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Abstract

In this paper, we propose a novel particle filter based

probabilistic forced alignment approach for training spatio-

temporal deep neural networks using weak border level

annotations.

The proposed method jointly learns to localize and recog-

nize isolated instances in continuous streams. This is done

by drawing training volumes from a prior distribution of

likely regions and training a discriminative 3D-CNN from

this data. The classifier is then used to calculate the posterior

distribution by scoring the training examples and using this

as the prior for the next sampling stage.

We apply the proposed approach to the challenging task

of large-scale user-independent continuous gesture recogni-

tion. We evaluate the performance on the popular ChaLearn

2016 Continuous Gesture Recognition (ConGD) dataset. Our

method surpasses state-of-the-art results by obtaining 0.3646
and 0.3744 Mean Jaccard Index Score on the validation and

test sets of ConGD, respectively. Furthermore, we partici-

pated in the ChaLearn 2017 Continuous Gesture Recognition

Challenge and was ranked 3rd. It should be noted that our

method is learner independent, it can be easily combined

with other approaches.

1. Introduction

In recent years, Deep Learning [17] methods have

obtained state-of-the-art performance for various spatio-

temporal computer vision tasks, such as, Gesture Recognition

[30], Action Recognition [5], Video Captioning [29], Lip

Reading [9], and Sign Language Recognition [25]. How-

ever, due to their hierarchical structure and high number of

parameters, deep neural networks are prone to over-fitting

[33]. To be able to generalize, they need vast amounts of

data. Furthermore, classical network architectures and loss

functions require strong Frame Level Annotations [26], or

in other words a label for each time-step. Unfortunately,

annotating spatio-temporal data is a laborious task and most

Figure 1. Posterior estimation using our prior assumptions and class

likelihoods extracted from a 3D-CNN.

spatio-temporal datasets lack these strong annotations. Al-

though some large datasets have frame level annotations

[14], the majority provide a variety of weak annotations. To

overcome these challenges and to train deep spatio-temporal

neural networks using weakly annotated data, researchers

have proposed several approaches.

For isolated recognition tasks such as Isolated Gesture

[10] and Action Recognition [23], most datasets provide

Instance Level Annotations that is a single label for each

video clip which does not contain any temporal localisation.

To train deep networks using instance level annotations, re-

searchers [11, 21, 27, 28] frequently assign the provided

instance labels to all time steps and train neural networks

using Cross Entropy Loss [17]. However, identifying every

part of a sequence with the same label can cause class am-

biguity as different stages of a sequence can have different

spatio-temporal features.

For continuous recognition tasks, datasets with weak an-

notation commonly provide Sequence Level Annotations
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Figure 2. Difference between Strong Frame Level Annotations and

Border Level Annotations.

that have a sequence of labels for each video that has the

temporal ordering information [15]; or Border Level Annota-

tions which are the boundaries between instances in the time

domain [31].

Sequence Level Annotations are frequently used for tasks

where the order of labels provides additional or complemen-

tary information. Such applications include Continuous Sign

Language Recognition [4] and Video Captioning [7]. To be

able to train spatio-temporal deep networks using sequence

level annotations, researchers adopted sequence-to-sequence

learning methods from other fields, namely Connectionist

Temporal Classification [18] from Speech Recognition [19]

and Encoder-Decoder Networks [8] from the field of Neural

Machine Translations [1].

Compared to the Frame Level Annotations, Border Level

Annotations are more weakly supervised but easier to anno-

tate (See Figure 2). However, using these weak frame level

annotations can cause the aforementioned class ambiguity

problem. Furthermore, this ambiguity is exacerbated as the

annotated regions include the silence and the transition be-

tween instances. To localize instances in the time domain

and to remove silence and transition regions from training

samples, researchers have proposed to use forced alignment

that has been widely used in speech recognition [12].

Forced alignment has been applied to various vision appli-

cations. In [24], Koller et al. propose a CNN-HMM hybrid

that learns to localize and recognize hand shapes. They first

train a CNN using weak frame level annotations. Then using

the trained network they reassign, or in other words align,

their frame labels. In a more recent study [25], they extend

their method and apply it to Continuous Sign Language

recognition to train CNN-HMM hybrids from sequence level

annotations.

Inspired by the success of forced alignment approaches,

we propose a novel probabilistic forced alignment method to

address the weakly supervised training of spatio-temporal

deep neural networks. Our method learns to probabilisti-

cally localize and recognize isolated instances in continu-

ous streams using a particle filter based approach. We use

weak border level annotations to build distributions for each

isolated instance that represent our prior assumption of im-

portance over the time domain. We then train a 3D-CNN

weighted by these distributions. We evaluate our prior distri-

butions by extracting likelihoods of training samples using

the trained network and update our prior assumption. We

repeat this iterative process until the continuous recognition

performance of our network has converged. Compared with

a classical forced alignment method, our approach is more

robust against errors in early stages due to its probabilistic

nature.

We apply the proposed method to the continuous gesture

recognition problem and evaluate its performance on the

challenging large-scale user-independent ChaLearn 2016

Continuous Gesture Recognition (ConGD) dataset [31]. Our

method was able to surpass continuous recognition perfor-

mance of the state-of-the-art [3]. We also participated in the

ChaLearn 2017 Continuous Gesture Recognition Challenge,

ranking 3rd place [30].

The rest of the paper is structured as following: In Section

2 we describe each step of the proposed method in detail. In

Section 3 we share our experimental setup and implemen-

tation details. Then we report our results on ConGD and

compare the performance of our approach with the state-of-

the art methods. Finally, we conclude our paper in Section 4

by discussing our findings and the future work.

2. Methodology

In this section we present a novel particle filter based

probabilistic forced alignment technique that jointly learns

to localize and recognize isolated instances in continuous

streams using border level annotations. Given a video that

contains multiple isolated occurrences, our method proba-

bilistically divides the video into segments and classifies

each segment using a 3D Convolutional Neural Network

(3D-CNN).

While training we use border level annotations of con-

tinuous streams and build probability distributions of labels

over frames for each isolated instance. To be able to segment

isolated samples, or in other words to localize the silences

between occurrences in a continuous stream, we introduce a

silence class for which we also build probability distributions

for each segment. We then train a 3D-CNN weighted by

these distributions that learns to distinguish these classes.

When the network is trained we use its output to update the

probability distributions for the next iteration.

This process of updating distributions and retraining a 3D

CNN is repeated until our network’s recognition performance

has converged. This iterative update process gives the pro-

posed method the ability to localize the most representative

regions in a weakly supervised manner. An overview of our

method can be seen in Figure 3.

2.1. Building Initial Distributions

To create the initial approximate probability distributions

we use the border level annotations and divide the training
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Figure 3. An overview of our iterative alignment procedure.

set into isolated instance segments. We calculate the stan-

dard deviation of segment lengths, σl, for each class l. We

then propose an initial normal distribution, p0(Ls), for each

segment s as:

p0(Ls) = Ns(µs, (σl/2)
2) (1)

where µs and Ls are the centre frame and the class label l of

segment s, respectively. p0(Ls) is our prior assumption of

a frame being discriminative for the present class, Ls, in a

given segment s.

We also propose the inverse distribution, p0(Ls), for each

segment as:

p0(Ls) = 1− p0(Ls) (2)

which is the prior assumption of a frame being in the silence

or transition region between instances of other classes. In

other words being discriminative for the silence class. As

an example, given a continuous stream with three isolated

instances, our suggested prior distributions can be seen in

Figure 4.

2.2. Training 3D Convolutional Neural Networks

Using our prior assumptions, pi(Ls) and pi(Ls), we now

train our recognition system. We stochastically draw frames

from each segment s according to these distributions. For

each frame, Ft, we create a frame volume, Vt, by concatenat-

ing neighbouring frames where Ft is in the centre. Therefore,

Vt represents the spatio-temporal changes around Ft. We

then train a 3D Convolutional Neural Network (3D-CNN),

Ci, using these volumes, which learns discriminative spatio-

temporal features to distinguish between the target classes

and the silence class.

We used the 3D CNN architecture proposed by Tran et al.

[28], which has eight 3D Convolution, five 3D Pooling and

Figure 4. Initial Prior Distributions over an example video with

three segments.

three Fully Connected layers. Our network architecture can

be seen in Figure 5. We re-initialize the last fully connected

layer fc8 which has |l|+ 1 output units that corresponds to

each class and the silence class.

During training we feed the stochastically selected vol-

umes, Vt, from all the segments to the network and fine-tune

the network, Ci, using Cross Entropy Loss [17] and the

segment labels, Ls. We run the optimization for I iterations

and take snapshots of the weights every K steps. We then

select the best performing model from these snapshots by

evaluating its continuous gesture recognition performance

on a validation set, which we will be describing in detail in

Section 2.4.

2.3. Particle Filter based Probabilistic Forced
Alignment

We continue our alignment procedure by including new

evidence from recognition. By feeding a frame volume,

Vt, to the network, Ci, we estimate its likelihood of being

discriminative for the class Ls of their respective segment s.

We obtain the likelihood, pi(Vt|Ls), by taking the softmax

of the corresponding output unit as:

pi(Vt|Ls) = Ci(Vt, Ls) =
ef

i(Vt,Ls)

∑

l

ef
i(Vt,l)

(3)

where function f i(V, l) is the value produced by the lthoutput

unit, which corresponds to class l, in the last fully connected

layer, fc8, of the 3D-CNN ,Ci, for the input V .

Using the estimated likelihood distributions, pi(Vt|Ls),
we update our prior assumptions pi+1(Ls) of each segment

s. First, we calculate the posterior distribution pi(Ls|Vt) as:

pi(Ls|Vt) ∝ pi(Vt|Ls)p
i(Ls) (4)

∝ Ci(Vt, Ls)p
i(Ls) (5)

where pi(Vt|Ls) and pi(Ls) are the estimated likelihood and

our prior assumption for a segment s, respectively. A visu-

alization of our posterior estimation can be seen in Figure 1.
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Figure 5. Our 3D Convolutional Neural Network Architecture

Then we update our prior assumption for the next iteration

as:

pi+1(Ls) = pi(Ls|Vt) +Nn(0, σ
2
n) (6)

where Nn is Gaussian noise with σn standard deviation.

Using the updated prior distributions, pi+1(Ls), we retrain a

new 3D-CNN, Ci+1, initializing from the previous weights,

Ci:

Ci+1 = ReTrain(Ci, pi+1(Ls)) (7)

This alignment (Section 2.3) and retraining a 3D-CNN (Sec-

tion 2.2) procedure is repeated until the network’s continuous

recognition performance (Section 2.4) converges.

2.4. Prediction: Segmentation and Classification

We propose a two stage prediction approach for recogniz-

ing isolated instances in continuous streams. Our method

first splits a given video into multiple segments (which do

not necessarily correspond to the ground truth segmentations)

and then classifies each segment using the likelihoods ex-

tracted from a 3D CNN. This re-segmentation allows our

method to handle unlabelled instances.

Given a video of T frames we initially create frame vol-

umes, Vt, for each frame, Ft, by concatenating neighbour-

ing frames. We then extract likelihoods of these volumes

p(V1:T |l) for each class, l, using a 3D CNN, Ci. l can be

either one of the classes or the silence class. Using the ex-

tracted likelihoods we probabilistically split the video into

multiple isolated segments. This is done by localizing silence

regions using the silence class likelihood pi(V1:T |Ls) over

frames. Assuming there are silence or transitions between

instances, we segment the video clip where the silence class

likelihood in a region is higher than any other class.

Once the video is divided into segments, we use the

extracted class likelihoods to predict the most prominent

class in each non-silence segment,Lpred
s , as:

Lpred
s = argmax

l

Ts∑

t

pi(Vt|l) (8)

where Ts is the number of frames in a given segment s and

pi(Vt|l) is the likelihood of frame volumes Vt belonging to

the class l. We then expand the segment level predictions into

border level annotations and evaluate it against the ground

Figure 6. Recognition: Segmentation and Classification (GT =

Ground Truth Labels, Pred = Our Predictions). In this example, ,we

were able to successfully localize and recognize first two segments

(s = 1 and s = 2) while failing to recognize the third segment (s = 3).

truth using the Mean Jaccard Index Score. A visualization of

our recognition procedure can be seen in Figure 6.

3. Evaluation

To evaluate the effectiveness of the particle filter based

probabilistic forced alignment approach we conducted ex-

periments on the popular ChaLearn Continuous Gesture

Dataset (ConGD) [31], featured in the 2nd round of the

ChaLearn 2017 Continuous Gesture Recognition Challenge.

The dataset was formed by re-annotating the ChaLearn 2011

Gesture Dataset [20] to enable evaluation of user-independent

recognition. ConGD contains 47,933 gesture samples be-

longing to 249 gesture classes performed by 21 subjects. A

summary of the dataset can be seen in Table 1. It is currently

the largest continuous user-independent gesture recognition

dataset surpassing other large gesture recognition datasets,

such as ChaLearn 2014 [14] (which has 13,858 samples of

20 gesture classes), both in the number of samples and the

number of classes.

We implemented our method using the Caffe [22] distri-

bution developed by Tran et al. [28] that supports the use of

3D Convolution and Pooling layers. The code to reproduce

our results is publicly available1.

1https://github.com/neccam/PaFiFA
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Figure 7. Recognition results on a validation sample (ConGD Validation Set Sample ID: 001/00012)

Partition Name # of Samples # of Sequences # of Subjects

Train 30,442 14,134 17

Validation 8,889 4,179 2

Test 8,602 4,042 2

All 47,933 22,355 21

Table 1. Summary of ChaLearn 2016 ConGD Dataset

To train our 3D-CNNs we have used Stochastic Gradient

Descent [2] with a learning rate of lr = 10−3, a momentum

of m = 0.99 and a batch size of 45. The networks were

initialized with the pre-trained weights provided by Camgoz

et al. [3] which was the previous state-of-the-art on the

ConGD dataset. We re-initialized the last fully connected

layer of our 3D-CNNs for each alignment iteration using the

Xavier initialization method [16].

We trained our networks for 40,000 steps (roughly 3

epochs) for each alignment iteration. We take snapshots of

3D-CNN weights every 1,000 steps. We then evaluate the

continuous gesture recognition performance as described in

Section 2.4 to determine the best performing model. Due to

large number of models (40 for each alignment iteration), we

used a subset of the ConGD validation set to speed up the

evaluation process. The same validation subset has been used

for all alignment iterations. The best performing model is

then used to perform continuous recognition on the validation

and test sets of ConGD.

To approximate the prior distributions we stochastically

chose twenty frames from each segment, ten for the class

present in the segment and ten for the silence class. For

each frame we create a frame volume by concatenating the

neighbouring 16 RGB frames. After each iteration we keep

half of the samples which have the highest posteriors and

re-sample the remainder using stationary sampling. We used

five frames as σn.

We iterated our method 3 times and evaluated its perfor-

mance on the validation set. As can be seen in Table 2 our

method’s recognition performance generally improves over

iterations. We believe the fluctuations over the iterations is re-

lated to the number of samples we have used to approximate

the importance distributions. Using more samples would

yield a lower variation and more smooth change over the

iterations, while slowing the training and alignment steps of

our method. Even though we selected the best performing

model for each iteration by evaluating them on a validation

subset, the change in the performance was also reflected

on the full validation set, indicating good generalization.

After three iterations, the recognition performance has not

completely converged and further iterations may improve the

performance.

Iteration Validation Subset MJI Validation MJI

0 0.3743 0.3544

1 0.3996 0.3646

2 0.3998 0.3634

3 0.4048 0.3806
Table 2. Performance evaluation of the proposed method over

iterations. (MJI: Mean Jaccard Index)

The recognition performance of a ConGD validation sam-

ple using our best performing model can be seen in Figure

7. Given a sample with 5 isolated instances, our method was

able to correctly recognize all of them. Furthermore, it man-

aged to localize where the gestures are more accurately than

the “ground truth” annotations. In addition, there was low

inter-class ambiguity in gesture segments, indicating that the

introduction of the silence class did not cause class confusion.

When compared with the previous state-of-the-art [13],

our method with a single alignment step was able to sur-

pass performance on both the validation and the test set by

6.3284% and 18.97044% relative Mean Jaccard Index score

respectively (See Table 3). With two additional alignment

steps our method gained 4% more relative Mean Jaccard

Index score over the state-of-the-art on the validation set.

However, we could not report our results on the test set as

the labels are withheld. Furthermore, our method yielded

more balanced performance between validation and test set,

indicating better generalization. We also submitted our recog-

nition results from the first iteration to the 2nd round of the

ChaLearn 2017 Continuous Gesture Recognition Challenge
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and were ranked third. As our method is learner independent,

it could easily be integrated to other approaches from the

challenge.

Method Validation MJI Test MJI

Baseline [31] MFSK 0.0902 0.1464

Wang et al. [32] IDMM + CNN 0.2403 0.2655

Chai et al. [6] CNN + RNN 0.2655 0.2869

Camgoz et al. [3] 3D-CNN 0.3429 0.3147

Ours (Challenge) 3D-CNN + Alignment 0.3646 0.3744

Ours (Best) 3D-CNN + Alignment 0.3806 N/A

Table 3. Comparison with the state-of-the-art methods (MJI: Mean

Jaccard Index)

4. Conclusion

In this paper we proposed a particle filter based proba-

bilistic forced alignment approach to address the weakly

supervised training of deep spatio-temporal neural networks.

Using the proposed method we trained 3D-CNNs to simulta-

neously localize and recognize isolated instances in continu-

ous streams.

We applied our approach to the difficult task of continuous

gesture recognition and evaluated its performance on the

challenging ChaLearn 2016 Continuous Gesture Recognition

dataset. Through our experiments, we have seen the effective-

ness of the proposed probabilistic forced alignment approach

as it has iteratively improved the recognition performance

by 8.1485% relative Mean Jaccard Index Score compared

to training with a naive prior distribution. Our method was

able the surpass the previous state-of-the-art [3], which also

used a 3D-CNN based learning, by obtaining 0.3806 Mean

Jaccard Index Score on the validation set. We also partici-

pated in the ChaLearn 2017 Continuous Gesture Recognition

challenge and were ranked third [30]. However, our method

is independent of the learning algorithm and could easily be

used with other approaches.

As future work we would like to apply our method to other

spatio-temporal tasks such as Continuous Sign Language

Recognition and extend our framework to incorporate mul-

tiple modalities. It would also be interesting to investigate

parallel alignment of these modalities.
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[4] N. C. Camgöz, S. Hadfield, O. Koller, and R. Bowden. Sub-

unets: End-to-end hand shape and continuous sign language

recognition. IEEE International Conference on Computer

Vision (ICCV), 2017.

[5] J. Carreira and A. Zisserman. Quo Vadis, Action Recognition?

A New Model and the Kinetics Dataset. arXiv:1705.07750,

2017.

[6] X. Chai, Z. Liu, F. Yin, Z. Liu, and X. Chen. Two Streams

Recurrent Neural Networks for Large-Scale Continuous Ges-

ture Recognition. In International Conference on Pattern

Recognition (ICPR) Workshops, 2016.

[7] K. Cho, A. Courville, and Y. Bengio. Describing MultiMedia

Content using Attention-based Encoder-Decoder Networks.

IEEE Transactions on Multimedia, 17(11):1875–1886, 2015.

[8] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau,

F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase

representations using rnn encoder–decoder for statistical ma-

chine translation. In Conference on Empirical Methods in

Natural Language Processing (EMNLP), 2014.

[9] J. S. Chung, A. Senior, O. Vinyals, and A. Zisserman. Lip

Reading Sentences in the Wild. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017.

[10] J. Duan, J. Wan, S. Zhou, X. Guo, and S. Li. A Unified Frame-

work for Multi-Modal Isolated Gesture Recognition. In ACM

Transactions on Multimedia Computing, Communications,

and Applications (TOMM),(under review, round 2), 2017.

[11] J. Duan, S. Zhou, J. Wan, X. Guo, and S. Z. Li. Multi-Modality

Fusion based on Consensus-Voting and 3D Convolution for

Isolated Gesture Recognition. arXiv:1611.06689, 2016.

[12] S. Dupont and J. Luettin. Audio-Visual Speech Modeling

for Continuous Speech Recognition. IEEE Transactions on

Multimedia, 2(3):141–151, 2000.

[13] H. J. Escalante, V. Ponce-López, J. Wan, M. A. Riegler,
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