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Abstract

We propose a novel mid-level representation for ac-

tion/activity recognition on RGB videos. We model the evo-

lution of improved dense trajectory features not only for the

entire video sequence, but also on subparts of the video.

Subparts are obtained using a spectral divisive clustering

that yields an unordered binary tree decomposing the entire

cloud of trajectories of a sequence. We then compute video-

darwin on video subparts, exploiting more finegrained tem-

poral information and reducing the sensitivity of the stan-

dard time varying mean strategy of videodarwin. After de-

composition, we model the evolution of features through

both frames of subparts and descending/ascending paths in

tree branches. We refer to these mid-level representations as

node-darwintree and branch-darwintree respectively. For

the final classification, we construct a kernel representa-

tion for both mid-level and holistic videodarwin representa-

tions. Our approach achieves better performance than stan-

dard videodarwin and defines the current state-of-the-art on

UCF-Sports and Highfive action recognition datasets.

1. Introduction

The task of action (or activity) recognition from image

sequences is a challenging pattern recognition problem with

many real-world applications, including human-computer

interaction, surveillance, health-care, and video indexing,

just to mention a few. Despite major recent advances in the

field of computer vision, the action recognition problem still

remains largely unsolved.

The extra temporal dimension added by videos in respect

to images makes it harder for all kinds of predictive mod-

els. The most successful methods are those combining deep

learning-based methods with pre-computed features (e.g.

optical flow [25]) and/or hand-crafted methods [31, 14, 26].

The most relevant hand-crafted approach is the improved

dense trajectories (iDTs) [29] framework, which consists of

the extraction of short trajectories of pixels across contigu-

ous frames followed by the computation of state-of-the-art

Figure 1: After the extraction of improved dense trajectories

(green), we run a divisive clustering algorithm in order to obtain

meaningful groupings of trajectories. Then, we perform videodar-

win both on nodes (modeling the evolution of node frame features)

and on tree branches (modeling the evolution of node global rep-

resentations).

representations (HoG, HOF, and MBH) along the trajecto-

ries. Then, fisher vectors (FVs) serve as a global representa-

tion encoding all the local trajectory features observed from

the video. The main drawback of FVs is however the lack

of temporal information, which is not modeled explicitly.

In order to model temporal information, an alternative to
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a global FV representation is to model the evolution of fea-

tures within consecutive video frames using rank-pooling.

Fernando et al. [8, 7] combine a per-frame FV feature rep-

resentation along with an SVR/RankSVM that learns for

each video the ordering of these features. Then, the pa-

rameters of the ranking machine are used as a new video

representation. One of the key ingredients of this method

is the preprocessing, consisting of per-frame smoothing of

the features along the temporal dimension prior to rank-

ing/regression. In practice a time-varying mean operation

is used: at each time instant, per-frame features are aver-

aged with features at previous instants. This stabilizes the

signal and hence regularizes the ranking procedure. How-

ever, this same operation has the side effect that later frames

see their new information vanished because the representa-

tion has already accumulated so much information. Given

that, the authors of [8, 7] complemented videodarwin with

the reverse operation (from the end to the beginning of the

video) in order to capture the information somehow missed

when performing forward videodarwin. While this makes

the method more robust for relatively short videos, this so-

lution is ill-conditioned for larger ones.

Our hypothesis is that a meaningful spatio-temporal seg-

mentation of the video would be a simple yet effective way

to obtain shorter video parts that would potentially suffer

less from the smoothing problem caused by the time vary-

ing mean. Gaidon et al. [11] already proposed an unsu-

pervised algorithm, based on spectral embedding, to build

an unordered binary tree of dense trajectory clusters. They

compute a bag-of-words representation in each cluster and

use a tree-distance kernel for classification. They demon-

strate the use of clusters yields a better result in terms of

action recognition.

In this work, action patterns take the form of unordered

binary trees of richly represented nodes, namely darwin-

trees. First, we cluster trajectories as in from [11]. Then,

we use videodarwin to model the evolution of the features

not only in the tree nodes, but also along the tree branches

(see Figure 1). Using the latter, we model information of

how the clusters and their parents relate as we keep divid-

ing/grouping them. This is not only a change of paradigm

in videodarwin – initially thought to model the evolution

of features throughout time –, but also a way of describing

variable-sized tree branches that in our experiments demon-

strated to be reliable for classification providing comple-

mentary information w.r.t. the node representations. Fig-

ure 2 illustrates the different stages of the proposed frame-

work for action recognition. We achieve state-of-the-art re-

sults in UCF Sports Actions and Highfive datasets. More-

over, differently from deep-learning methods, our method

does not require high amounts of data in order to general-

ize.

The remainder of the paper is organized as follows:

Section 2 reviews the related work; Section 3 introduces

our approach; Section 4 brings details about benchmarking

datasets, implementation, parametrization, results, and dis-

cussion. Finally, Section 5 concludes the paper.

2. Related work

Major advances in this pattern recognition problem that

is action recognition were made with the apparition of dense

trajectories [27]. The approach consists of tracking densely

sampled points in a video sequence using optical flow. The

pooled trajectories are then described by their relative dis-

placement along with some trajectory-aligned descriptors,

such as HOG (histogram of oriented gradients), HOF (his-

togram of oriented optical flow), and MBH (motion bound-

ary histogram). Since trajectories are local descriptors, a

Bag-of-Words (BoW) approach is followed for final video

classification. Later, in [29], the same authors introduced

warped-flow, which consists of computing the homography

between consecutive frames in order to eliminate the opti-

cal flow caused by the camera movement and switched the

global representation from BoW to fisher vectors (FV) [21].

In [11], Gaidon et al. propose an unsupervised algorithm

ithat decomposes the set of trajectories into a hierarchy of

trajectory clusters. They then compute a kernel based on

the similarity between a pair of trees, that is, on the accu-

mulated similarities between tree edges (parent-child node

pairs). In [21], Peng et al. enrich the holistic FV representa-

tion with so-called stacked fisher vectors. Fisher vectors are

computed over densely sampled cuboids and concatenated

into large FV; after reducing the dimensionality of those,

they compute a second (stacked) fisher vector representa-

tion for the videos. Ni et al. [18] cluster trajectories into

spatio-temporal groups and learn to assign a weight to each

spatio-temporal group in such a way that more discrimina-

tive (weighted) fisher vectors are obtained, attenuating the

effect of irrelevant groups of trajectories for a particular ac-

tion. In [8], fisher vectors are computed in a per-frame

basis. The final representation for classification is not the

fisher vectors in this case, but the parameters of a learned

model, e.g. a linear model, that explains the evolution of

the fisher vector features throughout the video.

There exist other successful approaches than those based

on iDT. Ma et al. [15] explore hierarchical, spatial, and tem-

poral relations among spatio-temporal sub-volumes, trans-

forming the video into a graph composed of discriminative

and frequent tree-like structures. An action classifier cate-

gorizes actions based on the detection responses of the trees.

Miao et al. [17] take advantage of compressed video fea-

tures, such as motion vectors and discrete cosine transfor-

mation coefficients to speed up to 100 times the iDT fea-

ture extraction process with comparable results. Alfaro et

al. [1] use a set of pooled key-sequences to quantify rela-

tive local intra- and inter-class similarities by projecting the
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key-sequences to a bank of dictionaries encoding patterns

from different temporal positions or action classes. Yang et

al. [33] jointly learn a high-level representation by combin-

ing a hierarchical generative model (that represents actions

by distributions over latent spatial temporal patterns) and

discriminative max-margin classifiers in a unified Bayesian

framework. Fernando et al. [6] propose a hierarchical rank

pooling – based on [8] –, but on video segments; the first

layer performs rank pooling on CNN feature maps and sub-

sequent layers on the result of previous rank pooling opera-

tions. [9] integrates the rank pooling process in end-to-end

learning with CNNs.

In the context of CNNs and deep-learning, we find an

increasing number of works performing action recognition.

However, several major problems must be addressed when

performing action recognition with such models; one of

them being the size of the input layer. Researchers often

feed the nets with clips of only few frames (instead of entire

videos) in order to avoid dealing with much bigger mod-

els [13]. Then, the obtained prediction scores over those

sampled clips are averaged in order to obtain a prediction

for the whole video. Having small clips of fixed duration

solves the problem of having variable-sized inputs. How-

ever, clips do not provide information for learning long-

term spatio-temporal relations. For this, others use the out-

puts of CNNs as input to temporal models such as recurrent

neural networks or long-short term memory nets [5, 24]. On

the other hand, it is difficult to make these models exploit

motion information. To ensure this, optical flow is often

pre-computed and fed along with RGB frames in a two-

stream convolutional networks [25]. This demonstrates the

importance of hand-crafted methods that can boost the per-

formance of deep learning methods. In this sense, we can

find CNNs being used as effective feature extractors. Wang

et al. [31] enrich the iDTs with convolutional spatial and

temporal features, while de Souza et al. [4] effectively inte-

grate iDT framework with a deep classifier, obtaining state-

of-the-art results. Other authors directly build a dynamic

image representation from videos [3] to take advantage of

the full power of CNNs for image classification.

Our darwintree proposal reduces the high computation

and memory requirements of deep-learning methods at

the same time that achieves state-of-the-art results on two

benchmark datasets. Our method does not require large

amounts of data, neither clipping segments nor temporal re-

sizing of the video. It naturally handles long-term tempo-

ral dependencies and exploits motion information by using

specifically designed motion features (MBH) for the task of

action recognition.

3. Method

The proposed system for action recognition is shown in

Figure 2. For a particular video, we first extract improved

dense trajectories (see Section 3.1). Then, we run a divi-

sive hierarchical clustering algorithm based on the spectral

embedding using Nyström method on a matrix of tracklet

similarities (see Section 3.3). In a third stage, we use the de-

rived binary tree structure to construct two main mid-level

representations: one modeling the evolution of tracklet fea-

tures on nodes and another modeling the tracklet features

at tree branch level (see Sections 3.4 and 3.5). As base fea-

tures, we use the well known Fisher Vectors (FV). In case of

node-videodarwin, FV are computed per frame, whereas in

the case of branch-videodarwin one FV is used as a global

node descriptor. We use a kernel function able to com-

pute the similarity of two trees based on pairwise similar-

ities of mid-levels (Section 3.6). Finally, we apply binary

SVM classifiers for the actual action recognition. Predic-

tion scores from different kernels are fused in an early fu-

sion approach by using a linear SVM classifier. The method

is unsupervised until the classification part.

Next, we describe in detail each stage of darwintrees.

3.1. Extraction of trajectories and trajectory fea­
tures

We use improved dense trajectories from [29]. The algo-

rithm relies on the computation of dense optical flow fields

from which local point trajectories are constructed by track-

ing a point during L frames. In the improved version, the

authors used an homography to cancel out the camera mo-

tion from the optical flow.

Improved dense trajectories are characterized using both

its relative spatial displacement throughout time and a set

of state-of-the-art descriptors extracted on image patches

along their trajectories. In particular, we use the Motion

Boundary Histogram (MBH) descriptor, i.e. the first deriva-

tive of the optical flow, which demonstrated to be very ef-

fective for action recognition due to its robustness to camera

translation and moving background. As in [29], a MBH his-

togram is extracted for each of the nx×ny×nt cells around

the trajectory and altogether concatenated in a feature vec-

tor representing the trajectory. For the sake of simplicity,

all parameters and details related to the trajectory extraction

are kept as in the original paper.

3.2. Clustering of trajectory paths into binary tree
structures

Following the approach of [11], we cluster the extracted

trajectories on each particular video, each trajectory in-

stance being represented by its spatio-temporal positions

{x,y, t} and velocities {vx,vy}. Note each of these fea-

tures is a feature vector of size L, the length of the tra-

jectory’s path. Then, clustering procedure consists of two

parts, the construction of a similarity matrix W ∈ ❘n×n

among the n trajectories within the video and the spectral

divisive clustering.
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Darwintree construction and classification
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Figure 2: Proposed framework for action recognition. First, node and branch representations are created. The darwintree representation is constructed

from the concatenation of the n and b. Finally, the darwintree kernel is computed and input to a support vector machine (SVM) classifier.

As in [11], we first filter out the more sparse trajectories

along the video given a sparsity criterion. For computing

the sparsity of a trajectory in the i-th frame, we average the

Euclidean distances over the set of k neighboring trajecto-

ries and within the temporal window [i−r, i+r] using their

mean spatio-temporal position (x̄, ȳ, t̄). For our implemen-

tation, we use k = 30 and r = 5 (as in [11]). Trajec-

tory instances deviating more than one standard deviation

with respect to the mean sparsity are removed. This forces

around 10% of the more sparse trajectories to be removed.

Next, we compute a pairwise similarity matrix among

the trajectories of the video for each feature in the set of

F = {x, y, t, vx, vy}. For this purpose, we use a RBF

Gaussian kernel: k(f, f ′) = exp(−γd(f, f ′)), with γ = 1,

d(·, ·) representing the Euclidean distance among two fea-

ture vectors of size L, and f ∈ F . Finally, similarity ma-

trices of different features are aggregated into matrix W by

their element-wise product. W can be seen as the adjacency

matrix of a graph weighting pairwise affinities of trajecto-

ries from which we want to perform optimal recursive bi-

partitioning cuts in order to eventually construct our binary

tree-form structures.

Given a pairwise affinity matrix such as W, we can use

spectral grouping/clustering, that is, to embed the trajecto-

ries into a projection in the eigenvector space from which

we can compute the actual clusters. However, having on

the order of n = 106 trajectories makes the computation

of W hard for any eigensolver. Nyström approximation

method [10] instead, allows to use a small portion of the

trajectories to extrapolate the results and obtain the approx-

imate leading eigenvectors we need. After that, we use the

divisive hierarchical clustering algorithm proposed by [11]

to recursively threshold on the leading eigenvectors’ val-

ues and build the corresponding unordered binary tree. As

in [11], we use two hyper-parameters that define the max-

imum (M = 2, 000) and minimum (m = 200) number of

trajectories per node that help keeping the trees balanced.

3.3. Tree­based mid­level representations

At this point, we have obtained a tree-form represen-

tation for a video with nodes defining groups of trajecto-

ries. Since trajectories are local features, we first build a

mid-level global representation for these nodes, so that we

can later calculate the similarity between a pair of trees.

[11] proposed a bag-of-words (BoW) as a mid-level rep-

resentation for the nodes. Instead, we compute videodar-

win [8] at two levels: node and branch. We also compute

the more obvious but natural extension to BoW that are the

fisher vectors [21] which indeed serve as the base for node-

videodarwin computation.

3.4. Node videodarwin

The key idea behind VideoDarwin is to model how the

features evolve throughout time. It has demonstrated a su-

perior performance than other representations such as fisher

vectors for action recognition tasks [8]. Its main limita-

tion however is the modeling of large sequences, that might

suffer from the temporal smoothing problem. The spatio-

temporal decomposition from Section 3.3 provides rela-

tively shorter video segments that are less likely to suffer

from this problem.

In order to compute the VideoDarwin representation of a

node, we first extract its per-frame FV representation. Each

node has a temporal extent depending on the time interval

spanned by the group of trajectories, [Fbegin, Fend]. Let us

denote then U ∈ ❘2DK×F as a node’s FV representation

over time, where F = Fend−Fbegin+1 is number of frames

spanned by the set of trajectories associated to that partic-
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ular node, D is the dimensionality of the MBH descriptor,

and K the number of Gaussian components used to estimate

the FV’s GMMs.

Next step is to smooth the variations of the features over

time. This proved to give more stable results. For this pur-

pose, the authors of [8] provided different solutions, the one

achieving best results being a time varying mean. Thus, we

define the smoothed U as V ∈ ❘2DK×F , its columns cal-

culated as:

mi =
1

i

i∑

τ=1

U:,τ , (1)

V:,i =
mi

||mi||1
, ∀i ∈ {1 . . . F} . (2)

where the notation “:” indicates “all elements” in the corre-

sponding matrix dimension. Therefore, U:,τ ∈ R
2DK×1 is

simply the τ -th column vector of U.

Given V, there exist several possibilities for computing

VideoDarwin, either using a linear Support Vector Regres-

sor (SVR) or Rank Support Vector Machine (RankSVM).

We stick to linear SVR, since it provides equally good re-

sults at lower computational cost – as stated in [8]. Hence,

let us denote ν(·, ·) a function with the data and the desired

outputs as parameters returning the learnt model parameters

w, i.e., the videodarwin representation. Then:

w = w+⊕w− = ν(V+, (1, . . . , F ))⊕ν(V−, (1, . . . , F )) ,
(3)

where ⊕ is the concatenation operator, w+,w− ∈
❘

2DK are forward and reverse videodarwin representations

obtained respectively from forward and reversed (column-

wise) time varying means V+ and V− from U. The cal-

culation of V− is done by re-defining mi such that it is

calculated backwards: m−
i = 1

(F−i)

∑i
τ=1 U:,(F−τ). The

reversed representation helps to compensate for the fact that

the forward accumulation of m+
i , mi does not take into

account future information, i.e. {U:,τ | τ > i}.

3.5. Branch videodarwin

Even though VideoDarwin was initially developed to

model changes in the temporal dimension, we propose its

use in tree branches. We define a branch as the path from

a particular node up to the root. This way, in case of hav-

ing global representations for each node – instead of per-

frame – we can model evolution of node features at branch

level. That is, what features become relevant when isolat-

ing a group of trajectories. Or what features grow in impor-

tance when we keep merging going up until the root node is

reached.

For our purpose, we compute a global FV representation

u for each node that will serve as a base representation prior

to applying videodarwin. We then define a branch matrix

representation for the i-th node as:

Bi = ui ⊕ u⌊i/21⌋ ⊕ u⌊i/22⌋ ⊕ . . .⊕ u1 , (4)

where ⌊·⌋ refers to the floor (rounding down) operation.

Analogously to Ui from Section 3.4, we perform video-

darwin on Bi. The difference is that, in this case, the

obtained representation explains the changes of u features

when either ascending from the i-th node to the root (for-

ward videodarwin) or descending from the root to the i-th

node (reverse videodarwin).

It is not possible to construct a path solely from the root

node. Therefore, we come up with as many branches as

intermediate nodes and leafs. Once computed the branch

representations, we define a tree structure: T = {r,N ,B},

where r , w1 is the root node representation, N =
{ni | i > 1}, and B = {bi | i > 1}.

3.6. Darwintree classification

In order to perform classification, we transform it to

a more compact representation than unordered binary tree

structures with a variable number of nodes and branches –

one that can be input in any state-of-the-art discriminative

classifier. The authors of [11] have already proven the ac-

cumulation of pair-wise node similarities to be effective for

tree discrimination with their All Tree Edge Pairs (ATEP)

kernel. They reported better results by using edge represen-

tations, i.e. the concatenation of child and parent represen-

tations, than by solely using the child representation. In our

work, we define our own representation by combining node-

branch representations for the computation of a darwin-tree

kernel. Let us define this joint node-branch representation,

named darwintree representation, as the concatenation of

node- and branch-videodarwin, that is: s = n ⊕ b. Then,

we compute the darwintree kernel kDT based on the pair-

wise similarity of darwintree representations:

kDT (Si,Sj) =
1

|Si||Sj |
∑

si∈Si

∑

sj∈Sj

φ(si, sj) , ∀i, j > 1

(5)

where φ(·, ·) can be any valid kernel function, e.g. dot prod-

uct for a linear mapping.

Note s1 is omitted in this case because there is no pos-

sible branch construction from a node (root) to itself. Once

the darwin kernel is calculated, we can perform action

recognition.

4. Experiments

Before presenting the results, first we describe the con-

sidered datasets and evaluation protocol, and method de-

tails.

Datasets We tested our approach on UCF sports actions

dataset [23], Highfive [20], and Olympic Sports [19]. UCF

sports actions contains 150 examples and 10 classes of

actions from different sports, presenting different back-

grounds and camera movement. In our experiments, we
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used the standard 103/47 train/test split. Highfive consists

of 300 examples of human interactions from TV shows,

from which 200 are handshake, high five, hug, kiss, whereas

the 100 remaining ones are negative examples. For valida-

tion, we followed the 2-fold cross validation provided along

with the dataset. We report both accuracy and mean aver-

age precision (mAP). Finally, Olympic Sports contains 783

instances from 16 classes partitioned in a 640/143 train/test

holdout split. The results obtained are expressed in mAP.

Code implementation We constructed the unordered bi-

nary trees of trajectories using public code1 (with default

parameters) provided by the authors of [11]. On the other

hand, we used the videodarwin implementation2 from [8]

as a base for the construction of our darwintrees. For classi-

fication and evaluation metrics, we used Python’s sklearn

machine learning library. In particular, for multi-class

classification we choose sklearn’s one-vs-rest classification

over the one-vs-one LibSVM’s implementation. Moreover,

Eq. 5 is optimized for GPU computation with Python’s py-

cuda library.

Trajectory features, GMMs, fisher vectors, and spectral

clustering We extracted MBH features along the trajec-

tories, applied the “square-root trick” as in [30], and re-

duced their 192-dimensional descriptors by a factor of 0.5

using PCA. We used 256 mixtures on our GMMs and 1

million MBH descriptors for their training. This yielded

fisher vectors of dimensionality 2 · 96 · 256 = 49, 152.

As suggested by [7], prior to the videodarwin computation

we applied posneg mapping first to the fisher vectors; this is

v =
√
vpos ⊕ vneg, where vpos is the v with all zeros ex-

cept for the positive coefficients and vneg all zeros with all

the negatives turned into positive. After posneg mapping,

we also applied l2-normalization. For the spectral cluster-

ing, we stick to the parameters given by [11], except for the

maximum number of tree levels (default value is 62). We

experimentally found that in very deep trees, deeper nodes

tend to be noisy and cause great impact in the performance

of node-videodarwin. We experimentally found a value of

4 levels to be a conservative value. See the results for UCF

Sports Actions in Figure 3.

VideoDarwin, kernel maps, and classification Since

videodarwin representations consist of both forward and re-

verse videodarwin (depending on the direction of the mean

time varying operation) parts, we come up with a final rep-

resentation that doubles the size of the fisher vectors, i.e.,

98,304 dimensions. This gives a descriptor of N × 98, 304

1Tree structure and hierarchical divisive algorithm for spectral cluster-

ing: gist.github.com/daien.
2Videodarwin code: bitbucket.org/bfernando/

videodarwin.

Figure 3: Performance varying the number of maximum tree levels on

UCF Sports actions in terms of accuracy (%). Experiments in the vali-

dation dataset showed videodarwin on noisy deeper tree nodes causes the

our node representation (N) to underperform in comparison to the branch

representation (B).

Method UCF [23] (ACC) Highfive [20] (mAP)

Fold 1 Fold 2 TOTAL

Node-VD 85.11 76.55 70.41 73.48

Branch-VD 80.85 76.25 72.53 74.39

Darwintree (DT) 91.49 76.04 70.37 73.21

VD+DT 91.49 79.24 72.32 75.78

Table 1: Results of the different methods in the two benchmarking

datasets for node-videodarwin, branch-videodarwin, darwintree (DT), and

the combination of DT with holistic videodarwin (VD).

per video of N frames. For classification, we kernel mapped

the VideoDarwin representation using “RootSIFT” [2] and

l2-normalized them. As a last step, different mid-level rep-

resentations were fused at kernel level and the weights as-

signed were cross-validated. A normalization factor is ap-

plied to the kernels before the aggregation, consisting of di-

viding each kernel by the maximum value of the diagonal.

This is because otherwise when comparing a tree to itself

the similarity is not 1. For all our experiments, we fixed the

C parameter of the SVM classifiers to 100.

Action classification (quantitative) results We illustrate

our results in the benchmarking datasets on Table 1, in

which we compare our different approaches among them:

node-videodarwin (N), branch-videodarwin (B), the combi-

nation of both (Darwintree or DT), and the combination of

the latter with the holistic representation (VD+DT). Despite

DT and VD+DT got the same results, we found VD+DT

to be potentially better from training data: +2.81% (79.80

against 76.99) on average. We also compared our approach

(VD+DT) to the holistic videodarwin representation in UCF

Sports Actions and obtained better performance: 91.49% vs

87.23%.

To provide more insight about the classification accu-
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Figure 4: Results for the different action classes of UCF Sports actions

in terms of accuracy (%).

Figure 5: Results for the different action classes in terms of mean aver-

age precision (mAP).

racy, we show the results for the different action classes for

the UCF dataset in Figure 4.

Since UCF and H5 are fairly small datasets, we further

validated our method in Olympic Sports dataset. It consists

of 783 action instances and 16 action classes. Those classes

are: “basketball layup”, “bowling”, “clean and jerk”, “dis-

Method mAP

Videodarwin (H) 88.34

Node-vd (N) 83.17

Branch-vd (B) 87.70

NB 84.38

H+NB 88.84

Table 2: Olympic Sports dataset [19].

cus throw”, “diving platform 10m”, “diving springboard

3m”, “hammer throw”, “high jump”, “javelin throw”, “long

jump”, “pole vault”, “shot put”, “snatch”, “tennis serve”,

“triple jump”, and “vault”. For the validation, we use the

standard 640/143 train/test split. In our experiment, we

compared H, N, B, NB, and H+NB representations in Ta-

ble 2. Despite N, B, and the combination NB obtained

poorer results than H, combining NB with H yields slight

improvement of +0.5% mAP points with respect to H.

Qualitative results These consist on the visualization of

sequence frames with overlayed trajectory clusters, along

with the predicted categories by our proposed method. For

the sake of simplicity, hereinafter, we refer to the holis-

tic videodarwin as “H”, node-videodarwin as “N”, branch-

videodarwin as “B”, the early fusion of “N” and “B” as

“NB”, and the combination “NB” with “H” at kernel-level

as “H+NB”.

In Figure 6, we illustrate some results on UCF Sports

Actions [23]. Several sequences are shown in series of 3

frames evenly spaced time with the extracted trajectories’

clusters on top. Notice the compactness of the clusters in

both space and time and coherence. Moreover, similar ac-

tions and viewpoints have similar cluster decompositions

(see the two “Golf-Swing-Back” action examples in Fig-

ure 6a and Figure 6b). In simpler actions, as Figure 6d and

Figure 6e, the number of trajectories is smaller and, hence,

decompositions are simpler. While in Figure 6d, the one

and only decomposition is throughout the temporal dimen-

sion (first frames being yellow cluster and latter ones the

blue cluster), in Figure 6e is along the spatial dimension

(upper body being yellow and lower body the blue cluster).

Once can see that, except for 6d example, our method

H+NB is able to predict correctly the actual groundtruth

class (GT), while H was wrong in most cases (only 2/5 hits).

Note also that in all except for 6d, B predicted the wrong

class. However, for all of those, NB was able to predict it

right despite N also being wrong, as it was the case for 6b

and 6d. This proves NB learns to model the complementary

information provided by N and B.

NB tends to correct bad results gotten by H, as seen in

6b or 6e. Nonetheless, it is also possible that the H repre-

sentation causes a bad final prediction, as in 6d. In general,

however, H+NB proved to be more effective for the classi-

fication task than only NB.
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(a) Golf-Swing-Back 002. GT=1, H=1, N=1, B=9, NB=1, H+NB=1.

(b) Golf-Swing-Back 005. GT=1, H=2, N=2, B=9, NB=1, H+NB=1.

(c) Kicking-Front 010. GT=2, H=2, N=2, B=5, NB=2, H+NB=2.

(d) Run-Side 001. GT=5, H=9, N=9, B=5, NB=5, H+NB=9.

(e) Skate-Boarding-Front 004. GT=6, H=1, N=6, B=1, NB=6, H+NB=6.

Figure 6: Trajectory clusters on 3 frames evenly spaced in time for 3

different UCF Sports Actions’ examples [23]. See in the captions of (a)-

(e) of subfigures the groundtruth label (GT) and the output of our differ-

ent methods (H, N, B, NB, and H+NB). Classes are “Diving-Side” (1),

“Golf Swing” (2), “Kicking” (3), “Lifting” (4), “Riding Horse” (5), “Run-

ning” (6), “Skateboarding” (7), “Swing-Bench” (8), “Swing-Side” (9), and

“Walking” (10).

Comparison to state-of-the-art methods In Table 3 and

Table 4, we illustrate state-of-the-art results compared to

ours. As shown, our method achieves state-of-the-art re-

sults in both UCF Sports Actions and Highfive benchmark-

ing datasets using the standard metrics and evaluation pro-

tocols, improve the results in +0.7% and +6.4 points respec-

tively.

Discussion Our results demonstrate the effectiveness of

combining node and branch videodarwin representations,

that is, the final darwintree representation. In Highfive, the

holistic representation pushed further the mAP performance

obtained by our method. Our method does not need lots

of training data in order to generalize. Moreover, the di-

visive clustering technique based on spectral embedding is

an unsupervised technique that does not require annotated

training data. Interestingly, the proposed pipeline is general

enough to be applied to any kind of video sequence classi-

Method Accuracy (%)

Ours (VD+DT) 91.5

Karaman et al. [12](2014) 90.8

Ma et al. [15](2015) 89.4

Wang et al. [32](2013) 85.2

Ma et al. [16](2013) 81.7

Raptis et al. [22](2012) 79.3

Table 3: UCF-sports dataset [23].

Method mAP

Ours (VD+DT) 75.8

Wang et al. [28](2015) 69.4

Karaman et al. [12](2014) 65.4

Ma et al. [15](2015) 64.4

Gaidon et al. [11](2014) 62.4

Ma et al. [16](2013) 36.9

Patron-Pérez et al. [20](2012) 42.4

Table 4: Highfive dataset [20].

fication problem. Once a representation per time instant is

build, the method can be directly applied.

5. Conclusion and future work

We proposed a novel representation for action/activity

recognition on RGB videos. We modeled the evolution

of iDT features on groupings of trajectories. The group-

ings were obtained by using a recursive clustering algorithm

that performed a hierarchical decomposition of the video’s

cloud of trajectories. Then, we modeled the evolution of

features throughout both the frames of a subpart and de-

scending/ascending paths in a branch of the tree. For the

final classification, we constructed a kernel representation

combining the two proposed representations. Moreover,

our method shows further improvement when used together

with holistic videodarwin. We achieved better results than

current state-of-the-art on two benchmark datasets (UCF

Sports Actions and Highfive) for action recognition.

The pipeline is applicable to any pattern recognition

problem once a rich representation is obtained at a given

time instant. As future work, we propose to integrate CNN

features as a new source of information and explore the use

of darwintrees for spatio-temporal localization of actions.
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