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Abstract

The aim of the paper is to analyse hyperspectral im-

ages using tensor principal component analysis of multi-

way data sets. The mathematical and computational back-

grounds of pattern recognition are the geometries in Hilbert

space for functional analysis and applied linear algebra

for numerical analysis, respectively. Because of high-

resolution sampling in the colour channels, images ob-

served by a hyperspectral camera system are expressed by

three-mode tensors. The Tucker-3 decomposition of a three-

mode tensor is used in behaviourmetric science and psy-

chology for the extraction of relations among three entries

as an extension of the usual principal component analysis

for statistical analysis. Hyperspectral images express spec-

tral information of two-dimensional images on the imag-

ing plane. Therefore, for statistical analysis, we adopt the

Tucker-3 decomposition. The Tucker-3 decomposition of

hyperspectral images extracts statistically dominant infor-

mation from hyperspectral images. Tensor principal com-

ponent analysis allows us to extract dominant light-channel

information from hyperspectral images.

1. Introduction

Pattern recognition has played key roles as a mathemat-

ical basis for intelligent data processing in modern image

science and engineering. We have, over the last decades,

witnessed explosive numbers of methods and techniques

utilised in pattern recognition. Some of them have been

introduced through necessities for applications in indus-

tries, businesses, medicine, social security and services and

forensics.

In this paper, we propose a statistical method for anal-

ysis of hyperspectral images using tensor principal compo-

nent analysis. Traditionally for multi-colour image analy-

sis, RGB three-channel images are used, since RGB three-

channel decomposition is a typical and well-established

method for observation and representation for commercial

colour image. The RGB three-channel images are measured

by observing the reflected light field from observation ob-

jects through three filters which produce a triplet of red,

green and blue channel images. Furthermore, the image

observed by each channel is quantised for representation.

These two operations, filtering by three-channel filters and

quantisation results in the loss of information in light field

reflected from the objects in the space.

On the other hand, hyperspectral cameras measure the

reflected light field by decomposing light filed into more

than 100 channel-filtered images [1, 2]. Therefore, im-

ages observed by such a high-resolution in colour chan-

nels preserves more information in the reflected light field

than the traditional RGB three-channel cameras. Because

of the high sampling rate in colour channels, methods for

the extraction of statistically dominant information are de-

sired. Statistically dominant information can be extracted

by using principal component analysis (PCA) [3, 4, 5, 6].

Because of high-resolution sampling rate in colour channel,

images observed by a hyperspectral camera system are ex-

pressed by the three-mode tensors. Therefore, in this paper,

we develop a method of PCA for such three-way data ex-

pressed in three-mode tensors.

In traditional pattern recognition, sampled patterns for

numerical computation are embedded in an appropriate-

dimensional Euclidean space as vectors. The other way

is to deal with sampled patterns as three-way array data.

These three-way array data are expressed as tensors [7, 8, 9,

10, 11, 12] to preserve the linearity of the original pattern

space. The subspace method based on the Karhunen-Loève

transform is a fundamental technique in pattern recognition.

Modern pattern recognition techniques for discretised pat-

terns are described using linear algebra for sampled values

embedded in vector space. We express sampled hyperspec-

tral images as three-way array data. These three-way array

data are processed as third order tensors. This expression of

data requires the development on subspace method for ten-
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sor data. For the numerical analysis of the performance e

valuation of the proposing algorithm, we have constructed

image-database of hyperspectral images.

2. Preliminaries

2.1. PCA in Vector Space

For the orthogonal projections P and P⊥ = I − P ,

f‖ = P f and f⊥ = P⊥f are the canonical element and

canonical form of f with respect to P and P⊥, respec-

tively. If P is the projection on to the space spanned by

the constant element, the operation P⊥f is called the con-

stant canonicalisation. Let P i be the orthogonal projection

to the linear subspace corresponding to category Ci. For a

pattern f , if |P i∗(f/|f |)| ≤ δ for a sufficiently small posi-

tive number δ, we conclude that f ∈ Ci∗ .

Setting (f, g) to be the inner product in Hilbert space H,

the relation |f |2 = (f, f) is satisfied. Let θ be the canonical

angle between a pair of linear subspaces L1 and L2. Setting

P 1 and P 2 to be the orthogonal projections to L1 and L2,

respectively, cos2 θ is the maximiser of (P 1f,P 2g)
2 with

respect to the conditions |f | = 1, |g| = 1 P 1f = f and

P 2g = g. The relation cos2 θ = λ2
max is satisfied, where

λmax is the maximal singular value of P 2P 1. Therefore,

cos−1 λmax is the principal angle between L1 and L2. Fur-

thermore, the Grassmann distance between L1 and L2 is

computed by
∑k

i=1 cos
−1 λi.

For f and g in H, we define the metric d for µ(f) and

µ(g) such that d(µ(f), µ(g)) using an appropriate trans-

form µ from H to its subset. Furthermore, using an appro-

priate mapping Φ, we define the measure

s(f, g) = Φ(d(µ(f), µ(g))). (1)

If we set µ(f) = f
|f | and set d and Φ as the geodesic dis-

tance on the unit sphere in H and Φ(x) = cosx, respec-

tively, s(f, g) becomes a similarity measure based on the

angle between f and g. For f ′ = f + δf and g′ = g + δg ,

setting

min(|f |, |g|) = Λ, max(δf , δg) = ∆, (2)

we have the relation
∣

∣

∣

∣

(

f ′

|f ′|
,
g′

|g′|

)

−

(

f

|f |
,
g

|g|

)
∣

∣

∣

∣

= c
∆

Λ
, (3)

for a positive constant c. Therefore, s(f, g) is stable and

robust against perturbations and noises in f and g.

For patterns in H, we have the following property.

Property 1 For |f | = 1 and |g| = 1, assuming |f − g| ≤
1
3 · π

2 , the geodesic distance θ = dS(f, g) between f and g
satisfies the relation |θ − |f − g|| < ε for a small positive

number ε

In traditional pattern recognition, sampled patterns are

embedded in an appropriate-dimensional Euclidean space

as vectors. For x ∈ R
n and X ∈ R

n×n, |x|2 and |X|F are

the vector norm and Frobenius norm of x and X , respec-

tively.

Setting the data matrix X to be X = (f1,f2, · · · ,fm)
for data vectors {f i}

m
i=1 in R

N , whose mean is zero,

the Karhunen-Loève transform is established by computing

f̂ i = Uf i for U which minimises J1 = |UX|2F with the

condition U⊤U = IN . The orthogonal matrix U is the

minimiser of

J11 = |UX|2F + 〈(U⊤U − I),Λ〉, (4)

where Λ = Diag(λ1, λ2, · · · , λN ) for λ1 ≥ λ2 ≥ λ2 ≥
· · · ≥ λN ≥ 0 and 〈A,B〉 = trB⊤A. The minimiser of

eq. (4) is the solution of the eigenmatrix problem

MU = UΛ, M = XX⊤. (5)

The row vectors of U are the principal components.

The compression of f i to a low-dimensional linear sub-

space is achieved by computing the transform P nUf ,

where P n, for n < N , is the orthogonal projection such

that

P n =

(

In O

O⊤ O

)

. (6)

2.2. Multispectral and Hyperspectral Images

For a square integrable function f(x), which is zero out-

side of a finite support Ω in three-dimensional Euclidean

space, the sample Sf(∆z) for z ∈ Z
2 and |z|∞ ≤ I de-

fines an I × I three-way array F. To preserve the multi-

linearity of the function f(x), we deal with the array F as a

second-order tensor F . The operation vecF derives a vec-

tor f ∈ R
I12 for I12 = I1 · I3. We can reconstruct f from

F using an interpolation procedure.

Setting x = (x, y)⊤ ∈ R
2 and µ ≥ 0, a spectral image is

expressed as f(x, y, µ). Grassmann’s law of optics and the

Young-Helmholtz theory imply that from a colour spectral

image f(x, µ), a three-channel image-triplet is measured as

fα
i (x) =

∫ ∞

0

wα
i (µ)f(x, µ)dµ, i = 1, 2, 3, (7)

where α is the label for the selection of channels.

As an extension of Grassmann’s law of optics, data ac-

quisition equations for hyperspectral images are mathemat-

ically expressed as

f(x, k) =















1

a

∫ k+ a

2

k− a

2

f(x, µ)dµ, k > 0,

2

a

∫ a

2

0

f(x, µ)dµ, k = 0,

(8)
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(a) Matrix of images

(b) j-mode product

(c) Tensor operation

Figure 1. Tenor expression of hyperspectral images.

where k − a/2 > 0. The function l(µ; k, a)

l(µ; k, a) =











1

a
, |µ− k| ≤

a

2
, k > 0,

2

a
, 0 ≤ µ ≤

a

2
, k = 0,

(9)

is the window function for µ ≥ 0, which corresponds to

wα
i (µ) in eq. (7).

The sampled image for each channel k is fijk =
f(∆i,∆j, k), for (i, j)⊤ ∈ Z

2, where ∆ is a small posi-

tive number. Since for all suffices i, j, and k, hyperspectral

images are linear, hyperspectral images are elements of the

three-mode tenor space X ∈ R
m×n×l.

2.3. Tensor PCA of Hyperspectral Images

For the triplet of positive integers I1, I2 and I3, the

third-order tensor RI1×I2×I3 is expressed as X = ((xijk)).
Indices i, j and k are called the 1-mode, 2-mode and 3-

mode of X , respectively. The tensor space R
I1×I2×I3 is in-

terpreted as the Kronecker product of three vector spaces

R
I1 , R

I2 and R
I3 such that R

I1 ⊗ R
I2 ⊗ R

I3 . We set

I = max(I1, I2, I3). The matrxisation of tensor X in the

=

Figure 2. Tensor principal component analysis.

mode for k = 1, 2, 3 is expressed as

X(1) ∈ R
m×I1 , X(2) ∈ R

n×I2 , X(3) ∈ R
l×I3 . (10)

Then, we have the relations I1 = n × l, I2 = m × l and

I3 = m×n. Figure 1(a) shows an example of matrxisation.

Next the j-mode product by U is expressed as

X̂ (j) = X ×(j) U , X̂
(j)
(j) = UX(j). (11)

Using orthogonal matrices U (1),U (2),U (3), the tensor

projection is computed as

Yi = X ×1 U
(1)⊤ ×2 U

(2)⊤ ×3 U
(3)⊤ (12)

Figure 1(c) shows the geometric operation for the tensor

projection. For matrixisation X(n), the n-mode product is

expressed as X ×(n) U . Furthermore, a tensor-to-tensor

transformation from is given as

Y = X ×1 U
(1)⊤ ×2 U

(2)⊤ ×3 U
(3)⊤ (13)

For a collection of 3-mode tensors {Xi}
N
i=1, setting the

average tensor to be

X̄ =
1

N i

∑

Xi, (14)

we define

X̌k = Xk − X̄ . (15)

Then, U (j) which mximises the criterion

J3 = E
k

(

|X̌k ×1 U
(1)⊤ ×2 U

(2)⊤ ×3 U
(3)⊤|2F

)

(16)

with the condition U (j)U (j)⊤ = I(j). Tensor PCA Y is

computed using {U (j)}3j=1. Figure 2 shows geometric in-

terpretation of tensor principal component analysis.

The maximisers of eq. (16) is the minimisers of the

Euler-Lagrange equation

J33(U
(1),U (2),U (3))

= E
k

(

|Xk ×1 U
(1) ×2 U

(2) ×3 U
(3)|2F

)

+

3
∑

i=1

〈(I −U (i)⊤U (i)),Λ(i)〉. (17)
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This minimisation problem is solved by the following itera-

tion procedure.

1: U
(i)
0 := Q(i) such that Q(i)⊤Q(i) = I and α = 0.

2: U
(1)
(α+1) = argmin J33(U

(1),U
(2)
(α),U

(3)
(α)).

3: U
(2)
(α+1) = argmin J33(U

(1)
(α+1),U

(2),U
(3)
(α)).

4: U
(3)
(α+1) = argmin J33(U

(1)
(α+1),U

(2)
(α+1),U

(3)).

5: if |U
(i)
(α+1) −U

(i)
(α)|F ≤ ε, then stop, else α := α + 1

and go to step 2.

For J33(U
(1),U (2),U (3)), setting U

(i)
1 := I , the sys-

tem of minimisation problems

U (1) = argmin J33(U
(1), I, I)

U (2) = argmin J33(I,U
(2), I) (18)

U (3) = argmin J33(I, I,U
(3))

is derived. This system of minimisation problems derives

the following system of eigenmatrix problems,

∇
U (1)J33(U

(1), I, I) = 0

∇
U (2)J33(I,U

(2), I) = 0 (19)

∇
U (3)J33(I, I,U

(3)) = 0.

From eq. (19), as an extension of the two-dimensional

problem, we define the system of optimisation problems

Jj = E
i

(

|U (j)⊤Xi,(j)U
(j)|2F

)

+〈(U (j)⊤U (j) − Ij),Λ
(j)〉 (20)

for j = 1, 2, 3, as a relaxation of the iteration procedure,

where Xi,(j) is the mode j matrixisation of the ith tensor Xi.

These optimisation problems derive the system of eigenma-

trix problems [13]

M (j)U (j) = U (j)
Λ

(j), M (j) =
1

N

N
∑

i=1

Xi,(j)X
⊤
i,(j)

(21)

for j = 1, 2, 3.

The eigenvalues of the eigenmatrices in the Tucker-3 or-

thogonal decomposition satisfy the following theorem.

Theorem 1 The eigenvalues of U = U (1) ⊗ U (2) ⊗ U (3)

define a semi-order.

(Proof) For the eigenvalues λ
(1)
i , λ

(2)
j and λ

(3)
k of the 1-, 2-

and 3-modes of tensors, respectively, the inequalities

λ
(1)
i λ

(2)
j λ

(3)
k ≥ λ

(1)
i λ

(2)
j λ

(3)
k+1,

λ
(1)
i λ

(2)
j λ

(3)
k ≥ λ

(1)
i λ

(2)
j+1λ

(3)
k , (22)

λ
(1)
i λ

(2)
j λ

(3)
k ≥ λ

(1)
i+1λ

(2)
j λ

(3)
k ,

define the semi-orders among eigenvalues as

λ
(1)
i λ

(2)
j λ

(3)
k

�
〈

λ
(1)
i λ

(2)
j λ

(3)
k+1, λ

(1)
i λ

(2)
j+1λ

(3)
k , λ

(1)
i+1λ

(2)
j λ

(3)
k

〉

.

(23)

�

Regarding the selection of the dimension of the tensor

subspace, Theorem 1 implies the following theorem.

Theorem 2 The dimension of the subspace of the tensor

space for data compression is 1
6n(n+1)(n+2) if we select

n principal components in each mode of three-way array

data.

(Proof) For a positive integer n, the number sn of eigenval-

ues λ
(1)
i λ

(2)
j λ

(3)
k is

sn =

n−1
∑

i+j+k=0,i,j,k≥0

(i+ j + k)

=
n
∑

l=1

l
∑

m=1

m

=
1

2

(

1

6
n(n+ 1)(2n+ 1) +

1

2
n(n+ 1)

)

=
1

6
n(n+ 1)(n+ 2). (24)

�

If n = 1, 2, 3, 4, we have sn = 1, 4, 10, 20, respectively,

for tensors X = ((xijk)) in R
I×I×I .

3. Numerical Examples

The imaging environment is

• GS-A from EBA Japan GS-A and FLD-6II from

Toshiba are used as the hyperspectral camera system

and light source, respectively.

• GS-A observes spectra from 400nm to 800nm every

5nm using CCD.

• The channel width is 342.125-902.035nm.

• For each pack, 40 images are measured at interval of

9◦. Each image is 415×415 pixels and with the colour

resolution of 415 channels in colour resolution.

Figures 3(a) and 3 (b) show the configuration of the cam-

era system. Figure 4 illustrates the spectral distribution of

light source. Figure 5 shows an example of a data structure

for hyperspectral images.

Reconstruction is achieved by selecting leading major

components in each mode. The number of major com-

ponents is same in each mode. From Figure 6 to Figure
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Figure 3. Configuration of the camera and tables
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Figure 4. Spectral distribution of light source

Figure 5. Example of hyperspectral image data.

10, reconstructed images with (a) 4-leading-major, (b) 10-

leading-major, (c) 20-leading-major, (d) 35-leading-major,

(e) 56-leading-major, (f) 84-leading-major and (g) 415-

leading-major principal components are illustrated. Figures

11(a), 11(b) and 11(c) show the cumulative contribution ra-

tio. Figure 11 clarifies that the cumulative contribution ratio

depend on the mode.

In our experiments, geometrically rotated images are

measured for each image. This observation geometry im-

plies that for reconstruction in the first and second modes,

small and large numbers of leading principal components

are required, respectively, since in the second mode textures

on the images are geometrically deformed by rotation. Fur-

thermore, in the third mode, which expresses the distribu-

tion in spectra of images, fewer leading major components

are required to reconstruct acceptable images. Furthermore,

Figure 11 shows that reconstructions using more than 84

leading major principal components do not posses signifi-

cant differences. This statistical property of the reconstruc-

tion leads to the conclusion that it is possible to reconstruct

acceptable hyperspectral images using 0.8% of information

in the colour channels.

4. Conclusions

Colour perception of human beings and colour represen-

tations for colour images are based on Young-Helmholtz

theory, which defines the RGB colour space and filter pro-

files for three channels of RGB. The RGB colour space is

a result of nonlinear data compression from hyperspectral

images to three-channel images.

Assuming Grassmann’s law for hyperspectral images for

recognition, we proposed a statistical method for analysis

of hyperspectral images using tensor principal component

analysis of multi-way data sets. We have evaluated the va-

lidity of the proposing methodology for analysis on hyper-

spectral images of colour prints, colour paints and natural

objects (vegetables). Because of the high sampling rate

in colour channels, methods for the extraction of statisti-

cally dominant information are desired. This procedure is

achieved by using principal component analysis (PCA) for

tensors. Images observed by a hyperspectral camera system

are expressed by the 3-mode tensors because of high res-

olution of sampling rate in colour channels. In this paper,

assuming that hyperspectral images are three-mode tensors,

tensor-based data compression for hyperspectral images is

proposed.

The research was supported by ”Object oriented data-

analysis for understanding and recognition of higher-

dimensional multimodal data” by grant for Scientific Re-

search from JSPS, Japan.
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(a) (b) (c) (d) (e) (f) (g)

Figure 8. Reconstructed images. reconstructions with (a) 4-leading-major, (b) 10-leading-major, (c) 20-leading-major, (d) 35-leading-

major, (e)56-leading-major, (f) 84-leading-major and (g) 415-leading-major principal components.

(a) (b) (c) (d) (e) (f) (g)

Figure 9. Reconstructed images. reconstructions with (a) 4-leading-major, (b) 10-leading-major, (c) 20-leading-major, (d) 35-leading-

major, (e)56-leading-major, (f) 84-leading-major and (g) 415-leading-major principal components.

(a) (b) (c) (d) (e) (f) (g)

Figure 10. Reconstructed images. reconstructions with (a) 4-leading-major, (b) 10-leading-major, (c) 20-leading-major, (d) 35-leading-

major, (e)56-leading-major, (f) 84-leading-major and (g) 415-leading-major principal components.
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Figure 11. Cumulative contribution ratio.
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