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Abstract

This paper analyzes the influence of multi-spectral imag-

ing onto the severity of metamer mismatching, in partic-
ular in the context of color-accuracy of machine vision.
Camera signals associated with simulated as well as real
world multi-spectral imaging systems when viewing differ-
ent objects under different lighting conditions were calcu-
lated. Based on the calculated camera signals, the associ-
ated MMBs were computed when changing towards the CIE
standard observer under illuminant D65.
The results show that an increased number of channels used
in multi-spectral imaging systems do not necessarily de-
crease the severity of metamer mismatching. However, it
is also shown that this is due to the limited capabilities of
current image acquisition models which are not able to cor-
rectly compute a realistic MMB as they neglect any smooth-
ness constraints on spectral object reflectances.

1. Introduction

Whenever the accurate measurement of color is desired,
common RGB-cameras usually do not suffice. This is due
to metamerism, a phenomenon originally introduced in the
context of human color vision. Excluding optimal colors,
a tristimulus can be associated with a set of metameric
lights, i.e. lights inducing an identical tristimulus value
with respect to the human observer. However, such a set of
metameric lights does not have to remain metameric when
the observer changes. Instead, the originally metameric set
of lights may induce a non-singleton set of tristimuli, the so-
called metamer mismatch volume/body (MMB) [12, 4, 23].
The effect itself is known as metamer mismatching [24]
and it always occurs if the Luther-Ives condition [9, 14]
is broken, i.e. there is no linear dependency between the
respective color-matching functions. This is analogously
the case, when transforming from machine color vision to
human color vision.

A spectral stimulus can typically be divided into two parts,
an illuminant and a spectral object reflectance. The set of
all objects inducing an identical tristimulus for a specific
observer under a certain illuminant is said to be metameric
with respect to the observer under the current illuminant.
While a metameric set of spectral object reflectances with
respect to a combination of an observer and an illuminant
will lead to identical tristimuli when viewed by this
particular combination, the set might differ in appearance,
when viewed by another combination. The set does not
necessarily have to remain metameric when the observer,
the illuminant or both are changed, leading to metamer
mismatching [12, 24].

The concept of metamerism may be abstracted to cam-
eras, which is sometimes explicitly denoted as device
metamerism. Different lights entering the camera system
may lead to identical camera-signals. A possible way to
reduce device metamerism is by employing multi-spectral
imaging with the supreme goal being spectral reconstruc-
tion of viewed objects based on observed camera signals.
Achieving this goal would allow to virtually illuminate
images to ones own desire or create tailor-made colori-
metric information for individual observers. Examples of
reconstruction methods are the PCA [11, 15, 22], Pseu-
doinverse [18], the kernel approach (including the Wiener
estimation) [8, 21], the matrix R method [28], or, following
the current trend of machine learning, neural networks [16].
However, spectral reconstruction is usually an unsolvable
problem due to metamerism. Given an observed camera
signal, there is no unambiguous assignment of reflectance
functions to represent a viewed object.

This work contends itself to the task of color management,
i.e. the conversion of an observed camera signal towards a
device independent representation. There exist numerous
algorithms and variations tackling this challenge. All of
them can be separated into two groups, namely target-based
and model-based. Where the first group tries to learn a
unique relationship based on known correspondences of
camera signals and color coordinates, e.g. from raw-RGB
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to SRGB, model based approaches consider the image ac-
quisition process and pay tribute to the fact, that there is no
unique relationship. Examples of target-based approaches
are a linear transformation [17], polynomial modeling [7]
or neural networks [26]. The most advanced model-based
algorithms are capable of calculating the theoretical MMB,
e.g. the algorithm proposed by Logvinenko [12] or the
algorithm proposed by Centore [5]. However, they are
restricted to three dimensional color vision and are too
slow, when the evaluation of larger data sets is desired.

This work makes use of a novel algorithm [23], al-
lowing to compute the theoretical MMBs even when
using multi-spectral imaging. The goal of this work is
to evaluate and quantify the achievable color accuracy of
multi-spectral imaging systems in terms of the theoretical
MMB. The focus is the analysis of device metamerism, in
particular the relationship between multi-spectral imaging
systems and the resulting MMBs, when converting a seen
camera signal towards the CIE standard observer under
the illuminant D65. While it is certainly expected that the
degree of metamer mismatching decreases as the amount
of camera channels increases, it will be shown that this is
not necessarily the case from a theoretical point of view.

2. Computation

For the sake of clarity, necessary terminology will be
introduced first. Both human observers and camera sys-
tems will in the following be referred to as a sensing de-
vice. Likewise, the term metamerism is not to be seen as
restricted to human color vision but on an abstract level
also comprising device metamerism. The combination of
a sensing device with an illuminant will be referred to as a
color mechanism [13]. A color mechanism is directly as-
sociated with its spectral weighting functions, consisting of
the spectral sensitivity functions of the sensing device and
the spectral power distribution (SPD) of the illuminant. A
viewed object, given by its spectral reflectance, will induce
a color signal when viewed by a color mechanism.

At all times, the considered wavelengths range from
Amin =380nm to A5, =780nm in 1nm steps. Color sig-
nals were calculated using the common model

Amaz
wi(r) = /)\ o (N)r(N)dx (i=1,...,n), (1)

min

where ® = (1, ..., p,) T denotes the color signal an object
with the spectral reflectance function r(\) induces when
viewed by the n-dimensional color mechanism associated
with the spectral weighting functions o;(\).

Given a computed color signal, the MMB associated with a
change of color mechanism towards the CIE standard ob-

(a) Tesselation order 1 (b) Tesselation order 2

Figure 1: Visualization of the employed sampling technique
based on a zonohedral geodesic grid.

server under illuminant D65 was computed using the al-
gorithm proposed by Stiebel et al. [23]. This is an ex-
tended version of the algorithm proposed by Logvinenko
et al. [12], making it applicable to multi-spectral imag-
ing as well as improving the computational time. It allows
to calculate the precise theoretical boundary surface of the
MMB by modeling the creation of a color signal with Equa-
tion 1 and based on the assumption that spectral object re-
flectances may neither be negative nor exceed the value 1,
ie.r(A\) €10,1] ¥ A

An important, yet frequently neglected, aspect of comput-
ing the theoretical MMB is the fact, that it is only possible
to compute individual points on the boundary enclosing the
MMB [4, 12, 23]. Thus, only a sampling of the boundary
surface can be achieved. A natural question to ask is how
to perform this sampling in the most precise as well as effi-
cient way. It has been established that, with the MMB being
a closed convex set, its boundary surface can be expressed
using spherical coordinates with the origin being in a central
position inside the MMB [12, 23]. In this work, the bound-
ary surface was sampled using an icosahedral geodesic grid,
which can be seen as a set of uniformly distributed points
upon a spherical surface. It is based upon the successive
subdivision of the faces of an icosahedron. The amount
of resulting points, and therefore the sampling density of
the surface, is controlled by the amount of successively per-
formed subdivisions, also called tessellation order. Figure 1
illustrates the approach.

2.1. Experimental Setup

The following information is needed in order to calculate
the MMB associated with a change of color mechanism: the
spectral sensitivity functions of the respective sensing de-
vices, the respective illuminants given by their SPD, and, fi-
nally, the color signal as observed by one of the color mech-
anisms.

Since the conversion towards the CIE standard observer un-
der illuminant D65 has been investigated in this work, one
color mechanism remained always the same. Regarding
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the other color mechanism, the illuminants considered are
the CIE standard illuminants E, D50, D65, D99, A, C, F4,
F8, F11, covering a wide range of possible light sources.
The set of camera systems is twofold. The first subset is
based upon simulated multi-spectral imaging systems, with
individual channels being modeled using Gaussian func-
tions [23]. The second subset consists of real multi-spectral
imaging systems, which have been characterized by mea-
suring their spectral sensitivity.

The same simulated multi-spectral imaging systems as
in [23] have been used. This means that the individual
spectral sensitivity functions were modeled using Gaussian
functions

A

si(\) = e 5t @)

where \.; denotes the central position of the i’th channel.
The width of the curve is controlled by the standard devi-
ation ¢. Given a channel count of n, the central positions
of all Gaussians were positioned in equidistant intervals
between 400nm and 700nm. In total, channel counts from
3 to 9 were considered. For a better understanding, Figure
2a displays the simulated spectral sensitivities in case of a
6-channel system.

Initially, the standard deviation was chosen such that
neighboring channels intersect at one times their variance,
ie. o0 = o0, = w. However, in order to test
the influence of the filter width onto metamer mismatching,
different values for the standard deviation were considered
as well.

For comparison, a total of three real cameras have been

analyzed. A RGB-camera is represented by a Basler
AvA2300-25gc.  The first multi-spectral system is a
6-channel system, realized as a stereo setup combining two
of the mentioned RGB-cameras respectively extended with
interference filters to achieve wavelength multiplexing.
Last, there is a 7-channel multi-spectral camera consisting
of a monochrome camera and a filter wheel.
The spectral sensitivity functions of each camera system
were individually measured using a monochromator setup.
A narrow band light stimulus, created by the monochroma-
tor, is viewed in parallel by both the camera to be measured
as well as a spectrophotometer. Based on an entire set of
created light stimuli in the wavelength range from 380nm
to 780 in 1nm steps, the algorithm proposed by Paulus [19]
was used to calculate the spectral sensitivity functions. The
resulting sensitivity functions are shown in Figure 2.

2.2. Quantification of Metamer Mismatching

All possible combinations of camera systems and
illuminants were considered, forming distinct color mecha-
nisms. Each color mechanism was evaluated over the 1600
objects which are part of the Munsell glossy edition [1].
The spectral object reflectances are publicly available
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Figure 2: The spectral sensitivity functions of different
camera systems.

from the Eastern University of Finland (UEF) and were
measured using a spectrophotometer in the wavelength
interval 380nm to 780nm at 1nm resolution. The data set
systematically covers a wide range of possible tristimulus
values when viewed by the CIE standard observer under
illuminant D65.
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All 1600 spectral object reflectances were virtually viewed
by all color mechanisms to create the corresponding color
signals using Equation 1. The respective MMBs associated
with a change to the CIE standard observer under the
illuminant D65 were computed. All MMBs were quantified
in terms of the metamer mismatch index (MMI) [12],
which is defined as the Euclidean volume of the MMB
in relation to the Euclidean volume of the object color-solid.

3. Results & Discussion
3.1. Sampling of the MMB-Surface

The computation of the Euclidean volume of the MMB
heavily relies on the amount of computed boundary points.
The finer the boundary surface is sampled, the more accu-
rate the computed volume will become. It is therefore nec-
essary to examine, which tessellation order is required to
achieve representative results. This was achieved by com-
puting a total of 100 different MMBs using a high tessel-
lation order of seven, corresponding to 163.842 sampling
points for each surface. All of the MMBs are associated
with a change of a color mechanism consisting of different
combinations of imaging systems and illuminants towards
the CIE standard observer under D65. Figure 3a displays
a typical example of how the computed Euclidean volume
enclosed by the boundary points evolves as the tessellation
order increases. It can be seen that here is a strong conver-
gence towards its true value.

Unfortunately, it is impractical to compute all MMBs over
the entire data set using a high tessellation order, since the
computational cost involved becomes too high. Instead, a
tessellation order of four was used throughout this work,
corresponding to 2562 sampling points, which could be
computed using two Intel Xeon E5-2697 processors, basi-
cally offering 48 cores at 3.5 GHz.

To assess the accuracy of a tessellation order of four, the
mentioned set of the one hundred MMBs at high sampling
is considered. Since volumes of different MMBs differ
severely in size, they were normalized by their respective
volume when using a tessellation order of seven. This al-
lows for a better comparison. All computed volumes are
showing the same trend as in Figure 3a, namely a fast con-
vergence towards their true volume. Figure 3b displays the
evolution of multiple relative volumes, including the best
and worst cases that were observed. In the worst observed
cased, the computed volume at a tessellation order of four
was slightly above 90% of the volume achieved when us-
ing a tessellation order of seven. The best cases are beyond
99%. The mean achieved percentage is 95.1%, which is
considered as acceptable.

600
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tesselation order
(a) Exemplary evolution of the volume for an individual MMB.

relative volume
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(b) Evolution of relative volumes for different MMBs.

Figure 3: The precision of computed metamer mismatch
volumes is dependent on the tessellation order.

3.2. Simulated Cameras vs. Actual Cameras

Table 1 displays the result of the performed analysis for
each change of color mechanism evaluated over the 1600
spectra in terms of the MMI and its respective mean value,
maximum value, and standard deviation.

Based on the performed analysis, several observations can
be made. First of all, when only the simulated cameras are
considered, the MMI decreases with an increase in channels
under all illuminants, which is in direct accordance with
the results of previous studies [13, 23]. The dependency
of the MMI on the amount of channels is visualized for
different illuminants in Figure 4.

It can be seen from both Table 1 as well as Figure 4, that
the MMI heavily relies on the illuminant under which a
camera system views the object. Out of all considered
illuminants, especially the illuminant F11 has the most
negative impact onto the MMI. This is as well in direct
accordance with previous studies [3, 20]. It should be
explicitly noted, that the influence of the illuminant onto
the severity of metamer mismatching also depends on the
viewed object itself. Table 1 only displays the average over
all spectra and while the illuminant F11 actually turns out
to have the biggest MMI for every individual spectrum of
the 1600 Munsell spectra, there might be spectra not being
part of this data set for which this is not the case [3]. Still,
this study is in accordance with the general rule of thumb,
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Sim3 | Sim4 | Sim5 Sim6 | Sim7 Sim8 Sim9 RGB | Stereo 6 | Wheel 7

mean | 0.076 | 0.023 | 1.6e-3 | 2.7e-4 | 7.8e-5 | 4.2e-5 | 2.8e-5 | 6.6e-3 0.052 0.014

E max | 0.247 | 0.084 | 5.0e-3 | 8.4e-4 | 2.4e-4 | 1.4e-4 | 9.4e-5 | 0.019 0.078 0.028
std | 0.073 | 0.023 | 1.4e3 | 2.5e-4 | 7.1e-5 | 4.0e-5 | 2.7e-5 | 5.6e-3 0.016 7.7e-3
mean | 0.052 | 0.017 | 7.4e-4 | 1.6e-4 | 3.9¢e-5 | 2.3e-5 | 1.4e-5 | 3.7¢e-3 0.052 0.015
D50 | max | 0.167 | 0.056 | 2.3e-3 | 5.0e-4 | 1.3e-4 | 7.3e-5 | 4.4e-5 | 0.010 0.080 0.029
std | 0.049 | 0.016 | 6.8e-4 | 1.5e-4 | 3.7e-4 | 2.1e-5 | 1.3e-5 | 3.0e-3 0.017 8.2e-3
mean | 0.056 | 0.017 | 7.8e-4 | 1.9e-4 | 4.5¢-5 | 2.3e-5 | 1.8e-5 | 3.8¢e-3 0.049 0.015
D65 | max | 0.184 | 0.061 | 2.4e-3 | 6.1e-4 | 1.4e-4 | 7.4e-5 | 5.7e-5 | 0.010 0.072 0.028
std | 0.054 | 0.018 | 7.2e-4 | 1.9e-4 | 4.2e-5 | 2.1e-5 | 1.7e-5 | 3.1e-3 0.015 7.8e-3
mean | 0.062 | 0.017 | 7.3e-4 | 2.7e-4 | 4.5¢-5 | 2.3e-5 | 1.8e-5 | 5.6e-3 0.045 0.015
D99 | max | 0.206 | 0.059 | 2.2e-3 | 8.6e-4 | 1.5¢-5 | 7.5¢-5 | 5.7e-5 | 0.019 0.066 0.028
std | 0.060 | 0.017 | 6.6e-4 | 1.9e-4 | 4.2e-5 | 2.1e-5 | 1.7e-5 | 4.8¢-3 0.013 7.8e-3

mean | 0.059 | 0.012 | 1.0e-3 | 1.5¢-4 | 8.3e-5 | 3.6e-5 | 1.4e-5 | 0.015 0.065 0.019

A max | 0.181 | 0.041 | 3.2e-3 | 4.6e-4 | 2.7e-4 | 1.2e-4 | 4.1e-5 | 0.045 0.106 0.037
std | 0.054 | 0.012 | 93e-4 | 1.3e-4 | 7.8e-5 | 3.4e-5 | 1.2e-5 | 0.013 0.023 0.010

mean | 0.050 | 0.016 | 2.1e-3 | 4.0e-4 | 1.4e-4 | 8.4e-5 | 6.2e-5 | 6.4e-3 0.049 0.014

C max | 0.159 | 0.054 | 6.9e-3 | 1.2e-3 | 4.4e-4 | 2.6e-4 | 2.0e-4 | 0.019 0.073 0.026
std | 0.047 | 0.016 | 2.0e-3 | 3.5e-4 | 1.3e-4 | 7.7e-5 | 5.8¢e-5 | 5.7¢e-3 0.015 7.4e-3

mean | 0.022 | 7.0e-3 | 5.8¢-3 | 3.5¢-3 | 1.7e-3 | 5.0e-4 | 6.2¢-5 | 0.017 0.087 0.025

F4 max | 0.057 | 0.020 | 0.017 | 0.010 | 4.7e-3 | 2.6e-4 | 8.9¢e-4 | 0.046 0.145 0.050
std | 0.017 | 59e-3 | 5.0e-3 | 3.1e-3 | 1.4e-3 | 7.7e-5 | 2.7e-4 | 0.014 0.035 0.014
mean | 0.050 | 0.017 | 6.5¢-3 | 2.2e-3 | 5.5¢-4 | 4.9¢e-4 | 3.2e-4 | 0.021 0.066 0.020

F8 max | 0.149 | 0.056 | 0.020 | 6.9e-3 | 1.4e-3 | 1.5e-3 | 9.8e-4 | 0.057 0.103 0.042
std | 0.044 | 0.016 | 6.0e-3 | 2.0e-3 | 4.5e-4 | 4.7e-4 | 3.0e-4 | 0.017 0.022 0.012
mean | 0.135 | 0.103 | 0.092 | 0.080 | 0.067 | 0.056 | 0.050 | 0.135 0.161 0.088
F11 | max | 0.287 | 0.237 | 0.228 | 0.208 | 0.178 | 0.139 | 0.123 | 0.311 0.276 0.172
std | 0.085 | 0.070 | 0.066 | 0.060 | 0.050 | 0.040 | 0.036 | 0.092 0.070 0.048

Table 1: Computed MMISs resulting from a change of a color mechanism towards the CIE standard observer under illuminant
D65 evaluated over the 1600 Munsell spectra. The standard deviation of all simulated systems displayed in this table is

o =0p,.
0.15
0.1 A

s - D65

= E
0.05 —

F11

Figure 4: Evolution of the mean MMI over the channel
count of the simulated camera systems with ¢ = ¢,, under
different illuminants.

that when narrow band peaks appear in the SPD of an
illuminant, more channels are necessary to measure color
appropriately.

It has already been observed in previous studies, that the
MMB varies systematically with the Munsell value and

chroma [12, 27]. The conducted simulation in this work
validates this result as well. Based on the given reflectance
spectra, the corresponding coordinates inside the CIELAB
space [2] can be computed assuming the CIE standard
observer under illuminant D65. Figure 5a displays the
MMI over the CIELAB coordinates encoded in the color
in case of the 6D simulated system under illuminant A. It
can be seen, that for different planes of constant lightness,
the MMI increases towards the achromatic axis. It was
already proposed, that metamer mismatching might be
separated into chromaticity mismatching and luminance
mismatching [12]. Figure 5b displays the MMIs of all
neutral colors contained in the data set over their respective
lightness value. Since the lightness is known to be a good
approximation of the Munsell value, the MMI behaves
over the lightness as shown in Figure 5b analogously to the
MMI over the Munsell value [12]. Metamer mismatching
is the most severe, when viewing the neutral objects.
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Figure 5: The variance of the MMI over the CIELAB space
in case of the 6-channel simulated camera with ¢ = o¢
under illuminant A.

So far, only the simulated camera systems with ¢ = o,

were considered, indicating that the use of multi-spectral
imaging leads to a significant reduction of metamer mis-
matching in terms of the MMI when converting towards the
human observer under D65. However, when considering
the results in Table 1 achieved with the three real world
imaging systems, the premise appears to be broken. It
can be clearly seen that when using the real world multi-
spectral imaging systems, the MMI increases drastically.
Especially the fact that the RGB-camera is outperforming
the multi-spectral imaging systems raises the question how
the simulated and real world systems differ.
When comparing the spectral sensitivities of the simulated
system shown in Figure 2a with the filter wheel camera
shown in Figure 2e, it can be seen that there is a strong
overlap of neighboring channels in case of the simulated
system, whereas in case of the filter wheel camera, there
is no such overlap. In contrast, the RGB-camera shown in
Figure 2c actually has overlapping channels and it performs
reasonably well (fitting in somewhere between the 4D and
5D simulated system and considering, that the simulated
Gaussians are naively chosen).

3.3. Influence of the Filter Width

In order to evaluate the influence of the filter width onto
metamer mismatching, it was analyzed how the simulated
systems perform, when their individual channels become
more narrowband. This was investigated by varying the
standard deviation, o, of the Gaussians modeling the spec-
tral sensitivity functions. Unfortunately, the computational
cost involved is too high when evaluating over the entire
1600 spectra for all possible combinations of channel count,
standard deviation and illuminant, especially for the sys-
tems of higher dimensionality. Thus, the evaluation was re-
stricted to the respective neutral spectrum from the data set

as the worst case possible in terms of associated metamer
mismatch volume.

Independent of the illuminant, there is always the same
trend to be observed. The result corresponding to the il-
luminant A at the camera side is visualized in Figure 6a.
The general dependency of the standard deviation, i.e. fil-
ter width, onto the MMI is directly visible. Since the indi-
vidual channels of a n-dimensional camera system are dis-
tributed equidistantly in the same wavelength range from
400nm to 700nm, the central positions of neighboring chan-
nels are the closer to each other, the higher their total count
is. Therefore, the simulated systems with a high channel
count require a lower filter width to achieve an equivalent
overlap of neighboring channels in comparison to the sys-
tems with a low channel count. In order to achieve a bet-
ter comparability of systems with different channel counts,
the standard deviation o is related to the actual distance
between the central positions of neighboring channels, o,,,
leading to Figure 6b.

All of the curves but the one corresponding to the 3-channel
system begin to align and follow the same behavior. De-
creasing the relative filter width leads to a rapid increase of
the MMI, whereas increasing the relative filter width does
not seem to have such a strong effect. While the filter width
being too small influences all systems in a comparable way
independent of the channel count, the influence of the fil-
ter width being too large is the more severe, the lower the
channel count becomes. Both cases can be explained as fol-
lows. If the individual filters become too narrow band, there
will be blind spots in between neighboring channels. These
blind spots potentially introduce an uncertainty regarding
the viewed spectral object reflectances, leading to an in-
crease in the set of metameric reflectance spectra. Likewise,
when neighboring channels begin to overlap too much, they
basically yield the same information and there is no actual
gain in having distinct channels.

In order to relate the results of this section to the previous
real world systems, the individual channels of the 7D fil-
ter wheel camera were fitted using Gaussians. A relative
standard deviation of 0.22 is roughly equivalent to the fil-
ter wheel system. It is directly visible from Figure 6b that
all the simulated systems are now performing significantly
worse. Especially noteworthy is Table 2, showing the MMI
for all simulated systems at o = 0.20,, under illuminant A.
All of the values are really large, when compared against
the ones shown in Table 1, and there is no real decrease of
MMI as the amount of channels increases.

3.4. The Importance of Smoothness

Multi-spectral imaging is generally considered as advan-
tageous for the task of color managament. However, the re-
sults shown in this work are only partly in accordance with
this assumption. While the evaluation of simulated camera
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Figure 6: The MMI of different simulated camera systems when viewing a gray surface under illuminant A over the filter

width.

n 3 4 5 6 7 8 9

MMI || 8e-3 | 0.08 | 0.10 | 0.11 | 0.10 | 0.09 | 0.09

Table 2: MMIs for the simulated camera systems with
o = 0.20, under illuminant A.

systems with ¢ = o,, showed the expected results, namely a
decreasing MMI with an increasing channel count, those re-
sults could not be reproduced when using real multi-spectral
imaging systems. However, the results of the real world sys-
tems could be confirmed and reproduced by changing the
standard deviation of the simulated systems such that they
better represent the real world systems.

The usage of multi-spectral imaging systems like the ones
evaluated in this work are known to significantly increase
the potential color accuracy, when used in conjunction with
target-based algorithms [25], or based on spectral recon-
struction techniques [10]. Thus, there must exist an impor-
tant difference to the model-based algorithm used within
this work.

It is due to the assumptions regarding the spectral object
reflectances made by current algorithms capable of calcu-
lating the theoretical MMB [5, 12, 23]. They only assume
the spectral object reflectances to be within the interval
[0, 1]. The assumption itself is valid in most cases, ba-
sically neglecting gloss and fluorescence. However, there
is no constraint on the smoothness of spectral object re-
flectances, whereas real world spectra actually are known to
be smooth [6]. This might lead to more object reflectances
being accounted for than appear in reality. The lack of
smoothness constraints is where the difference to target
based methods comes in. Since they are trained upon real
world spectra, they naturally consider their characteristics,
including smoothness.

Figure 7 visualizes the problem explicitly. Since there
are no smoothness constraints, the boundary surface of the
MMB is associated with metameric spectral reflectances

L \
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(a)

0.5 \
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(b)

Figure 7: Two metameric reflectance functions (blue) with
respect to the 7D filter wheel camera under illuminant A
(green), representing boundary points of the theoretical
MMB when changing towards the CIE standard observer
under D65.

consisting of a sum of elementary step functions [12]. For
example, the small irruptions appearing in Figure 7b around
the wavelengths 450nm and 600nm are hardly realistic.
Smoothness is also of great relevance for potential blind
spots between neighboring channels. If the viewed object
reflectance cannot change drastically within a small wave-
length step, but is subject to smoothness constraints, hav-
ing blind spots is perfectly acceptable. As an example con-
sider the flank around 540nm in Figure 7a, which moves to
a wavelength around 520nm in Figure 7b.

4. Conclusion

In this work, the influence of multi-spectral imaging
onto the severity of metamer mismatching was examined,
when converting an observed camera signal towards the
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CIE standard observer under illuminant D65. The evalu-
ation of two multi-spectral imaging systems, a 6-channel
stereo system and a 7-channel filter wheel camera, showed
a drastic increase in terms of the MMI, especially in
comparison to an evaluated RGB-camera. Since the MMI
represents the relative metamer mismatch volume, this
corresponds to the multi-spectral imaging systems having
a higher uncertainty about the potential object appearance,
when viewed by a human observer, than the evaluated
RGB-camera. This effect was attributed to a lack in
assumptions made by current algorithms capable of com-
puting the theoretical boundary of the MMB, neglecting
the smoothness of spectral object reflectances.

The essence of this work is that current algorithms capa-
ble of calculating the precise theoretical MMB, while cer-
tainly being impressive and showing promising results, are
lacking a very important constraint in form of the smooth-
ness of spectral object reflectances. This should always be
kept in mind, when considering their results, since it leads
to the calculated MMBs being larger than it can be expected
in reality.
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