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Abstract

Gesture recognition aims at understanding the ongoing

human gestures. In this paper, we present a deep archi-

tecture to learn spatiotemporal features for gesture recog-

nition. The deep architecture first learns 2D spatiotempo-

ral feature maps using 3D convolutional neural networks

(3DCNN) and bidirectional convolutional long-short-term-

memory networks (ConvLSTM). The learnt 2D feature maps

can encode the global temporal information and local spa-

tial information simultaneously. Then, 2DCNN is utilized

further to learn the higher-level spatiotemporal features

from the 2D feature maps for the final gesture recogni-

tion. The spatiotemporal correlation information is kept

through the whole process of feature learning. This makes

the deep architecture an effective spatiotemporal feature

learner. Experiments on the ChaLearn LAP large-scale iso-

lated gesture dataset (IsoGD) and the Sheffield Kinect Ges-

ture (SKIG) dataset demonstrate the superiority of the pro-

posed deep architecture.

1. Introduction

Gestures, as a nonverbal body language, play a very

important role in humans daily life. Gesture recognition

aims at understanding the ongoing human gestures and is

of great significance for human-robot/computer interaction,

sign language recognition and virtual [23].

Effective and universal gesture recognition from videos

is extremely difficult; partly due to the large gesture vocab-

ularies with cultural differences, various illumination con-

ditions, out-of-vocabulary motions, inconsistent and non-

standard behaviors among different performers, etc [12].

Moreover, gestures have various time durations and involve

different body parts. A small handful of gestures can be

Figure 1. Overview of the proposed deep architecture. 3DCNN

and bidirectional ConvLSTM are utilized to learn the short-

term and long-term spatiotemporal features successively, and then

2DCNN is used to learn higher-level spatiotemporal features based

on the learnt 2D long-term spatiotemporal feature maps for the fi-

nal gesture recognition.

represented by a single posture of hands and arms, but most

of the gestures are composed of a sequence of hand and arm

postures. Therefore, learning effective spatiotemporal fea-

tures is crucially important for robust gesture recognition.

According to [32], there are four typical properties for ef-

fective spatiotemporal features of gestures: (i) generic, (ii)

compact, (iii) efficient to compute, and (iv) simple to imple-

ment.

Inspired by the deep learning breakthroughs in image

recognition [17, 29, 31], lots of neural network based

frameworks are proposed to learn spatiotemporal features

3120



Figure 2. Pipeline of the proposed framework. Multimodal data

is used to train the proposed deep architecture respectively, and

RGB/Depth/Flow based spatiotemporal features are extracted and

combined into large multimodal spatiotemporal feature vectors

further. Linear SVM classifier is utilized for the final gesture

recognition.

for human action/gesture recognition. Two-Stream Con-

volutional Networks [28] learn spatial and temporal fea-

tures separately. Long-term Recurrent Convolutional Net-

works (LRCN) [6] learn spatial and temporal features us-

ing convolutional neural networks (CNN) and long-short-

term-memory (LSTM) networks successively. Tran et

al. [32] constructed a deep 3D ConvNet to learn spatiotem-

poral features directly and achieved the best performance

on different types of video analysis tasks. Molchanov et

al. [24] proposed to first learn spatiotemporal features on

each clip using 3DCNN, and then to fuse the spatiotem-

poral features over the whole video using recurrent neu-

ral networks (RNN). Obviously, 3DCNN is superior to

learn spatiotemporal features for gesture recognition. How-

ever, RNN/LSTM based networks are more suitable to en-

code long-term temporal information, especially from the

various-length videos. Although Molchanov et al. [24] pro-

posed to combine 3DCNN and RNN, fully-connected spa-

tiotemporal features are transferred into RNN, this make the

spatial correlation information lost in the RNN stage.

In this paper, we propose to first learn short-term spa-

tiotemporal features using a shallow 3DCNN, and then

learn long-term spatiotemporal features further using bidi-

rectional convolutional LSTM (ConvLSTM), lastly recog-

nize gestures using 2DCNN based on the learnt 2D spa-

tiotemporal feature maps. An overview of the proposed

deep architecture is illustrated in Figure 1, and the pipeline

of the proposed framework is in Figure 2.

In brief, our contributions in this paper include:

• 2D spatiotemporal feature maps are learnt using

3DCNN and bidirectional convolutional LSTM. The

2D feature maps can encode the global temporal infor-

mation and local spatial information. Spatiotemporal

correlation information is kept through the whole fea-

ture map learning process.

• The proposed deep architecture can transform video

files into 2D spatiotemporal feature maps. This trans-

formation makes the deep architecture more extensi-

ble to utilize the state-of-the-art 2DCNN to learn the

higher-level spatiotemporal features for gesture recog-

nition.

• The proposed spatiotemporal features with a linear

SVM classification model outperform or achieve per-

formance in par with the state-of-the-art methods on

two different benchmarks.

• To the best of our knowledge, this is the first time to

learn 2D spatiotemporal feature maps using 3DCNN

and bidirectional ConvLSTM, and then to learn higher-

level spatiotemporal features using 2DCNN for the fi-

nal gesture recognition.

2. Related Work

Learning spatiotemporal features is crucial for effective

human action/gesture recognition. Various deep neural net-

works have been proposed recently [15]. However, gesture

recognition has significant differences from action recog-

nition. One obvious difference is that backgrounds may

be an effective clue for action recognition, but in con-

trast can be a challenging factor for gesture recognition.

For example, scene backgrounds can help recognize hu-

man actions, especially the sports in UCF101 [30], but

they may bring negative impact on gesture recognition per-

formance. In fact, gestures focus more on the movement

of hands and arms. Thus, two-stream ConvNets [28] and

their derivations [36, 13] obtain the state-of-the-art perfor-

mance on HMDB51 [18] and UCF101 datasets, but they

fail to achieve a similar performance in the case of ges-

ture recognition. Another obvious approach is to learn spa-

tial and temporal features successively, such as LRCN [6].

However, Pigou et al. [26] demonstrated that LRCN-style

networks are not optimal, while bidirectional recurrence

and temporal convolutions can improve gesture recognition

performance significantly. The huge success of 2DCNN

on image recognition has encouraged researchers to trans-

form video files into particular 2D image files, so that the

state-of-the-art 2DCNN networks can be applied on gesture

recognition [39]. But, handcrafted transformation methods

have inherent deficiency on adaptive learning. In this paper,

a deep architecture will be described, which can learn adap-

tively to transform gesture video files into 2D spatiotempo-

ral feature maps.

Tran et al. [32] constructed a deep 3D ConvNet to learn

spatiotemporal features directly and achieved the best per-

formance on different types of video analysis tasks. In-

spired by [32], 3DCNN-based neural networks obtained the

remarkable performances on gesture recognition [11]. In

the past 2016 ChaLearn LAP Large-scale Isolated/ Continu-

ous Gesture Recognition Challenges [35], 3DCNN demon-

3121



strated excellent performance [3, 41, 19, 10]. However,

3DCNN use the stacked pooling layers to reduce the spa-

tial and temporal size of feature maps, which requires more

layers or larger kernel and stride sizes when the networks

have long inputs. This weakness drives researchers to take

full use of the advantages of 3DCNN and RNN/LSTM, and

combine them to learn local and global spatiotemporal fea-

tures successively [24, 42, 2].

Generally, the fully-connected features of 3DCNN or

2DCNN are transferred into RNN/LSTM networks [6, 24,

2]. The spatial correlation information is lost in the input-

to-state and state-to-state transitions of RNN/LSTM. Con-

vLSTM [27] is originally proposed for precipitation now-

casting. The spatial correlation information is encoded ex-

plicitly in the input-to-state and state-to-state transitions of

ConvLSTM. We, therefore, propose to first learn short-term

spatiotemporal features using a shallow 3DCNN, and then

learn long-term spatiotemporal features using bidirectional

ConvLSTM. The bidirectional ConvLSTM layers do not

shrink the spatial size, but learn the global temporal correla-

tion information completely. The combination of the shal-

low 3DCNN and the bidirectional ConvLSTM can trans-

form video files into 2D spatiotemporal feature maps, which

encode the global temporal information and local spatial

information simultaneously. This transformation makes

it possible to utilize 2DCNN further for the final gesture

recognition.

3. Method

As illustrated in Figures 1 and 2, the proposed deep ar-

chitecture is mainly composed of two components: 2D spa-

tiotemporal feature map learning and classification based

on the 2D feature maps. The former learns 2D spatiotem-

poral feature maps from the normalized inputs whose length

is down-sampled to 32 frames per video. The latter learns

higher-level spatiotemporal features further using 2DCNN,

and then uses a linear Support Vector Machine (SVM) clas-

sifier for the final gesture recognition.

3.1. 2D Spatiotemporal Feature Map Learning

Three facts are taken into consideration when construct-

ing the proposed deep architecture: a) 3DCNN is a repre-

sentative and outstanding deep architecture for spatiotem-

poral feature learning; b) RNN/LSTM networks are more

suitable for long-term temporal information learning; c)

Spatiotemporal correlation information plays an important

role for gesture recognition. Therefore, we propose to use

3DCNN and ConvLSTM for spatiotemporal feature learn-

ing. 3DCNN is designed to learn local or short-term spa-

tiotemporal features, so it does not need to be deep. Bidirec-

tional ConvLSTM is designed to learn global or long-term

spatiotemporal features. The spatiotemporal correlation in-

formation is encoded during the recurrent process.

Figure 3. The 3DCNN component.

A. 3DCNN Component

The 3DCNN component of the proposed deep architec-

ture is similar in design to the C3D model [32]. Accord-

ing to the aforementioned analysis, the 3DCNN does not

need to be deep; only four Conv3D layers are therefore con-

structed, as displayed in Figure 3. The kernel size of each

Conv3D layer is 3 × 3 × 3 with stride 1 × 1 × 1. The

3DCNN component is designed to learn local spatiotempo-

ral features, thus only two pooling layers are used. Based

on the setting of the two pooling layers as illustrated in

Figure 3, the spatial size and the temporal length are only

shrunk by a ratio of 4 and a ratio of 2 respectively. This

makes the 3DCNN only learn the short-term spatiotempo-

ral features. Batch normalization [16] can allow using much

higher learning rates and being less careful about initializa-

tion, so batch normalization is utilized to optimize our net-

works.

The proposed deep architecture does not need all input

sequences have the same length. But, we still preprocess

the input sequences to make them of the same length for

simplicity during training. Uniform sampling with tempo-

ral jitter [42] is utilized for the input preprocessing, which

can store the temporal information and augment the dataset.

Each sequence is down-sampled to the fixed 32 frames. If

one input sequence is less than 32 frames, the last frame is

used with the same padding.

B. Convolutional LSTM Component

Generally, the fully-connected LSTM, which takes vec-

torized features as input, is used to learn temporal features.

The limitation of this vectorization is that it results in the

loss of spatial correlation information during the recurrence.

Nevertheless, position transformation of hands and arms in
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the spatial domain plays an important role for gesture recog-

nition. Therefore, the ConvLSTM [27] is used in our pro-

posed neural network to learn the long-term spatiotemporal

features. The convolution and recurrence operations in the

input-to-state and state-to-state transitions can take full use

of the spatiotemporal correlation information.

Formally, the inputs X1, ..., Xt , the cell states C1, ..., Ct

, the hidden states H1, ..., Ht and the gates it, ft, ot of Con-

vLSTM are all 3D tensors. Let ”*” denote the convolution

operator, and let ”o” denote the Hadamard product. The

ConvLSTM can be formulated as:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 + bi) (1)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 + bf ) (2)

ot = σ(Wxo ∗Xt +Who ∗Ht−1 + bo) (3)

Ct = ft◦Ct−1+it◦tanh(Wxc∗Xt+Whc∗Ht−1+bc) (4)

Ht = ot ◦ tanh(Ct) (5)

where σ is the sigmoid function, Wx∼ and Wh∼ are 2-d

convolution kernels.

The convolutions in the ConvLSTM have kernel size 3×
3 with stride 1 × 1 . ”Same-Padding” is used to ensure

that the spatiotemporal feature maps in each ConvLSTM

layer have the same spatial size. A two-layer bidirectional

ConvLSTM is constructed as illustrated in Figure 1.

Formally, given the input I = {It ∈ R
w×h×3|t =

1, 2, ..., TI} where w and h are the spatial size of the in-

putted video, and TI is the frame count of normalized input,

the 2D spatiotemporal feature maps (STFM) can be denoted

as

STFM = BICLSTM(3DCNN(I)) (6)

where

STFM = {STFM t ∈ R
w

m
×

h

m
×c|t = 1, 2, ..., TN} (7)

TN is the recurrent step count of ConvLSTM ( TN = TI/2
in this implementation). m is the shrink coefficient on the

spatial domain ( m = 4 in this implementation).

Actually, each STFMt has encoded the global temporal

information and local spatial information of the input video

I . Each STFMt keeps the same spatial size as the out-

puts of the 3DCNN component and just shrinks the tempo-

ral length to 1. This means that the 3DCNN and ConvLSTM

components transform the input video files into 2D feature

maps. This is very important, because the deep architecture

can transform various-length video files into 2D spatiotem-

poral feature maps with large spatial size. Based on this

fact, the state-of-the-art 2DCNN structures can be used fur-

ther for higher-level spatiotemporal feature learning. This

is a novel idea for dealing with video sequences.

Figure 4. The 2DCNN component.

3.2. Classification based on the 2D Feature Maps

Generally, video files need to be decoded into separate

image files [20] or encoded into special images [37] when

2DCNN is employed in video-based applications. In this

paper, we propose a new deep architecture to encode video

files into 2D feature maps. This enables 2DCNN to be used

in video-based applications in an alternative way.

A. 2DCNN Component

Since the 2D spatiotemporal feature maps still have large

spatial size, dimensionality reduction is necessary for the

final recognition. A simple 2DCNN is employed to re-

duce the dimensionality and to learn the higher-level spa-

tiotemporal features, based on learnt the 2D spatiotem-

poral feature maps at each recurrent step of ConvLSTM.

Since the spatial size of inputs in our implementation is

112× 112, the 2D spatiotemporal feature maps have a spa-

tial size of 28 × 28. Therefore, only a shallow 2DCNN is

constructed in this implementation. Nevertheless, deeper

2DCNN can also be used for different configurations or

applications. The 2DCNN component, displayed in Fig-

ure 4, consists of three ”Convolution-BatchNorm-ReLU”

layers. The 2DCNN finally outputs deeper spatiotempo-

ral features which are 4096-dimensional after vectorization.

Formally, the deeper spatiotemporal feature (DSTF) can be

represented as

DSTFt = 2DCNN(
−→
W fw

−−−−−→
STFM t +

←−
W bw

←−−−−−
STFM t)

(8)

where
−→
W fw and

←−
W bw are the connection weights from the

forward and backward layers of the bidirectional ConvL-
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Figure 5. Variant of the proposed deep architecture.

STM to the conv2d 1 layer, and
−−−−−→
STFM t and

←−−−−−
STFM t

are the forward and backward spatiotemporal feature maps

learnt by the ConvLSTM respectively. The DSTF learnt by

the 2DCNN can be denoted as

DSTF = {DSTFt ∈ R
4096|t = 1, 2, ..., TN} (9)

B. Classification

Two fusion methods are generally used after features ex-

traction at each recurrent step: one is to calculate the loss of

each recurrent step and minimize the cumulative loss over

the steps [34], the other is to accumulate the outputs over the

steps and minimize the final softmax loss [8]. In this imple-

mentation, two fusion methods on DSTF are evaluated. The

first one is illustrated in Figure 1: a temporal pooling layer

is used to fuse the DSTF first, and then softmax classifier is

used for classification. The classification functions can be

denoted as

A = TPooling(DSTFt|t = 1, 2, ..., TN ) (10)

p(Ck) =
eAk

∑C−1

i=0
eAi

(11)

where TPooling(·) is the pooling method of the temporal

pooling layer, C is the category count of gestures. The other

is illustrated in Figure 5: softmax classifier is used at each

recurrent step first, and then the prediction results are fused

over the steps. The classification functions can be denoted

as

pt(Ck) =
eDSTFk

t

∑C−1

i=0
eDSTF i

t

(12)

p(Ck) = SFusion(pt(Ck)|t = 1, 2, ..., TN ) (13)

where SFusion(·) is the score fusion function, and pt(Ck)
is the prediction probabilities at the recurrent step t . The

cross-entropy loss function is used to learn the model pa-

rameters.

The fusion on the prediction results of the multi-modal

data can be used to improve the prediction accuracy. Be-

sides, we also tried to fuse the higher-level spatiotemporal

features of each modality directly. An integration strategy

is used to combine the learnt features of each modality into

larger feature vectors, and linear SVM classifier is used for

the final classification, as illustrated in Figure 2.

3.3. Network Training

The proposed deep architecture is designed originally

and it has to be trained from scratch. In our implementa-

tion, the end-to-end training of the network (illustrated in

Figure 1) cannot give the optimal convergence speed and

recognition accuracy. Therefore, the variant of the proposed

deep architecture, as displayed in Figure 5, is firstly trained

from scratch.

The temporal pooling layer is removed in the variant ver-

sion. The softmax classifier works directly on the global

spatiotemporal feature DSTFt. This strategy works well,

because the bidirectional recurrence makes each DSTFt

encode the global spatiotemporal information. Thus, the

classification on each DSTFt can also give a convincing

prediction result.

The proposed deep architecture in Figure 1 is fine-tuned

based on the training result of the variant. The differences

on the computation and accuracy between these two deep

architectures will be analyzed in the following section.

4. Experiments

We extensively evaluate the proposed framework and the

learnt spatiotemporal features under various settings for the

task of gesture recognition.

4.1. Datasets

Two public datasets are used to evaluate the performance

of the proposed framework: the ChaLearn LAP large-

scale isolated gesture dataset (IsoGD) [35] and the Sheffield

Kinect Gesture dataset (SKIG) [21].

IsoGD is a large-scale isolated gesture dataset derived

from the ChaLearn Gesture Dataset (CGD) [14]. IsoGD

contains 47,933 RGB+D gesture videos divided into 249

kinds of gestures performed by 21 individuals. All the

videos are divided into three mutually exclusive subsets:

the training, validation and testing subsets. The labels of

the testing subset have not been released, thus the valida-

tion subset is used to examine the various settings of the

proposed framework.
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SKIG contains 1,080 RGB+D videos of 10 kinds of ges-

tures. All gestures are performed by 6 individuals with 3

kinds of hand postures under 2 illumination conditions and

3 backgrounds. Three-fold cross-validation is used to eval-

uate the proposed framework.

Besides the RGB and depth modalities, optical flow data

are also used to improve the prediction accuracy. The Brox-

OpticalFlow method in OpenCV 2.4.23 is employed to ex-

tract the optical flow data from RGB videos.

4.2. Implementation

The proposed deep architectures are implemented1 on

the Tensorflow-0.11 [1], the Tensorlayer-1.2.8 [7], and the

implementation of ConvLSTM2.

The deep architectures are trained from scratch on the

large-scale IsoGD dataset, and then fine-tuned on the SKIG

dataset. Batch normalization layers make the training eas-

ier and faster. The learning rate is initialized as 0.01 and

dropped to its 1/10 every 10,000 (7,500) iterations for the

RGB (Depth and Optical Flow) modality when training on

IsoGD. The weight decay is set to 0.00004 and at most

45,000 iterations (10 epochs) are executed for IsoGD. The

learning rate is initialized as 0.01 and dropped its 1/10 ev-

ery 2,000 iterations when fine-tuning on SKIG. The weight

decay is set to 0.00004 and at most 5,000 iterations are ex-

ecuted for SKIG. Each video is down-sampled to 32 frames

using the sampling method in [42]. The spatial size of the

inputs is restricted to 112 × 112. One NVIDIA TITAN X

GPU is used to train the networks.

The deep architectures in Figures 1 and 5 are evaluated

respectively. Two score fusion (i.e., SFusion(·) in Eq.(13))

methods are examined for the deep architecture in Figure 5:

maximum fusion and average fusion. Two temporal pool-

ing (i.e., TPooling(·) in Eq.(10)) methods are examined for

the deep architecture in Figure 1: maximum pooling and

average pooling. Two multimodal fusion methods are ex-

amined for the RGB/Depth/OpticalFlow modalities: one is

average fusion on the prediction scores of each modality;

the other is integrating spatiotemporal features for Linear

SVM classification.

4.3. Architecture Analysis

We begin by evaluating the proposed deep architectures

using the aforementioned fusion and pooling methods. Ta-

ble 1 shows the recognition results on the validation subset

of IsoGD. The two deep architectures are trained only on

the training subset of IsoGD, without using any pre-trained

models on other gesture datasets.

A. How to Fuse?

1The code of the proposed framework has been released on the Github

https://github.com/GuangmingZhu/Conv3D BICLSTM.
2The code is at https://github.com/iwyoo/ConvLSTMCell-tensorflow.

Fusion Methods Modality Accuracy(%)

aMaxFusion RGB 50.48
aMaxFusion Depth 47.93
aMaxFusion RGBD 54.55
aAvgFusion RGB 50.97
aAvgFusion Depth 48.89
aAvgFusion Flow 45.28
aAvgFusion RGBD 55.29
aAvgFusion RGBD+Flow 57.09
bMaxPooling RGB 50.38
bMaxPooling Depth 49.65
bAvgPooling RGB 51.31
bAvgPooling Depth 49.81
bAvgPooling Flow 45.30
bAvgPooling RGBD+Flow 57.50
bAvgPooling+SVM RGBD+Flow 58.65

Table 1. Recognition results on the validation subset of IsoGD.

(The superscripts a and b denote the deep architectures in Figure 5

and Figure 1 respectively. MaxFusion and AvgFusion denote the

two kinds of score fusion methods used in Eq.(13) for the deep

architecture in Figure 5. MaxPooling and AvgPooling denote the

two kinds of temporal pooling methods used in Eq.(10) for the

deep architecture in Figure 1. If not stated explicitly, average fu-

sion is used for multimodal fusion on the prediction scores.)

Although the prediction scores are fused in Figure 5

while the spatiotemporal features are fused (or pooled) in

Figure 1, fusion methods do matter for both the two kinds

of information. Both the comparison between MaxFusion

and AvgFusion and the comparison between MaxPooling

and AvgPooling, as illustrated in Table 1, demonstrate that

average outperforms maximum. As we know, Max pool-

ing is more frequently used in the Conv-Pooling blocks

in the state-of-the-art neural networks (e.g., Alexnet, Caf-

fenet, VGG16, VGG19, GoogLeNet, Two-Stream Con-

vNets, C3D, etc). This is because max pooling is more con-

ducive to learn the significant and discriminatory features

from homogeneous convolutional feature maps. On the

contrary, the global spatiotemporal features at each recur-

rent step represent the gestures with not the same perspec-

tives. So, taking all perspectives into account is superior

to selective fusion. This is why average is more frequently

used to fuse such kinds of high-level information [6, 34, 8].

B. What to Fuse?

What to fuse over the recurrent steps? Eqs.(10)-(13) de-

scribe two different fusion strategies: one is to fuse the

spatiotemporal features, the other is to fuse the prediction

scores. What to fuse among multimodalities? Two differ-

ent fusion strategies are also examined: one is to integrate
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the spatiotemporal features for SVM, the other is to fuse the

prediction scores using average. The comparison between

the prediction accuracy 57.50% and 57.09% demonstrates

the superiority of the spatiotemporal feature fusion. The

comparison between the prediction accuracy 58.65% and

57.50% supports the conclusion further. Besides, feature

fusion over the recurrent steps can significantly reduce the

computational cost of the fully-connected layers, compared

with the deep architecture in Figure 5. Thus, early feature

fusion is superior to late score fusion. The comparison and

analysis exactly demonstrate the advantages of the fusion

strategies of the proposed deep architecture in Figure 1.

C. Spatiotemporal Feature Learner

The evolution of the deep architectures from our previ-

ous work [42] to the Figures 5 and 1 in this paper shows that

it is effective to learn spatiotemporal features using 3DCNN

and convolutional LSTM. The learnt 2D spatiotemporal fea-

ture maps encode the global temporal information and local

spatial information. Thus, it is reasonable to learn deeper

spatiotemporal features further using 2DCNN. Our previous

work [42] uses spatial pyramid pooling to extract higher-

level spatiotemporal features from the 2D feature maps.

The improvement from 51.02% to 58.65% demonstrates the

superiority of 2DCNN to learn higher-level features fur-

ther. Furthermore, we can regard that the deep architec-

ture (3DCNN + ConvLSTM + 2DCNN) is an effective spa-

tiotemporal feature learner. It is robust to various scene

backgrounds and illumination conditions theoretically and

actually, and it can also process gestures with various time

durations effectively.

4.4. Comparison with the state­of­the­art

Table 2 gives the comparison results with the previous

published methods, which are evaluated on the validation

subset of IsoGD. The methods in [38] and [39] propose

handcrafted ways to transform video files into 2D feature

maps, and employ AlexNet and VGG-16 networks for the

final recognition respectively. The better performance of the

proposed deep architecture, compared with [38] and [39],

demonstrates the superiority of learning to transform video

files into 2D spatiotemporal feature maps adaptively using

3DCNN and ConvLSTM. The methods in [41] and [19]

use C3D [32] based deep architectures for gesture recog-

nition. The proposed deep architecture outperforms the two

deep architectures, and is more flexible for the recognition

of various-length gestures even when the pre-processing of

inputs is absent.

Table 3 gives the comparison results with the previous

published methods, which are evaluated on the testing sub-

set of IsoGD. The proposed deep architecture outperforms

the methods in [39, 41, 19] on the testing subset, but the

2SCVN-3DDSN framework in [9] obtains the state-of-the-

Method Accuracy(%)

Action Map [38] 36.27

Wang et al. [39] 39.23

Pyramidal C3D [41] 45.02

Li et al. [19] 49.20

Zhu et al. [42] 51.02

Proposed 57.50

Proposed + SVM 58.65

Table 2. Recognition results on the validation subset of IsoGD.

art recognition accuracy. 2SCVN-3DDSN employs ensem-

ble learning which integrates Two Stream Consensus Vot-

ing Network (2SCVN) and 3D Depth-Saliency Network

(3DDSN). Three kinds of neural networks are trained on the

data of four modalities to get the final optimal recognition

accuracy. However, only the proposed deep architecture in

Figure 1 is used to report our recognition accuracy. If we

only compare our network with the 3DDSN in [9], the pro-

posed deep architecture still demonstrates its superiority on

2D spatiotemporal feature map learning. This also proves

the superiority of the proposed deep architecture, compared

with the traditional 3D convolutional neural networks.

Finally, we evaluate the proposed deep architecture on

the SKIG dataset. The performance comparison on SKIG

is shown in Table 4. The proposed deep architecture both

achieves the state-of-the-art accuracy when using multi-

modal score fusion and multimodal feature fusion. Al-

though the proposed deep architecture only obtains less

than 1% improvement compared with [24] and [42], this

is due to the fact that [24] and [42] have achieved extremely

high recognition accuracy. The multi-stream recurrent neu-

ral network (MRNN) [25] first learns spatial features us-

ing 2DCNN, and then feeds the spatial features into MRNN

for gesture recognition. The 3DCNN+RNN+CTC network

[24] first learns the spatiotemporal features using 3DCNN,

and then feeds the vectorized features into RNN. The spa-

tial correlation information plays an important role for ges-

ture recognition, but is not encoded in the recurrent pro-

cess of both the two networks. On the contrary, the pro-

posed deep architecture encodes the spatiotemporal corre-

lation information of gestures through the whole process of

feature learning. The comparison results exactly confirm

the importance of the spatiotemporal correlation informa-

tion when learning the spatiotemporal features for gesture

recognition.

Therefore, it is superior to learn the 2D spatiotempo-

ral feature maps using 3DCNN and ConvLSTM for gesture

recognition. Neural network based self-learning also shows

its strengths compared with the handcrafted methods.
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Method Accuracy(%)

Pyramidal C3D [41] 50.93a

Wang et al. [39] 55.57a

Li et al. [19] 56.90a

3DDSN-Fusion [9] 56.37b

2SCVN-3DDSN [9] 67.26b

Proposed + SVM 60.47b

Proposed + SVM 62.14a

Table 3. Recognition results on the test subset of IsoGD. (The su-

perscript a indicates that both the training and validation subsets

are used for training. The superscript b indicates that only the

training subset is used for training.)

Method Accuracy(%)

RGGP+RGB-D [21] 88.70

Choi et al. [4] 91.90

4DCOV [5] 93.80

Depth Context [22] 95.37

Tung et al. [33] 96.70

MRNN [25] 97.80

DLEH2(DLE+HOG2) [40] 98.43

3DCNN+RNN+CTC [24] 98.60

Zhu et al. [42] 98.89

Proposed 99.52

Proposed + SVM 99.53

Table 4. Recognition Results on the SKIG dataset.

5. Conclusion

In this paper, we proposed a deep architecture for learn-

ing novel spatiotemporal features for gesture recognition.

The deep architecture learns 2D spatiotemporal feature

maps using 3DCNN and bidirectional convolutional LSTM.

The learnt 2D feature maps can encode the global temporal

information and local spatial information. 2DCNN can be

used further to learn higher-level spatiotemporal features on

the learnt 2D spatiotemporal feature maps. The proposed

deep architecture provides an alternative method to trans-

form video files into 2D feature maps (or we can say 2D

images). The paper only presents the preliminary version of

the deep architecture. The state-of-the-art skills of 2DCNN,

3DCNN and LSTM networks can be further utilized to con-

struct an improved version in order to obtain higher recog-

nition accuracy.
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