections between the farthest of layers is

achieved. This helps the network to keep recycling lower

features for globalizing the knowledge of the higher layers.

4.2. Datasets

To train our model, we extracted patches of size 256 ×
256 × 3 from GoPRO dataset and combined them with the

images sampled randomly from MS-COCO [14] and Ima-

genet dataset [2] (which are resized to 256 × 256 × 3) to

generate our training dataset. We then apply non-uniform

blurs similar to [11] on images sampled from MS-COCO

and ImageNet datasets. We also perform data augmentation

by using translational and rotational flipping, thus produc-

ing a final dataset consisting of 0.5 million training image

pairs of blurred and deblurred images.

We perform comparison of progressive models on one
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(a) Blurry Input Image (b) Ground Truth (c) Xu et al.[21] (d) Whyte [20]

(e) Sun et al. [18] (f) MBMF [3] (g) MS-CNN [16] (h) OURS

Figure 5. Comparison of deblurred images by our model and other algorihtms on one of the images taken from Lai et al.’s Dataset [11].

dataset generated synthetically by us and compare the per-

formance of our method with the other state-of-the-art

methods on three different benchmark datasets. Following

Lai et al. [11], we used eight full reference metrics for quan-

titative analysis of our deshaking model. Detailed descrip-

tions of these metrics can be found in [11]. For comparison

we choose the state-of-the-art blind deblurring algorithms

given by: Xu et al. [21], Whyte [20], Sun et al. [18], MBMF

[3], and MS-CNN [16].

a) Places Dataset [24]: To perform the quantitative com-

parison of progressive models, we generate a synthetically

blurred dataset in the same way as described earlier. We

used the images from the Places dataset to generate pairs of

deblurred and blurred images. The results are shown in Ta-

ble 3. Note that Ours(1) in the Table 3 describes the dense

generative net with only the ℓ1 loss.

b) GoPro Dataset [16]: Images in this dataset were cap-

tured using GoPro and closely mimic the blur generated in

real life. Out of total images, we used 438 images for our

testing dataset and the rest of the images for creating the

training dataset. We show the results of the quantitative

comparison with the other state-of-the-art methods in Ta-

ble 4. Our results show significant improvement in terms of

image quality.

c) Lai et al. Dataset [11]: Lai et al. generated synthetic

dataset by convolving nonuniform blur kernels and impos-

ing several common degradations. To generate blur kernels

they also recorded 6D camera trajectories. The comparative

methods of our method with other algorithms are given in

Table 5. The MS-CNN learning model [16], which also by-

passes the kernel estimation step, was re-trained by us on

the same dataset that we used for training our own model.

On the other hand, we use the available testing codes of [18]

and [3] for reporting the comparison.

d) Köhler et al. Dataset [10]: This benchmark dataset con-

sists of four latent images. To construct a non-uniform blur

dataset, twelve 6D camera trajectories were recorded over

time assuming linear camera response function using which

blurred images were captured. The captured scenes were

planar and at a fixed distance from the camera. We report

the quantitative results on this dataset in Table 6. From the

table, we could infer that our model significantly outper-
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forms the other methods. Qualitative comparisons of the

different methods with ours could be seen in Fig. 3, Fig. 4

and Fig. 5. As evident from the figures, results produced by

our method are visually superior compared to that of the-

state-of-the-art.

5. Conclusion

We have designed a novel, end-to-end conditional GAN-

based filter model which performs blind restoration of

shaken images. Our results show that our model and frame-

work outperforms the state-of-the-art for non-uniform de-

blurring. The fast execution time of our model makes it

easily deployable in cameras and photo editing tools. We

show that densely connected convolutional networks can be

as effective for image generation as it is for classification.
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