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Abstract

Color consistency correction is a challenging problem in

image stitching, because it matters several factors, includ-

ing tone, contrast and fidelity, to present a natural appear-

ance. In this paper, we propose an effective color correction

method which is feasible to optimize the color consistency

across images and guarantee the imaging quality of individ-

ual image meanwhile. Our method first apply well-directed

alteration detection algorithms to find coherent-content re-

gions in inter-image overlaps where reliable color corre-

spondences are extracted. Then, we parameterize the color

remapping curve as transform model, and express the con-

straints of color consistency, contrast and gradient in an

uniform energy function. It can be formulated as a convex

quadratic programming problem which provides the global

optimal solution efficiently. Our method has a good per-

formance in color consistency and suffers no pixel satura-

tion or tonal dimming. Experimental results of representa-

tive datasets demonstrate the superiority of our method over

state-of-the-art algorithms.

1. Introduction

As the growing popularity of image capture equipments

and photo sharing, we now are in an image world where the

image data can be obtained easily by using SLR cameras,

smart phones, or downloading from the social networks

and public data platforms1. This exciting data availabil-

ity enables many visual applications, such as image recog-

nition [7], panoramic imaging [1, 11, 27], image render-

ing [31, 32] and virtual navigation [19, 9]. In many cases,

images of the same scene might show noticeable tonal in-

consistence because of different atmosphere illumination,

exposure time and camera response function. Such photo-

1USGS (satellite image): http://glovis.usgs.gov/

Figure 1: Panorama composited with source images taken

by cameras with different imaging settings. Color incon-

sistence is still noticeable in the scene even processed by

seamline selection and multi-band blending in Enblend2.

metric difference could particularly influence the visual ef-

fects of multiple images based rendering mission [29, 18].

This paper focus on studying the color correction problem

for multiview image stitching, as exemplified in Figure 1.

Within the technique pipeline of image stitching, color

correction is a critical step in presenting the composited im-

age with an natural and consistent tone. Apart from remov-

ing the overall tonal disparity, it also facilitates the follow-

ing seamline selection [10] and blending [22]. However, ob-

taining a satisfactory color correction result is a non-trivial

task: For one thing, a rigorous correction model that can

genuinely express the inter-image color transforming rela-

tions remains an open issue; For another, the original distri-

bution of pixel value indicates semantic information (object

structure, contrast, saturation, etc), which might might be

degraded or destroyed when adjusting pixels for the least

color disparity. This is a solved problem for two image in-

volved color transfer techniques that allows complex oper-

ations to enhance process quality, however it is hard to be

extended to multiple images scheme uniformly. Cascading

manipulation strategy [14, 26] subjects to linearly amplified

accumulation error, making the global consistency inacces-

2Available at: http://enblend.sourceforge.net/

12977



sible. As for multiview color correction, existing methods

mainly employed simple correction models or neglected de-

tail preservation and contrast consideration in the global op-

timization for consistency [29, 18]. Thus, a robust and ef-

fective multiview color correction algorithm remains to be

investigated further.

As to the problems stated above, this paper presents an

effective method integrating detail preservation, global con-

trast and color consistency into an uniform optimization

framework. It can guarantee the optimality of the process-

ing result. Like regular approaches, we leverage the color

statistics of overlap regions to obtain the color correspon-

dences. Specially, to improve the accuracy and robustness

of this, the classic Iteratively Reweighted Multivariate Al-

teration Detection (IR-MAD) [13] is used to detect and re-

move the disturbance of altered content in overlaps. In-

spired by the flexible model used in [5], we parameter-

ize the quadratic spline curve as transform function, which

can express different constraints in the optimization func-

tion effectively. Besides, the optimization problem can be

solved efficiently by virtue of convex quadratic program-

ming. Through comparing to the latest methods, our ap-

proach illustrated better performance in color consistency

and dynamic range optimization.

The rest of the paper is structured as follows. In Sec-

tion 2 an overview of related work is given. In Section 3

the scope of the problem is formally defined and in Sec-

tion 4 the proposed color correction approach is detailed. In

Section 5 experimental results are evaluated. Finally, con-

clusions and future work are presented in Section 6.

2. Related Works

Regarding color processing, there are two relevant tech-

niques: two image based color transfer [4, 8], and multiview

color correction [1, 6, 15]. Existing methods are reviewed

below respectively.

2.1. Color Transfer

The concept of color transfer was first proposed by

Reinhard et al. [4], which aims at propagating one im-

age’s color characteristic to another. From this baseline ap-

proach, many other following works were proposed. Be-

fore 2010, they mainly focus on solving the decorrelation

between color channels [16] and content-based elaborat-

ing color transferring [23], which were well summarized

in [30]. Since then, more emphasis was laid on grain-free,

detail preservation and artifacts suppression. To heighten

the detail performance, Xiao et al. [28] proposed a gradient-

preserving model to convert the transfer processing to an

optimization balancing the color distribution and the de-

tail performance. Different from a stepwise strategy, Su

et al. [20] proposed to perform color mapping and detail

boosting separately through gradient-aware decomposition,

to obtain a grain-free and detail preserved result. Based on

this idea, they developed more complete framework to sup-

press corruptive artifacts [21].

To avoid color distortion, Nguyen et al. [12] applied

Xiao et al.’s algorithm [28] in luminance channel, followed

by the color gamut alignment via rotating around luminance

axis. It was effective in preventing color distortion but lack-

ing in color fidelity because of its simple color transform

model. To make a more accurate color mapping, Hwang

et al. [8] proposed to correct each pixel’s color with an

independent affine model, which is the solution of prob-

abilistic moving least square based on feature color cor-

respondences. Besides, some works presented high-level

color transfer application based on semantic segmentation

or content recognition [25, 3]. Different with these tradi-

tional methods, learning-based color transfer methods were

attempted to train out the proper color mapping relation-

ship [24, 2].

2.2. Multiview Color Correction

Here, multiview color correction refers to correct the

color of three or more images for consistency in a global

way, which excludes applying color transfer across image

sequence or network to realize color consistency. Brown

et al. [1] first proposed to performed the gain compensa-

tion for multiple images in the way of global optimiza-

tion, which has been applied in panorama software Autos-

titch. Under the linear optimization framework, Xiong et

al. [29] extended this method by employing gamma model

in luminance channel and linear model in chromatic chan-

nels. Qian et al. [17] presented a manifold method to re-

move color inconsistence, which made full use of both the

correspondences in overlap regions and the intrinsic color

structures. However, its requirement on accurate geometric

alignment limited its application range.

In 3D modeling, Shen et al. [18] exploited linear func-

tion as color correction model over color histogram to gen-

erate consistent textures. It is efficient but unable to pro-

cess great color discrepancy. In photo editing applications,

Hacohen et al. [6] proposed to model the remapping curve

directly, which were optimized for consistent appearance

of photos using color correspondences obtained from non-

rigid dense matching [5]. This color model is flexible

enough to correct even large tonal disparity but its depen-

dence on dense matching makes it computationally expen-

sive. To address it, Park et al. [15] presented a robust low-

rank matrix factorization method to estimate its correction

parameters, which just need sparse feature matching. But,

its color correction ability is not as high.

3. Problem Formulation

First of all, our color correction method aims to be ap-

plied on the sequential images whose aligning models have
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Figure 2: Piecewise quadratic spline: the color mapping

function used in our method. Leveraging the fixed horizon-

tal distribution of red anchor knots, the curve just covers the

domain of the original intensity values [vmin, vmax].

been estimated in advance. Thus, the adjacent relationships

and overlap regions are used as given information in our ap-

proach. Second, our color correction algorithm runs on the

assumption that all the color inconsistence among images

is caused by different imaging conditions which affect each

image as a whole.

Seeking for the optimal consistency, our approach ex-

presses all the quality requirements in the form of con-

straint on model parameters, which are then solved in a

global optimization. To realize this, we define the transfor-

mation model as three monotonically increasing mapping

curves (one per channel), each of which is formulated as a

piecewise quadratic spline with m control knots (m = 6
as default). As illustrated in Figure 2 , these red knots

{(νk, ν̃k)}
m
k=1 are half free on the coordinate plane, where

{νk}
m
k=1 are fixed evenly on the horizontal axis to control

the mapping curve effectively, while {ν̃k}
m
k=1 are free to de-

termine the shape of the mapping curve as the actual model

parameters. Thus, the color mapping function for image Ii

can be parameterized as:

Fi = arg{(ν̃i1, ν̃
i
2, ..., ν̃

i
m)c}

3
c=1, (1)

where c is the index number of each channel. Particular-

ity, having the curve cover the intensity domain of each

original image can save the troublesome extrapolation for

non-overlap regions. Besides, the detailed definition of our

optimization function are described in Section 4.2.

4. Color Correction

Our color correction method consists of two steps: color

correspondence extraction and model parameters optimiza-

tion. Particularly, the color correction is performed in

Y CbCr space, because its luminance channel and chromatic

channels are separated and each channel has specific upper

and lower bounds, which facilitate the quality-aware color
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Figure 3: Visual comparison between the corrected result

with alteration filtering mask applied and that with none

mask applied when alteration exists.

consistency optimization.

4.1. Reliable Color Correspondence

Based on the adjacent relations, we extract color cor-

respondences in the overlaps of each image pair. For

efficiency problem, we adopt the statistical measures of

color histogram, instead of matching image color by pixels.

That’s to say, we take the same quantiles (color value pairs

of the same frequency) in the cumulative color histograms

of the shared contents as correspondences. In general case,

the overlap regions can be regarded as the shared contents,

even if a bit of misalignment exists. However, if obviously

altered objects exist there, their pixels as outliers should be

excluded from the overlaps in advance of histogram count-

ing. To do so, we utilize a famous alteration detection algo-

rithm IR-MAD [13] in overlap regions to generate filtering

masks. However, it is computationally expensive to run IR-

MAD on the images of their original size, especially for

high-resolution remote sensing images. Thus, we down-

sample each overlap region into the size of 250K pixels at

first and then apply the IR-MAD on them to get a coarse

mask. Here is an example that applying alteration filtering

mask improves the accuracy of color correction result when

alteration exists in Figure 3.

4.2. Remapping Model Optimization

With color correspondences of image pairs, energy func-

tion can be designed by using the parameters that remain to

be optimized. Given a group of images {Ii}
n
i=1, we attempt

to seek a group of color transformations {Fi}
n
i=1 which

maintains a good balance between three quality goals:

• color: pixels depicting the same content have the same

color across images;

• gradient: original structural details remain on the

transformed images;

• contrast: all the transformed images have a reasonable

wide dynamic range;
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As stated in Section 3, all these quality requirements should

be expressed as the constraints on parametric model. In our

method, the global optimization is conducted independently

in each channel. Without losing generality, the transfor-

mation function Fi of Ii in certain channel is denoted as

fi = arg(ν̃i1, ν̃
i
2, ..., ν̃

i
m) for simplicity. So, in any channel,

the energy function can be formulated as:

E =
∑

Ii∩Ij ̸=∅

wijEdata(fi, fj) + λ
n
∑

i=1

Eregulation(fi)

subject to: Crigid(fi), ∀i ∈ [1, n], (2)

where wij is the weight proportional to the area of the over-

lap region between Ii and Ij (
∑

wij = 1), and λ serves to

balance the data term and the regulation term. In our exper-

iments, λ = ξM
m

is used, where M denotes the amount of

color correspondences extracted in each overlap (M = 16
as default) and ξ ∈ [0.5, 5] is recommended. Actually, our

algorithm is insensitive to λ since this two terms are non-

contrary. The color consistency across images is expressed

by data term that penalizes the deviation between remapped

corresponding color values:

Edata(fi, fj) =
∑M

k=1

∥

∥

∥
fi(v

i
k)− fj(v

j
k)
∥

∥

∥

2

, (3)

where {vik, v
j
k}

M
k=1 are color correspondences between Ii

and Ij . As an unary term, Eregulation(fi) enforces certain

constraints on the color transformations softly, including

regularizing the parameters and stretching dynamic range.

Eregulation(fi) =
∑m−1

k=1

∥

∥fi(v̇
i
k)− v̇ik)

∥

∥

2

−η∥fi(v
i
0.05)− fi(v

i
0.95)∥

2, (4)

where {v̇ik}
m−1
k=1 denote the horizontal coordinates of joint

points joining different local curve segments (marked in

different colors in Figure 2). Exactly, we have v̇ik =
νi
k+νi

k+1

2
, k = {1, 2, ...,m−1}. The importance of this term

lies in two aspects: (i) keeping transformed images close to

their original appearance slightly as default solution; (ii) all

the model parameters are optimized as a whole even if no

color correspondences falls into the scope of some anchors

(parameters). In addition, the latter negative term prevents

the dynamic range to narrow down where viα depicts the α-

percentile of the CDF of Ii. This term is very necessary to

avoid an easy-appearing optimizing result that corrected im-

ages present a consistent but dimming tone, because remap-

ping intensity into a lower range conforms to the minimal

energy principle of Ecolor. Particularly, η = 5 and η = 0 are

used in luminance channel and chromatic channels respec-

tively. Namely, we only impose dynamic range constraint

in luminance.

 !"!#$%&'()  *'++)",-  *'++)", #$  *'++)", .

Figure 4: Channel information display of a color image in

Y CbCr space. The major gradient information is contained

in luminance channel Y .

As a qualified color mapping curve, the quadratic spline

should meet two basic requirements: increasing monotonic-

ity and mapping domain lying within gamut. They are guar-

anteed through the following constraint term:

Crigid(fi) :

{

τb ≤ f ′
i(v

i
k) ≤ τu, ∀vik∈ [vmin, vmax],

vstart ≤ fi(v
i
0.01), fi(v

i
0.99) ≤ vend,

(5)

where τb and τu defines the bottom and upper boundary of

the mapping curve’s slope domain, and [vstart, vend] is the

gamut range of related channel. Actually, the definition of

slop domain, especially its bottom boundary, is a trade-off

problem between detail preservation and color consistency,

since a higher value of bottom boundary (such as τb ≥ 1.0)

can prevent gradient detail loss from intensity levels merg-

ing, while it also inevitably restricts the freedom of parame-

ters to achieve a better color consistency. In our method, we

set the slop domain [0.3, 5] for chromatic channels Cb and

Cr , and [0.5, 5] for luminance channel Y where most of the

gradient information is contained, as the example shown in

Figure 4.

4.3. Implementation Details

Our correction function, as a piecewise interpolation

model, can not be expressed explicitly. We now describe

how to express the function mapping fi and partial deriva-

tive f ′
i with the actual model parameters {ν̃i1, ν̃

i
2, ..., ν̃

i
m}.

Given a color value vik, supposing it falls in the control

scope of knots {(νip, ν̃
i
p)}

p+2
p , then its remapped value ṽik

can be obtained via the following quadratic spline interpo-

lation equation:











v
i
k =

1

2
[(1−2t+t

2)νi
p + (1+2t−2t2)νi

p+1 + t
2
ν
i
p+2],

ṽ
i
k =

1

2
[(1−2t+t

2)ν̃i
p + (1+2t−2t2)ν̃i

p+1 + t
2
ν̃
i
p+2],

(6)

where the only unknowns are interpolation coefficient t ∈
[0, 1] and ṽik, so ṽik can be expressed by model parameters

{ν̃ip}
p+2
p , which is the essence of fi. In fact, we tend to solve

the interpolation coefficients of all color correspondences

before the global optimization, then the function mapping

equals to a linear interpolation.

According to Eq. (6), we can express the slope value of
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remapping curve at vik as:

f ′
i(v

i
k) =

∂ṽi/∂t

∂vi/∂t
=

(ν̃ip − 2ν̃ip+1 + ν̃ip+2)t+ ν̃ip+1 − ν̃ip
(νip − 2νip+1 + νip+2)t+ νip+1 − νip

,

(7)

where νip − 2νip+1 + νip+2 = 0 since {νip}
m
i=1 are con-

stants distributing on the horizontal axis evenly (as shown

in Figure 2). So, f ′
i(v

i
k) equals to a linear function with

t ∈ [0, 1] as the free variable. Then, the domain constraint

f ′
i ∈ [τb, τu] can be expressed as linear inequalities:



















τb ≤
ν̃ip+1 − ν̃ip
νip+1 − νip

≤ τu, t = 0,

τb ≤
ν̃ip+2 − ν̃ip+1

νip+1 − νip
≤ τu, t = 1,

(8)

So far, we can substitute Eq. (6) and Eq. (8) into Eq. (3),

Eq. (4) and Eq. (5). Then, the energy function Eq. (2) turns a

quadratic polynomial, which can be transformed to the stan-

dard form of constrained quadratic programming, then is

minimized by convex quadratic programming3 efficiently.

5. Experimental Results

We compare the proposed approach against two lat-

est methods in correcting color consistency of multiple

images. The one is linear model based Shen et al.’s

method [18], the other is albedo reflect model based Park

et al.’s method [15]. As two typical applications of image

stitching, ground panorama and remote sensing image mo-

saicking are used to evaluate the performance of color cor-

rection approaches. We use the default values of parameters

described in Section 4.2 for all the experiments.

Generally, making a visually pleasing consistent result

is the primary goal of color correction for image stitching.

Thus, visual effects serve as the major evaluation criterion

of algorithms. As supplement, quantitative evaluations on

color Discrepancy (CD) and gradient loss (GL) are also con-

ducted, as the metric equations show:






















CD =
∑

Ii∩Ij ̸=∅

w̄ij

△H(Îij , Îji)

Nbin

,

GL =
1

n

n
∑

i=1

△Go(Ii, Îi)

Npix

,

(9)

where Îi depicts the corrected image of source image Ii,

and Îij denotes the overlap region of Îi shared with Îj .

w̄ij is a normalized weight proportional to the area of the

overlap between Ii and Ij (
∑

w̄ij = 1). △H(•) calculates

the difference between histograms of images by bins, while

△Go(•) computes the difference between gradient orienta-

tion maps of images by pixels. Nbin is the number of the

bins of a histogram, and Npix is the amount of pixels of Ii.

3QuadProg++: https://github.com/liuq/QuadProgpp
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Figure 5: Color correction results of LUNCHROOM: edited

images (a), corrected results of [18] (b), [15] (c) and ours

(d). For comparison’s sake, regions with tonal inconsis-

tency and color cast are marked with red boxes and green

boxes respectively.

5.1. Strip Panorama of Ground Scenes

We first demonstrate the performance of our color cor-

rection method on a public panorama dataset LUNCH-

ROOM (selected 15 images). Since the original images have

little tonal difference, we deliberately modify their color

CDF independently in Photoshop, in order to test the algo-

rithms’ robustness under drastic color and illumination vari-

ations. The edited images and corrected results are shown in

Figure 5 in the form of aligned panorama. Here, to compare

color disparity between adjacent images, we stitch images

into a panorama with no boundary fusion applied. Inspect-

ing the results qualitatively, we see that despite the huge

input variability, the color and luminance consistency im-

proved greatly on the corrected images. In Figure 5, we can

find (d) has the best color consistency, which is also attested

in Table 1. Also, on overall visual effect, (d) is slightly su-

perior to (c) and obviously better than (b) that shows kind

of dark tone and residual color cast. Our flexible correction

model and energy term considering dynamic range make ef-

fects here. As for gradient preservation, Table 1 shows [15]

has the best performance. This might be explained by that

its albedo reflect based correction model is more close to

the real imaging principle. Due to the curve slop constraint
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Table 1: Quantitative comparison on color corrected results obtained through different methods. Color discrepancy (CD),

gradient loss (GL) in Eq. (9) and running time (unit: second) are evaluated comprehensively.

Methods
LUNCHROOM CAMPUS ZY-3 UAV

#CD #GL #Time #CD #GL #Time #CD #GL #Time #CD #GL #Time

Input 24.41 0.00 0.00 13.69 0.00 0.00 13.00 0.00 0.00 18.08 0.00 0.00

Shen et al.’s [18] 6.93 1.03 3.53 5.73 0.52 3.02 4.81 0.51 8.78 3.79 0.63 231.07

Park et al.’s [15] 8.67 0.94 102.42 7.37 0.39 90.46 6.56 0.47 3295.1 5.21 1.13 9531.4

Our approach 4.24 1.00 2.89 4.08 0.43 2.15 2.80 0.50 7.76 1.38 0.64 217.80
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Figure 6: Color correction results of CAMPUS: source images (a), corrected results of [18] (b), [15] (c) and ours (d). For

comparison’s sake, regions with noticeably residual tonal difference are marked with red boxes.

preventing intensity merging, our method outperforms lin-

ear model based [18] in gradient preservation slightly.

We further test our method on another public dataset

CAMPUS (18 images) with continuous luminance variation.

The source images and their corrected results are displayed

in Figure 6. It is easy to observe that (d) shows the best

tonal consistency, illustrating the outstanding ability of our

method in minimizing color disparity. Since little color cast

exists in the original images, the corrected result (b) of [18]

shows better consistency than (c) of [15], such as the re-

gions marked with red boxes in Figure 6. Note that although

no approach removes the tonal difference from images com-

pletely, the residual inconsistence after correction will be

low enough to conceal through fusion algorithms.

5.2. Block Mosaic of Remote Sensing Images

Stitching block-layout images usually happens in remote

sensing image mosaicking, where each source image has

more neighbors than in strip panorama. In some occasion,

we need to correct the color disparity of images acquired at

different times (even different seasons) to show consistent

tone. Here, we experiment on 16 multi-temporary images

acquired by Chinese ZY-3 satellite, which present obvious

color disparity as shown in Figure 7 (a). The corresponding

corrected results are depicted as (b), (c) and (d) in Figure 7,

from which we can find that (d) has an obvious superiority

over (b) and (c) in tonal consistency. In contrast, (b) has

some overly dark regions and (c) has residual yellow tone

uncorrected (marked in green boxes) and noticeable tonal

difference between image strips. In [18], the intensity of all

the corrected images will be stretched linearly to the gamut

by fixed coefficients after global optimization, which turns

(b) into the highest contrast but meanwhile darkens some

regions overly. This might also be the reason that [18] has

less gradient loss than our method in dataset ZY-3.

Further on, we analyze the performance of our method

on a larger dataset UAV (130 images) captured by unmanned

aerial vehicle. Similar to LUNCHROOM, the color differ-
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Figure 7: Color correction results of ZY-3: source images (a), corrected results of [18] (b), [15] (c) and ours (d). For

comparison’s sake, regions with tonal inconsistency and color cast are marked with red boxes and green boxes respectively.
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Figure 8: Color correction results of UAV: edited images (a), corrected results of [18] (b), [15] (c) and ours (d). For compari-

son’s sake, regions with color difference and abnormal tone are marked with red boxes and green boxes respectively.

ences among images in UAV are amplified via our random

tone procedure. The correction results are compared in Fig-

ure 8. Because of the global optimization scheme, all the

methods exhibit little performance declining on the large

dataset, except for (b) in Figure 8 showing dramatic lumi-

nance polarization. This is because [18] only considers the

inter-image color disparity but neglect constraint on indi-

vidual image’s dynamic range. Differently, our optimiza-

tion function has a special energy term that penalizes each

image’s dynamic range to narrow down, which makes good

effect in addressing this problems. As (c) shows, [15] has a

good effect in color saturation, despite of its inferior tonal

consistency. Besides, some source images of low-quality

gradient structures in UAV make the numerical result in

gradient loss (GL) kinda abnormal and meaningless.

Conclusively, [18] shows a better ability in improve the

color consistency than [15], while [15] is superior to [18] in

guaranteeing good quality of corrected images, such as gra-

dient preservation, natural contrast and color fidelity. Due

to the quality-aware energy function, our method makes the

best effects in generating a visually pleasing correction re-

sult.

Running Times. Our method and Shen et al.’s

method [18] are implemented in C++, while the code of

Park et al.’s method [15] is provided in Matlab implemen-

tation. All the procedures are tested on a desktop PC with

Intel i7-2600 CPU @ 3.40GHz and 8 GB RAM, whose run-

ning time on the four datasets is depicted in Table 1. In our

method, color correspondences extraction takes the major

computation, and closed-form solution makes our method

surpass [18] whose parameters of linear model are opti-

mized by non-linear function. As [15] was implemented in

Matlab, we turn to analyze its algorithm complexity which

reflects the running efficiency in significant degree. Struc-

ture from motion (SFM) based color correspondence and its

inner iterative scheme of matrix decomposition definitely

make the computation cost of [15] much higher than other

methods.
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6. Conclusions

We have presented an effective method to optimize the

color consistency across multiple images. Our key con-

tribution lies in the novel energy function design based on

the parameterized quadratic spline model, which turns ma-

jor semantically visual requirements into effective paramet-

ric expression. Convex quadratic programming gives the

global optimal solution quickly. Several typical experimen-

tal results verified the validity and generality of the pro-

posed method. Comparing to existing methods, our method

leads in the performance of both effectiveness and effi-

ciency. However, single-channel optimization strategy can

not solve the color cast (white balance) problem essentially.

Multi-channel joint adjustment or response function cali-

bration might be helpful solutions, which will be investi-

gated in the future works.
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