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Abstract

Low-light images are not conducive to human observa-

tion and computer vision algorithms due to their low visibil-

ity. To solve this problem, many image enhancement tech-

niques have been proposed. However, existing techniques

inevitably introduce color and lightness distortion when in-

creasing visibility. To lower the distortion, we propose a

novel enhancement method using the response characteris-

tics of cameras. First, we investigate the relationship be-

tween two images with different exposures to obtain an ac-

curate camera response model. Then we borrow the illumi-

nation estimation techniques to estimate the exposure ratio

map. Finally, we use our camera response model to adjust

each pixel to its desired exposure according to the estimated

exposure ratio map. Experiments show that our method can

obtain enhancement results with less color and lightness

distortion compared to several state-of-the-art methods.

1. Introduction

Computer vision and multimedia algorithms require

high-visibility input images [16]. However, images taken

in low-light condition are often of low visibility. Therefore,

we need to enhance those images before further processing.

In general, image enhancement techniques can make the in-

put images look better and be more suitable for specific al-

gorithms [38, 17]. Existing image enhancement techniques

can be divided into two major categories: global enhance-

ment [35, 17, 28, 6, 30, 1, 29, 9, 32, 3] and local enhance-

ment [36, 12, 16, 38, 34, 37].

Global enhancement performs same processing on all

image pixels regardless of their spatial distribution. Lin-
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ear amplifying is a simple and straightforward global en-

hancement method. However, bright regions might be satu-

rated and result in detail loss. To avoid the problem, some

image enhancement methods adopt non-linear monotonic

functions (e.g. power-law [4], logarithm [26] and gamma

function [13]) to perform enhancements. As another way

to avoid saturation, histogram equalization (HE) [18] can

improve the contrast effectively and became a widely-used

technique. Many extensions of HE are proposed to take

some restrictions into account such as brightness preser-

vation [17, 35, 7] and contrast limitation [28]. However,

global enhancement may results in detail loss in some local

areas because a global processing can not ensure all local

areas be well enhanced.

Taking the spatial distribution of pixels into considera-

tion, local enhancement can obtain better results and be-

come the main-stream of recent techniques. Local his-

togram equalization [31, 2] adopt the sliding window strat-

egy to perform HE locally. Based on the observation that the

inverted low-light images are closed to hazy images, dehaz-

ing techniques are borrowed to solve low-light image en-

hancement in [11, 19]. However, the basic models of above

methods are lacking in physical explanation [16]. To pro-

vide a physical meaningful model for image enhancement,

Retinex theory assumes that the amount of light reaching

observers can be decomposed into two parts: illumination

and scene reflection. Most Retinex-based methods get en-

hanced results by removing the illumination part [36] while

the others [12, 38, 16] keep a portion of the illumination

to preserve naturalness. However, those methods may suf-

fer from over- and under- enhancement due to ignoring the

camera response characteristics.

To preserve the image naturalness and achieve more

accurate enhancement results, in-camera processing needs

to be considered when designing enhancement algorithms.

For most digital cameras, the pixel value is not directly

proportional to the irradiance that fall on the camera [5].
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Figure 1. The Image irradiance and pixel value of two images

captured in the same scene with different exposures.

The nonlinear function relating camera sensor irradiance

and image pixel value is called camera response function

(CRF). In this paper, we provide a new enhancement algo-

rithm taking the CRF into consideration. Specifically, first

we present our enhancement framework which consists of

two key problems: one is to find a suitable camera response

model and the other is to determine the exposure ratio map.

From the observation on histogram characteristics of two

images that only differ in exposure, we then provide an

accurate camera response model allowing us to adjust the

exposure of the input image. Next, we estimate the ex-

posure ratio map with the help of illumination estimation

techniques. Finally, we propose our enhancement algorithm

based on the camera response model and the estimated ex-

posure ratio map. Experimental results show that our model

can reduce the mean RMSE by an order of magnitude com-

pared to that of other existing two-parameter models. Be-

sides, the proposed method can enhance images with less

color and lightness distortion compared to several state-of-

the-art methods.

2. Background

In general, camera manufacturers use some nonlinear in-

camera processes such as white balance, demosaicking to

improve the visual quality of captured images. As shown in

Fig. 1, those nonlinear processes can be modeled as:

P = f(E), (1)

where E is the image irradiance, P is the pixel value and

f is the nonlinear function CRF. To figure out the common

characteristics of f , three assumptions are made [14]. First,

f is the same for all pixels on the sensor. Second, the range

of f(.) can be normalized to [0, 1]. Third, f monotonically

increases. Under these assumptions, define F : [0, 1] →
[0, 1] as the theoretical space of f :

F := {f |f(0) = 0, f(1) = 1, x > y ⇔ f(x) > f(y)}.
(2)

Given F , many methods have been developed to estimate

(or reconstruct) f . Without assuming its functional form,

f can be obtained from a set of images taken at different

exposures for a given scene. However, the functional form

of f is needed to build a camera response model for low-

light image enhancement problem.

The functional form of f can be estimated directly by

assuming an approximation model (e.g. polynomial [23]

and trigonometric [15]) and then find the best model pa-

rameters based on some optimization criterion [14, 10, 24].

To improve the model accuracy, an empirical model called

EMoR is proposed in [14] by performing Principle Com-

ponent Analysis on DoRF database that contains 201 real-

world response curves. However, empirical models lack

the differentiable property of an analytic model. To avoid

this problem, Ng et al. presented generalized gamma curve

model (GCCM) to estimate f [25].

The functional form of f can also be estimated indirectly

by modeling the brightness transform function (BTF). As

shown in Fig. 1, BTF is the mapping function between two

images P0 and P1 captured in the same scene with different

exposures:

P1 = g(P0, k), (3)

where g is the BTF and k is the exposure ratio. Then, the

CRF can be obtained by solving the following comparamet-

ric equation:

g(f(E), k) = f(kE), (4)

Many BTF models have been proposed. Commonly used

Gamma Correction cannot obtain realistic enhancement re-

sults due to the presumption of an unreasonable CRF which

does not pass the origin. Affine Correction is preferable to

Gamma Correction because of the implicit form of f pass-

ing the origin. Preferred Correction outperforms the two

correction methods above since it has a parameter to control

the softness of the transition into toe and shoulder regions

of the response function rather than hard clipping [22].

3. Our Approach

A low-light image may either be globally under-exposed

or locally under-exposed, so we cannot get all pixels well-

exposed using an uniform exposure ratio k. In order to solve

general low-light image enhancement, we extend k in Eq. 3

to a matrix as

P
′ = g(P,K). (5)

where P and P
′ are the input image and the desired out-

put image respectively. Unlike the uniform exposure ratio

in Eq. 3, K is an exposure ratio map indicating the desired

exposure ratio for each pixel. Based on our definition, the

low-light enhancement problem can be transformed into the

estimate of g and K. This section is organized as follows: In

Sect. 3.1, we introduce our enhancement framework com-

bining the camera response model and traditional Retinex

model. In Sect. 3.2, our camera response model is proposed

to solve g. In Sect. 3.3, the estimation of K is presented.

3016



3.1. Framework

Traditional Retinex model assumes that the amount of

light reaching observers can be decomposed into two parts

as follows:

E = R ◦T, (6)

where R and T are the scene reflectance map and the il-

lumination map, respectively. The operator ◦ represents

element-wise multiplication and E is the light reaching

camera, i.e. the image irradiance. Existing Retinex-based

methods simply take E as the input image and R as the de-

sired output. As aforementioned, in most cameras, there ex-

ists a nonlinear radiometric response function f . Therefore,

f should be considered in forming the actual input image P

and the desired recovery image P
′:

P = f(E), P
′ = f(R). (7)

The desired recovery can be written as:

P
′ = f(R)

Eq. 6
=== f(E ◦ (1⊘T))

Eq. 4
=== g(f(E),1⊘T) = g(P,1⊘T)

(8)

where ⊘ represents element-wise division. From Eq. 5 and

Eq. 8, we can find the relation between T and K:

K = 1⊘T. (9)

The result is physically meaningful: to reach the desired

exposure, the dark areas of the image should be assigned

a large exposure ratio while the bright areas should be as-

signed a small exposure ratio.

Based on the Retinex theory, we show that the exposure

ratio map K can be obtained by estimating the illumination

map T. As a result, many techniques from Retinex-based

methods can be migrated to our enhancement framework.

Our framework is easy to extend by borrowing different

Retinex decomposition techniques or camera models.

3.2. Camera Response Model

A camera response model consists of two parts: CRF

model and BTF model. The parameters of CRF model is

determined only by camera while that of BTF model is de-

termined by camera and exposure ratio. In this subsection,

we first propose our BTF model based on the observation of

two different exposure images. Then we derive the corre-

sponding CRF model by solving the comparametric equa-

tion. Finally, we discuss how to determine the model pa-

rameters and present the final form of g.

3.2.1 BTF Estimation

To estimate the BTF g, we select a pair of images P0 and P1

that differ only in exposure. Then we plot their histograms

of each color channel, as shown in Fig. 2. Noticing that the

histograms of the under-exposed image mainly concentrate

in low-brightness area, if we perform linear amplification of

pixel values before traditional gamma correction, then the

resulting image will be very close to the real well-exposed

image. Therefore, we can use a two-parameter function to

describe the BTF model as

P1 = g(P0, k) = βP
γ
0 , (10)

where β and γ are parameters in our BTF model related to

exposure ratio k. The observation also shows that different

color channels have approximately same model parameters.

The underlying reason is that the response curves of differ-

ent color channels are approximately identical for general

cameras.

3.2.2 CRF Estimation

In our BTF model, β and γ are determined by the camera

parameters and exposure ratio k. To find their relationship,

we need to obtain the corresponding CRF model. The CRF

model can be derived by solving the following comparamet-

ric equation (plug g = βfγ to Eq. 4):

f(kE) = βf(E)γ . (11)

The closed-form solution of f is provided in [22] as follows:

f(E) =

{

eb(1−Ea), if γ 6= 1,

Ec, if γ = 1.
(12)

where a and b are model parameters in the case of γ 6= 1:

a = logk γ, b =
lnβ

1− γ
; (13)

And c is model parameter in the case of γ = 1:

c = logk β. (14)

Figure 2. Observation. From left to right: An under-exposure im-

age P0, apply multiplication αP0, apply gamma function (αP0)
γ

and the well-exposure image P1 under the same scene. The his-

tograms of red, green and blue color channels are plotted above

the corresponding image respectively.
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Two CRF models can be derived from two cases of

Eq. 12. When γ = 1, the CRF model is a power function

and the BTF model is a simple linear function. As some

camera manufacturers design f to be a gamma curve, it can

fit these cameras perfectly. When γ 6= 1, the CRF model is

a two-parameter function and the BTF model is a non-linear

function. Since the BTF is non-linear for most cameras, we

mainly consider the case of γ 6= 1.

To evaluate the accuracy of the two CRF models, we

perform least square fit of the camera response models to

the 201 real-world camera response curves in the DoRF

database. The goodness of fit for each curve is measured by

Root Mean Square Error (RMSE). As shown in Table 1, our

model performs the best in single parameter models when

γ = 1 and performs the best among the two-parameter mod-

els when γ 6= 1. Besides, the RMSE of our model (γ 6= 1)

is an order of magnitude smaller than that of other two-

parameter models. Note that although the closed form of

our model is provided in [22], the model has not been used

in the field of image enhancement.

3.2.3 Model Parameter Determination

From Eq. 13, the parameters in our BTF model can be de-

rived as

β = eb(1−ka), γ = ka. (15)

Since the camera response curve is fixed for a specific cam-

era, the parameters of CRF (a and b) can be obtained by

fitting the curve. Based on the model, given an input image

P0 and arbitrary exposure ratio k∗, we can obtain the cor-

responding image P∗ that differ only in exposure from our

BTF model:

g(P0, k∗) = P∗ = β∗P
γ∗

0 = eb(1−ka

∗
)
P

(ka

∗
)

0 . (16)

3.3. Exposure Ratio Map Estimation

Since K is inversely proportional to illumination map

T, we can estimate T first and then solve K. Many illu-

Table 1. Compared with existing CRF models.

Mean RMSE (×10−2) of Various CRF models

Number of model parameters
Model

1 2 3 4

polynomial 7.37 3.29 1.71 1.06

trigonometric 6.83 3.91 2.58 1.89

GGCM f 5.18 2.34 1.16 0.60

GGCM g 8.17 1.46 0.97 0.49

EMOR 4.00 1.73 0.63 0.25

Gamma Correction 41.82 N.A. N.A. N.A.

Zeta Correction N.A. 4.15 N.A. N.A.

Preferred Correction N.A. N.A. 1.00 N.A.

Ours (γ = 1) 3.46 N.A. N.A. N.A.

Ours (γ 6= 1) N.A. 0.90 N.A. N.A.

(a) (b) (c)

(d) (e)

Figure 3. (a) Input image. (b) Estimated illumination map by [16]

(0.21s). (c) Our illumination map (0.15s). (d) Enhanced result

using (b). (e) Enhanced result using (c).

mination estimation methods have been proposed for image

enhancement task. We employ the sped-up solver in [16]

with a small modification on the design of weight matrix to

make it faster. As in [16], we adopt the lightness component

as the initial estimation of illumination:

L(x) = max
c∈{R,G,B}

Pc(x) (17)

for each individual pixel x. Unlike in [16], we design the

weight matrix as

Wd(x) =
1

|
∑

y∈ω(x) ∇dL(y)|+ ǫ
, d ∈ {h, v}, (18)

where | ∗ | is the absolute value operator, ω(x) is the local

window centered at the pixel x and ǫ is a very small constant

to avoid the zero denominator. The first order derivative

filter ∇d contains ∇h (horizontal) and ∇v (vertical). The

refined illumination map T is solved by optimization:

min
T

∑

x

(

(

T(x)−L(x)
)2
+λ

∑

d∈{h,v}

Wd(x)
(

∇dT(x)
)2

|∇dL(x)|+ ǫ

)

,

(19)

where λ is the coefficient to balance the involved two terms.

Since the problem now only involves quadratic terms, the

closed-form solution is available. Therefore, the result can

be directly computed without requiring any iterations. Al-

though the illumination map in [16] is sharper than that by

the modified version, the efficiency is greatly improved and

the two enhanced results show no significant visual differ-

ence, as shown in Fig. 3.

The estimated exposure ratio map K can be obtained us-

ing T via Eq. 9. To prevent the exposure ratio becomes in-

finite when the illumination tends to zero, we set the lower

bound of the illumination:

K(x) =
1

max(T(x), ǫ)
. (20)
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Input MSRCR LIME Dong NPE SRIE Ours

Figure 4. Examples of color distortion visualization. The odd rows show the original image and the results of various enhancement

methods, and the even rows show the extracted color checker and the color distortion visualization of each method.

Finally, based on our camera response model and the

estimated exposure ratio map, we can enhance each pixel

P(x) of the low-light input image as

P
′
c(x) = eb(1−K(x)a)

Pc(x)
(K(x)a). (21)

4. Experiments

In this section, we design several experiments to qual-

itatively analyze the performance of our enhancement al-

gorithm. We compare our algorithm with several state-of-

the-art methods: MSRCR [27], LIME [16], Dong [11] NPE

[38] and SRIEc̃itefu2016srie. In order to maintain the fair-

ness of the comparison, all the codes are in Matlab and

all the experiments are conducted on a PC running Win-

dows 10 OS with 64G RAM and 3.4GHz CPU. The param-

eters of our enhancement algorithm are fixed in all exper-

iments: λ = 1, ǫ = 0.001, and the size of local window

ω(x) is 5. Besides, we assume that no information about

the camera is provided and use a fixed camera parameters

(a = −0.3293, b = 1.1258) that can fit most cameras. The

most time-consuming part of our algorithm is illumination

map optimization. We employ the multi-resolution precon-

ditioned conjugate gradient solver (O(N)) to solve it effi-

ciently.

4.1. Color Distortion Evaluation

Several state-of-the-art methods are evaluated on two

public Color Checker datasets (UEA [20] and NUS [8])

Table 2. Color Distortion (Mean ∆E).

Method UEA NUS

MSRCR 25.93 21.04

Dong 20.53 23.56

NPE 19.68 19.91

LIME 25.20 28.89

SRIE 22.71 19.31

Ours 16.99 17.75

Table 3. Quantitative measurement results of lightness distortion

(LOE).

Method UEA NUS VV LIME NPE MEF

MSRCR 1677 3043 2728 1836 1890 1686

Dong 1337 771 853 1244 1012 1065

NPE 691 413 821 1471 646 1158

LIME 957 1434 1275 1324 1120 1079

SRIE 657 413 551 824 533 754

Ours 501 613 431 499 506 345

to measure the color distortion of enhanced results. The

images in these datasets are captured with a color checker

board in the scene to provide a color reference. Fig. 4 shows

two example images in the dataset and their enhanced result

by different algorithms. To measure the color distortion, we

adopt ∆E as in [39]. The color difference ∆E is defined as

the Euclidean distance between two colors in CIE Lab color

space:

∆E =
√

(L1 − L2)2 + (a1 − a2)2 + (b1 − b2)2 (22)

where L∗, a∗ and b∗ are three components of CIE Lab color

space. Specifically, we first calculate the average RGB val-

ues in each color patch of the enhanced images. Then we

map these pixel value to Lab space and calculate the ∆E

color difference with standard color. The overall color dis-

tortion for an image is estimated as the average ∆E color

difference of 24 colors in color checker board. Finally, we

calculate the color distortion of all images in each datasets

and obtain the mean color distortion. As shown in Table

2, our method achieves the smallest color distortion under

both datasets.

4.2. Lightness Distortion Evaluation

To evaluate the performance of our method, we per-

formed our methods with the several state-of-art methods on

hundreds of low-light images from several public datasets:
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Input MSRCR LIME Dong NPE SRIE Ours

Figure 5. Examples of lightness distortion visualization. The odd rows show the original image and the results of various enhancement

methods, and the even rows show the visualization of each method’s lightness distortion (RD).

Input MSRCR LIME Dong NPE SRIE Ours

Figure 6. Visual comparison among the competitors on different scenes.

VV [33], LIME [16], NPE [38], and MEF [21]. MEF is

a multi-exposure dataset, we select a low-light image from

each multi-exposure set for evaluation.

We use lightness order error (LOE) to objectively mea-

sure the lightness distortion of enhanced results. LOE is

defined as

LOE =
1

m

m
∑

x=1

RD(x) (23)

where RD(x) is the relative order difference of the light-

ness between the original image P and its enhanced version

P ′ for pixel x, which is defined as follows:

RD(x) =

m
∑

y=1

U
(

L(x),L(y)
)

⊕ U
(

L
′(x),L′(y)

)

, (24)

where m is the pixel number, ⊕ stands for the exclusive-or

operator, L(x) and L
′(x) are the maximum values among

three color channels at location x of the input images and

the enhanced images, respectively. The function U(p, q)
returns 1 if p >= q, 0 otherwise.

As suggested in [16, 38], down-sampling is needed to re-

duce the complexity of computing LOE. We down-sample

all images to 100 × 100 when evaluating LOE. As shown

in Table 3, our algorithm outperforms the others in almost
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(a) (b) (c)

Figure 7. An example of a failure case. (a) Raw image. (b)

Enhanced result. (c) Estimated illumination T.
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Figure 8. Time comparison among different methods with varying

image sizes

all datasets. This means that our algorithm can maintain the

naturalness of images well. We also provide a visualization

of lightness distortion on two cases in Fig. 5, from which,

we can find our results have the smallest lightness distor-

tion. The results of MSRCR lose the global lightness order

and suffer from severe lightness distortion. Although the re-

sults of LIME is visually pleasant, they are full of lightness

distortion. The results of Dong, NPE and SRIE can only

retain the lightness order in the well-exposed area. Fig. 6

shows more examples for visual comparison.

4.3. Time Cost

Fig. 8 gives the comparison among different methods in

terms of time cost. Although SRIE and NPE produce small

distortion, they are quite time-consuming. Dong, LIME

and our method are linear time solvers and Dong is about 2

times slower than the others. Our method achieves smaller

distortion than LIME with the similar time cost.

4.4. Limitation And Future Work

Fig. 7 shows an example of a failure case of our tech-

nique that the hair of the man turns to be grey because of

over-enhancement. This is due to the dark area behind his

head blending with his black hair. As shown in Fig. 7 (c),

the hair is mistaken as the dark background in the estimated

illumination map and therefore is enhanced along with the

background. Such mistake is a result of the existing illumi-

nation map estimation techniques. This highlights a direc-

tion for future work. To avoid the over-enhancement due to

the ignorance of the scene content, semantic understanding

is required. With further refinement, we might employ the

deep learning techniques to estimate the illumination map.

Though we assume a fixed camera parameters for all ex-

periments, how using the camera-specific parameters alters

performance has not yet been analyzed. For future work, we

intend to explore if it is necessary and practical to use sin-

gle image CRF estimation techniques to obtain the accurate

CRF.

5. Conclusion

In this paper, we propose an efficient naturalness pre-

served method to enhance low-light images. First, we pro-

pose our enhancement framework combining the camera re-

sponse model and traditional Retinex model. Second, based

on our framework, we solve two problems: 1) we pro-

pose an accurate camera response model that can reduce the

mean RMSE by an order of magnitude compared to that of

other existing two-parameter models; 2) we present a fast

solution to the exposure map estimation. Third, we pro-

pose an image enhancement algorithm using our camera re-

sponse model and estimated exposure map. The experimen-

tal results have revealed the advance of our method com-

pared with several state-of-the-art alternatives. Moreover,

our method is general to different camera response model

as well as different exposure map estimation strategies. To

encourage future works and allow more experimental ver-

ification and comparisons, we make the source code open.

More testing results can be found on our project website1.
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