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Abstract

Distinguishing real from fake expressions is an emergent

research topic. We propose a new method to rank authentic-

ity of multiple videos from facial activity descriptors, which

won the ChaLearn real vs. fake emotion challenge. Two

studies with 22 human observers show that our method out-

performs humans by a large margin. Further, it shows that

our proposed ranking method is superior to direct classifi-

cation. However, when humans are asked to compare two

videos from the same subject and emotion before deciding

which is fake or real there is no significant increase in per-

formance compared to classifying each video individually.

This suggests that our computer vision model is able to ex-

ploit facial attributes that are invisible for humans. The

code is available at https://github.com/fsaxen/

NIT-ICCV17Challenge.

1. Introduction

Human faces convey important information for social in-

teraction, including expressions of emotions [5]. Sponta-

neous facial movements are driven by the subcortical ex-

trapyramidal motor system, whereas voluntary facial ex-

pressions are controlled by a cortical pyramidal motor sys-

tem [18, 1]. This pyramidal system also allows humans to

fake facial expressions. The simulation of emotions and

pain is so powerful that most observers are deceived [4, 1].

However, computer vision systems have been proven to

distinguish deceptive facial expressions from genuine ex-

pressions for some tasks. Hoque et al. [8] enabled a com-

puter vision system to distinguish frustrated from delighted

smiles, a task humans performed much worse. Littlewort

et al. [15] and Bartlett et al. [1] present computer vision

approaches that classify real facial expressions of pain from

faked expressions of pain based on dynamics of action units.

Humans however can not reliably distinguish between real

and faked expressions of pain [7, 15, 1]. Here, we show
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Figure 1. Official challenge results on the test set. NIT-OVGU is

our proposed method and together with HCILab team winner of

the real versus fake expressed emotion challenge.

that human observers could discriminate real expressions of

emotions from faked expressions of emotions slightly bet-

ter than chance. However, our computer vision system (also

based on dynamics of action units) achieved significantly

higher accuracy than humans and won the ChaLearn LAP

Real vs. Fake Emotion challenge with 67% accuracy on the

test set (see figure 1).

1.1. Contributions

We propose a new computer vision approach highly

based on existing methods that can classify fake from real

emotions. We provide a general model that classifies a sin-

gle input video and a more specific model that ranks a pair

or sequence of videos with respect to its estimated authen-

ticity. The source code to train and validate our models

is publicly available online.We conducted a human perfor-

mance study and compared the results with our computer

vision approach.

2. Real vs. Fake Emotion Challenge

This section introduces the ChaLearn Looking At Peo-

ple Real Versus Fake Expressed Emotion Challenge [20],

which took place from April 20 until July 2, 2017. In to-
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Labels

Subset Subjects Emotions Videos Emotion Subject Real/Fake

Training 40 6 480 X X X

Validation 5 6 60 X

Testing 5 6 60 X

Table 1. SASE-FE database split with labels that were provided

for participants during the challenge. Each subject and emotion

provides two videos: One authentic (real) and one fake emotional

display (see section 2.1). There is no subject overlap between sub-

sets.

tal 55 teams registered for the challenge, of which 9 teams

submitted results.

2.1. Dataset

The challenge was run on the newly recorded SASE-FE

database. For each of 50 subjects the challenge database

comprises 12 videos: 6 with authentic emotional reactions

to video clips and 6 with faked emotional displays. The 6

genuine and 6 acted emotion videos correspond to the 6 ba-

sic emotions angry, happy, sad, disgust, contempt, and sur-

prise. The videos have been recorded with a high resolution

GoPro-Hero camera at 100 frames per second, are about

3-4 seconds long, and show the emotional display starting

from and returning to neutral expression. More details on

the SASE-FE database can be found in [17].

The dataset has been split by subject into three subsets as

detailed in Table 1. 80% of the videos form the training set,

for which emotion, subject, and the true-or-fake labels are

given. 10%, which are 60 videos, belong to the validation

set. The test set is the same size. Subject and real-or-fake

labels were not provided with the validation and test set dur-

ing the challenge.

2.2. Task

The challenge task was to classify each video of the test

set into real or fake emotion (binary classification). Per-

formance was evaluated with the accuracy measure, i.e. the

percentage of correctly classified videos. The challenge was

divided in two phases: a validation and a test phase. In the

validation phase 100 evaluations on validation set where

granted (with submission system on CodaLab.org). From

the 23rd June 2017 the test phase started and the validation

labels have been published by the challenge organizers, but

participants were not allowed to use them for training. In

the following test phase, 12 evaluations (with submission

system on CodaLab.org) where granted before the organi-

zation committee verified the results.

3. Recognition Approach

Figure 2 shows an overview of our method. From a pair

of videos we automatically estimate Action Unit intensi-
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Figure 2. Overview of our method. Two videos of the same sub-

ject and emotion are compared by individually calculating the ac-

tion units (see section 3.1) and facial activity descriptors (see sec-

tion 3.2). Both descriptors are then passed to a Rank SVM Ensem-

ble (see section 3.3) which outputs an authenticity score indicating

which video is more authentic (real).

ties (see Section 3.1) and compute facial activity descrip-

tors (see Section 3.2). The descriptors of both videos are

jointly classified with a rank SVM Ensemble (see Section

3.3). The rank SVM Ensemble ranks the input videos with

respect to authenticity, i.e. the descriptors of both videos are

combined and classified to detect the more authentic (real)

of both videos. Source code and trained models are avail-

able online 1.

3.1. Action Unit Intensity Estimation

As the first step in our recognition pipeline we estimate

the intensity of facial action units (AU) as described in [24].

For each frame of the video the method applies face de-

tection, facial landmark localization, face registration, LBP

feature extraction, and finally predicts AU intensities with

Support Vector Regression (SVR) ensembles. We apply a

model that was trained on the DISFA dataset [16] to pre-

dict 7 AUs: Inner Brow Raiser (AU 1), Outer Brow Raiser

(AU 2), Brow Lowerer (AU 4), Cheek Raiser (AU 6), Nose

Wrinkler (AU 9), Lip Corner Puller (AU 12), and Lips part

(AU 25).

The face detection and landmark localization that we em-

ploy differ from [24]. The faces are detected through a mul-

tiscale CNN resnet model that comes with dlib and is pub-

licly available online [12]. For landmark localization we

use the method by Kazemi and Sullivan [10] (an ensemble

of regression trees) as implemented in dlib [11], but with an

own model that we trained on multiple datasets (Multi-PIE

[6], afw [26], helen [14], ibug, 300-W [19], 300-VW [3],

and lfpw [2]).

As in [24], we only use the inner 49 landmarks (exclud-

ing chin-line and additional mouth points) for the following

steps. Landmarks and texture are registered with an aver-

age face through an affine transform by minimizing point

distances. Further, we extract uniform local binary pattern

(LBP) histogram features in a regular 10 × 10 grid from

the aligned texture. Finally, the LBP features and the regis-

tered landmarks are standardized and fed into the regression

1https://github.com/fsaxen/NIT-ICCV17Challenge
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models to predict AU intensities. We use an ensemble of 10

linear SVRs for each AU (see [24] for details).

Initially we tried an alternative approach to [24] to esti-

mate the AU intensities using a CNN Resnet-29 architec-

ture, which was very successful in other application do-

mains. The performance however was significantly worse

especially for unremarkable action units. Be believe that

small facial details in subregions of the face are hardly tar-

geted by state-of-the-art resnet architectures, which were in-

troduced for course grained detection tasks.

3.2. Facial Activity Descriptor

The method described in the section 3.1 yields 7 AU

intensity time series per video. We condense these time-

series, which differ in length, in descriptors as proposed

in [21]. Each time series is first smoothed with a Butter-

worth filter (first order, cutoff 1 Hz). Second, we calculate

the first and second derivative of the smoothed signal. In

contrast to [21], we also smooth the two derivative time se-

ries to decrease the influence of high variations in the AU

intensity estimation. Third, we extract 17 statistics from

each of the 3 smoothed time series per AU, among other:

mean, max, standard deviation, time of maximum value,

and duration in which the time series values are above their

mean. Compared to [24], which proposed 16 statistics, we

added the difference between the time of maximum AU in-

tensity and the time in which the mean AU intensity value

was crossed the first time. This was done to provide more

time related informations to the classifier because we be-

lieve that timing is crucial to distinguish between fake and

real emotions. Further, we squared some selected statistic

values and added them as additional features to cope with

nonlinear effects. This allows to model some non-linear ef-

fects without loosing the benefits of the linear SVM and

without increasing feature dimensionality too much. Since

we chose to learn a common model for all emotions, we de-

cided to include the emotion category in feature space by

adding a 6-dimensional one-hot coding of the emotion. In

total we got a 440-dimensional feature space. In the fol-

lowing chapters we refer to the “std. descriptors” from [21]

and the described changes with “add. descriptors” or simply

“+”.

3.3. Classification

We follow the idea of comparative learning [22, 23]: it is

easier to decide based on comparison with a similar refer-

ence than to decide individually. In the context of this chal-

lenge we believe that it is easier to select the real and the

fake emotion by comparing a set of two videos rather than

classifying each video individually. For this purpose we in-

troduce a virtual authenticity scale in which a real emotion

has a greater value than a fake emotion. We compare videos

of the same emotion and subject, since they are very simi-
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Figure 3. 10 fold cross validation results on the training set for dif-

ferent classifier setups and descriptors. See section 4.1 for details.

lar and only differ regarding the aspect of interest (whether

they are real or fake).

We train a variant of the SVM which predicts pairwise

rankings and is called Rank SVM [9]. We use a common

model for all emotions, since this performed better than us-

ing individual models for each emotion, probably due to the

difference in training sample counts per model (480 for gen-

eral model vs. 80 for an emotion-specific model). Further,

a linear SVM performed better than SVM with RBF kernel,

probably due to overfitting to the limited amount of training

data. Instead of a single Rank SVM, we train an ensem-

ble of n = 75 Rank SVMs, each with a randomly selected

subset of the training sample pairs (m = 50% of samples).

We investigated the number of ensembles n and the ratio

of samples per model m but gained very similar results for

n > 50 and m > 0.3. Ensemble model predictions are

aggregated by counting the votes for a video to be more au-

thentic. The decision of multiple pairs is fused by averaging

the vote counts. This way, a ranking can be established for

more than two videos (e.g. if subject or emotion label are

erroneous). The ranking is transformed into real/fake labels

by thresholding the authenticity scores with their median

value. If there is only one sample, ranking cannot be ap-

plied. For this case, we also train a fallback standard SVM

to predict real/fake labels from the feature vector directly,

which is less accurate than the ranking model.

Since subject labels are not available for validation and

test set, we apply face recognition to automatically partition

the videos by subject and find the pairs of videos for rank-

ing. The face recognition model comes with dlib [13] and

performs deep metric learning with a CNN resnet architec-

ture. On the test and validation set it runs without error in

subject assignment.

4. Experiments

We conduct several experiments to gain insights in fake

vs. real emotion classification. Section 4.1 discusses the

influence of several approaches in classification and feature
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extraction. Section 4.2 compares our method with human

performance on the validation set.

4.1. Our method

Figure 3 shows a sequence of improvements for several

key changes in our model. We report the results obtained

through 10-fold leave subjects out cross validation, i.e. sam-

ples from the same subject do not appear in a training and

test set simultaneously. Cross-validation is preferred over

the validation set due to its better estimation of the gen-

eralization performance because it uses significantly more

samples for prediction (see Table 1). The cross-validation

provided much more stable results than the validation set

estimate.

First, we trained one SVM per emotion with the std.

descriptors from [21] and obtained 57% accuracy. Train-

ing a common model for all emotions (“SVM” in figure 3)

increased the accuracy to 61%, probably due to the very

limited number of training samples per emotion. We ex-

pect the individual model to outperform the common model

for significantly larger training sets. We also trained a

nonlinear RBF SVM (including parameter selection) and

gained worse performance compared to linear SVM. The in-

creased model complexity suffered from the limited amount

of training data and resulted in an overfitted model.

Second, we trained a Rank SVM [9] to compare pairs of

videos and gained a significant boost in classification per-

formance (67% accuracy). This improvement has its down-

side. Using the ordinary SVM enables to classify a single

video. The Rank SVM (1) needs two videos of the same

subject and emotion and (2) only provides which is more

authentic than the other. We compensate for (1) by provid-

ing a fallback to the original SVM if no video pair is avail-

able. (2) To obtain the real or fake labels from authenticity

we assume that both categories occur equally often in the

test data, which holds for the challenge data. The perfor-

mance benefit of ranking shows the importance of subject

adaptation.

Third, we improved the classification performance by

training an ensemble of Rank SVMs (70% accuracy). Each

model is trained with a random subset of the training set.

Finally, we included additional descriptors (see sec-

tion 3.2) and increased the cross validation performance to

73% accuracy. This improvement is mainly caused by the

additional time features and the one-hot coding of the emo-

tion, which allows the model to learn emotion specific rep-

resentations.

4.2. Comparison With Human Performance

To compare our computer vision system with human

observers regarding their ability to discriminate real ver-

sus faked emotional expressions, we conducted two exper-

iments with each of 22 participants. We compare the hu-
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Figure 4. Human vs. computer vision approach on the validation

set for different emotions. The dotted black line shows the average

across all emotions. The computer vision models are trained on the

training set. See section 4.2 for details.

man performance with our SVM approach (common model

for all emotions, see section 4.1) and with our proposed

Rank SVM Ensemble + add. descriptors, both trained on

the full training set. To analyze statistical significance we

conducted Student’s t-tests. We report the test decision and

statistics for the null hypothesis that the detection accura-

cies of the human observers comes from a normal distri-

bution with mean accuracy µ and unknown variance. The

alternative hypothesis is that the mean is not µ. The result

is significant if the test rejects the null hypothesis at the 1%
significance level, and not significant otherwise.

In experiment 1, “Human (Exp. 1)”, we showed each

participant one validation set video at a time (all 60 clips

in the already existing randomized order). The observers

judged whether the expression shown in the video clip was

real or faked before continuing with the next clip. The ob-

servers distinguished real emotions from faked emotions at

rates slightly greater than guessing (accuracy = 54.5%;

SD = 4.97; chance accuracy µ = 50%; t[21] = 4.22,

p < 0.01). We compare the human performance to our

SVM approach because both classify each video individu-

ally. The SVM performs significantly better than humans

(accuracy µ = 61.3%; t[21] = 6.79, p < 0.01). Fig-

ure 4 shows the average performance of the observers and

the computer vision system for the validation set (for each

emotion and averaged across all emotions).

Experiment 2, “Human Rank (Exp. 2)”, examined

whether the comparison between a pair of video clips im-

proves the human performance. This ranking procedure is

similar to our Rank SVM approach. We showed each partic-

ipant two validation set videos at a time, both from the same

subject and emotion (thus, one real and one fake emotion).

The observers judged which of the two video clips appeared

more authentic before continuing with the next pair of clips.
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Figure 5. Average classification performance of humans and com-

puter vision models for the different subjects in the validation set.

See section 4.2 for details.

In this second experiment the observers distinguished real

emotions from faked emotions at rates slightly greater than

guessing (accuracy = 55.8%; SD = 8.13; chance accuracy

µ = 50%; t[21] = 3.37, p < 0.01). Our proposed Rank

SVM Ensemble however performs significantly better than

humans (accuracy µ = 73.3%; t[21] = 10.1, p < 0.01),

also see figure 4.

Our Rank SVM Ensemble outperforms the SVM ap-

proach significantly (t[9] = 40.9, p < 0.01). This seems to

prove the hypothesis, that it is easier to compare two video

clips than to classify each clip individually. This hypothesis

is not supported by the experiment 2 (Human Rank Exp. 2),

because there is no significant difference between the per-

formance of experiment 1 and experiment 2 (t[21] = 0.72,

not significant). This means that our computer vision ap-

proach is able to exploit fine-grained details that are inac-

cessible by humans. This result is consistent with prior re-

search about detection of pain expressions [15, 1] and clas-

sification of frustrated and delighted smiles [8].

Figure 4 shows a superior classification of happiness,

sadness, and surprise for the Rank SVM Ensemble. This

might suggest that individual models for disgust and con-

tempt might further improve the classification performance.

We do not observe such high variances between emotions

during cross-validation on the training set. Thus, we believe

that this is a random effect caused by the low sample count

of the validation set (only 5 pairs of videos per emotion).

Figure 5 shows the classification performance of humans

and our computer vision models with respect to each indi-

vidual subject in the validation set. It shows that the per-

formance of the Rank SVM Ensemble varies significantly

across subjects. Although it is reasonable that some sub-

jects show facial expressions that are easier to classify, each

subject only provides 6 pairs of videos, which causes big

jumps in accuracy (about 17% per video pair) if one pair is

classified differently. Thus, the variance might be a random

effect caused by the small validation set.

4.3. Challenge Results on Test Set

Figure 1 shows the results of our proposed Rank SVM

Ensemble method (NIT-OVGU) on the test set along with

the official results of other participants of the challenge

(also see [20]). The test set is like the validation set very

small. As a consequence we experienced high variance in

the performance of our models that previously performed

very similar on the cross-validated training set. We believe

that a bigger test set is necessary to properly distinguish be-

tween the top performing methods.

5. Conclusion

We propose a state-of-the-art computer vision approach

that classifies videos of real emotions from fake emotions.

Although our methods are old fashioned in terms of fea-

ture extraction, our approach was able to win the ChaLearn

real vs. fake expressed emotion challenge. Nevertheless, we

believe that there is plenty of room for improvements espe-

cially in automatic estimation of action unit intensities, e.g.

based on recent research with deep transfer learning [25].

We initially assumed that for humans it is easier to com-

pare two videos from the same subject and emotion and de-

cide which is more authentic rather than classifying each

video individually. Our findings do not support this as-

sumption. However, the accuracy of our computer vision

approach improved significantly by estimating the authen-

ticity of two videos from the same subject and emotion

compared to classifying each video individually. This is

particularly interesting because it shows that real and fake

expression is subject dependent but the differences between

both expressions have subject independent attributes that

can be learned. Humans however are not capable of ex-

ploiting these attributes.

Automatically classifying real from fake emotions re-

mains a challenging research topic. We believe that more

training and evaluation data will be necessary since we ob-

served high variance of very similar models for the small

validation and test sets. This also indicates that this classi-

fication task is very challenging. More training data would

also allow to train individual models for each emotion.
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