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Abstract

We present a method for utilizing weakly supervised data

for action localization in videos. We focus on sports video

analysis, where videos contain scenes of multiple people.

Weak supervision gathered from sports website is provided

in the form of an action taking place in a video clip, with-

out specification of the person performing the action. Since

many frames of a clip can be ambiguous, a novel temporal

attention approach is designed to select the most distinctive

frames in which to apply the weak supervision. Empirical

results demonstrate that leveraging weak supervision can

build upon purely supervised localization methods, and uti-

lizing temporal attention further improves localization ac-

curacy.

1. Introduction

In this paper we present an approach for utilizing weakly

supervised data to learn models for action localization in

sports videos. Action localization is a core problem in video

analysis – determining which person in a scene is perform-

ing an action of interest. Within the context of sports video

analysis, the problem is particularly challenging. Sports

scenes typically consist of multiple, interacting people. The

visual appearance of people is similar because of team uni-

forms. Inter-person occlusion is prevalent.

However, sports videos often come with a great amount

of data in corresponding media. While much of these data

are only weak supervision for action localization. For ex-

ample, there exists a large amount of ’play-by-play’ about

sports videos from corresponding websites, itemizing se-

quentially the events happened in a game. There are chal-

lenges in utilizing these meta-data for training action local-

ization methods. First, the labels are weak, scene-level la-

bels. In sports scenes there are multiple people present, and

we need to disambiguate which person the label should ap-

ply to.

A second important challenge is about temporal infor-
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Figure 1: When trying to localize the player of a certain

action with weak supervision, it is important to focus on

the stereotypical poses that are easier to learn. Many of

the player poses in the frames look similar. However, in

the bottom two frames, the player taking the shot takes a

distinctive pose. Our method uses an attention model to

focus on the distinctive poses for learning an action model.

mation in labeling. Consider the example in Fig. 1. Not all

moments in an action are equally distinctive. As an exam-

ple, consider the basketball action labels of layup and dunk.

Video clips with these labels may share a lot of similarity,

with a player dribbling toward the basket surrounded by de-

fenders. Determining which moments in time are more dis-

tinctive can help train better quality classifiers.

Our approach to address these challenges is to develop a

weakly supervised deep learning model for action localiza-

tion. Fully supervised training data, specifying the bound-

ing boxes of people performing actions, is expensive to ac-

quire. We propose a novel attention model-based loss func-

tion that is used to find the frames that are indicative of an

action in weakly supervised data. As an example, we show

a method for collecting and utilizing information from bas-

ketball videos and corresponding box score annotations that
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specify the events that took place during the game. These

annotations are plentiful, but are imprecise in time and do

not contain spatial annotation. We show that using these

weakly supervised data is effective. They can be used in

conjunction with a small amount supervised data to improve

the quality of action localization, showing that a little bit of

supervision can go a long way toward producing accurate

action localization.

2. Related Work

We develop a method for utilizing attention models for

weakly supervised learning of action localization in videos.

Below, we review closely related work in these areas.

Action localization: A variety of methods exist for an-

alyzing videos according to human action labels. These

methods range from video-level classification on uncon-

strained Internet video, to methods that spatio-temporally

localize human actions. In concert with improvements in

deep learning for object recognition, state of the art methods

utilize deep learning approaches to learn convolutional fea-

tures. In action recognition, the dense trajectories of Wang

et al. [26], the best hand-crafted features, have achieved im-

pressive performance on many tasks. However, these have

yielded to deep learning approaches. In video-level action

recognition, Simonyan and Zisserman [21] presented a two-

stream convolutional architecture for merging image and

optical flow data as input sources. Zha et al. [31] com-

pute deep learned image-based features for each frame, and

study strategies for aggregation, obtaining impressive re-

sults on TRECVID MED retrieval. Karpathy et al. [6] and

Tran et al. [24] learn spatio-temporal filters in a deep net-

work.

Temporal localization of actions has a long history in the

computer vision literature. Seminal work includes Yamato

et al. [29], who model actions using hidden Markov mod-

els (HMMs). A more recent example in this vein is Tang et

al. [23], who extend HMMs to model the duration of each

hidden state in addition to the transition parameters of hid-

den states. Discriminative models include those based on

key poses and action grammars [13, 25, 15].

In our work we predict spatial action localizations. Clas-

sic methods include Ke et al. [7] who match templates of

action to crowded video scenes. Lan et al. [8] jointly detect

and recognize actions in videos based on a figure-centric

visual word representation. Recent work has switched to-

ward methods based on analyzing action tube proposals.

Gkioxari and Malik [3] train SVMs for actions on top of

deep learned features, and further link them in time for

spatio-temporal action detection. A set of approaches have

built in this direction, improving methods for producing

frame-level action proposals, linking, and analyzing them

to produce action labels [27, 14, 19].

Weakly-supervised learning: The prevalence of par-

tially annotated data for computer vision tasks has inspired

a swath of research. This includes methods for object

and action recognition. Fundamental work for the problem

of action recognition was done by Laptev et al. [9], who

built datasets for action recognition by considering surro-

gate movie script data. Rohrbach et al. [18] find correspond-

ing regions to each object that appear as a phrase in the

sentence description. Jayaraman et al. [5] learn represen-

tations based on assumptions regarding changes in neigh-

bouring video frames. Shah et al. [20] build a genera-

tive model of video events. Ma et al. [11] extracts hier-

achical space time segments from videos without super-

vision and uses them for action recognition and localiza-

tion. Mosabbeb et al. [12] proposes a matrix completion

approach for weakly-supervised action recognition and lo-

calization. Siva et al. [22] presents a MIL algorithm that lo-

cates the action of interest spatially and temporally by glob-

ally optimising both inter- and intra-class distance.

Bojanowski et al. [1] explore joint localization of people

and actions in movie clips. The problem setting is similar to

ours where only video-level description is provided. They

model the problem as assigning zero-one values to latent

indicators under the constraint that paired actions and ac-

tors correspond to the same instance in the frame. In follow

up work [2], temporal localization of an ordered set of de-

scriptions corresponding to a video clip is done. A mapping

is learned between text representation and image presenta-

tion and an allocation assigning frames to descriptions at the

same time. Our problem and approach differ in that we take

into consideration actions that are not described explicitly

and conduct inference in a multi-person sports setting. Lu

et al. [10] examine the problem of identifying all the players

in a basketball game. A graphical model is built on top of

player tracks to identify players. Although they take advan-

tage of labeled player identities, they also add results from a

supervised model into training, leading to a semi-supervised

approach.

Attention models: Pioneering work on computational

spatial attention models for images was done by Itti et

al. [4]. Recently, such models have garnered attention for

their ability to focus computational and modeling resources

toward important image/video elements.

This can take many forms. One simple idea is to score

a set of previously processed candidates e.g. simple dense

overlapping regions or those based on objectness. An ex-

ample for image captioning is the work of Xu et al. [28]

where an attention model is added into a image captioner so

that it will look at different parts of the image as it produces

the output sentence. For video data, Yao et al. [30] develop

an LSTM for video caption generation with soft temporal

attention.

There is also previous work in using attention models

to decide the key player in sports video. Ramanathan et
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al. [16] propose a network to classify several actions in bas-

ketball videos. With the attention model, the action of the

key player is paid special attention when making a predic-

tion for a scene. Different from this work, we directly learn

to perform action localization, and our attention model is

utilized for training a weakly-supervised system rather than

part of a frame-level predictor.

3. Method

We start by introducing a basic form of our weakly-

supervised model where only clip-level supervision is pro-

vided. The training data are a set of sports video clips, each

with a label specifying the key action being performed by a

player. We will learn a model to localize these key actions,

by finding the people performing similar, distinct actions

within frames of the same action category. In such a strict

weakly-supervised setting, the model will face a lot of chal-

lenges from intra-class variation and noise in the training

data. These issues are tackled by our extension to the base

model with semi-supervision as well as a temporal attention

mechanism.

3.1. Weakly­supervised Action Localization

For each frame in a clip, we have weak supervision – es-

sentially, we know that there exists a person in each frame

of this clip who is (at some point in time) performing the

specified action. We first run a player detector to obtain the

top K person detections {xi}
K
i=1

in each frame. All the de-

tections are sent to the same deep network for action classi-

fication. The categories consist of all the action classes plus

a background class. In a conventional supervised case the

training of a classifier will also take in the action labels ai.

Action models could be trained using standard approaches,

such as negative log-likelihood loss:

loss(xi, af ) = − log(softmax(CNNa(xi, af ))) (1)

where CNNa(xi, af ) represents the predicted score for ac-

tion class af when feeding detection xi into network, with

a softmax for normalizing scores across categories.

In the weakly-supervised setting, no such instance-level

action annotation is provided; action label assignments

should be inferred within the training process. Since we are

looking for the specific player performing the given action,

only one player should score high in the given action cate-

gory, while all other players should not. Moreover, the other

players should score high in the background class instead.

We formulate this new weakly-supervised loss as fol-

lows. For a frame f , if we denote its corresponding

(weakly-supervised) action class by af , the loss function

takes the form:

F =
∑

f

min
i
{loss(xi, af ) +

∑

j 6=i

loss(xj , bg)} (2)

where loss(xi, af ) is the loss of the i-th detection for action

class af , and loss(xj , bg) is the loss of the j-th detection for

the background class. To compute error gradients for back-

propagation, we first must infer which person in a scene

should be assigned as performing the action. Specifically,

for each frame in stochastic gradient descent we conduct

inference based on the current network weights. We assign

one player with the frame action label and the rest with the

background label so that the sum of the above losses is min-

imized. This assignment is used in calculating gradients for

back-propagation. This inference is computationally effi-

cient since the assignment can be done via a simple linear

search.

Note that in this learning objective, the background sam-

ples are equally important as the action samples. The back-

ground samples are abundant and provide reliable informa-

tion about what the given action should not be like. This

is important in the weakly-supervised setting and especially

for categories with fewer examples. It may be hard to char-

acterize such actions directly by looking for distinctive ac-

tions shared within the class, because any slight variation

will result in a big challenge with limited examples. But

the examples of the background class are shared across all

categories and serve as a essential clue to find the real target

action.

3.2. Semi­supervised Action Localization

The purely weakly-supervised method presents a very

challenging learning problem. We have the appearance of

each player in a number of frames of each action category

and need to determine which player is the “correct” one in

each frame. This problem is susceptible to model drift – if

we believe erroneously that certain similar-posed people in

many frames correspond to the “correct” action, the model

will reinforce this belief and learn an incorrect model. In

essence, the weakly-supervised localization above is sensi-

tive to initialization and unfortunate co-occurrences among

background poses.

This can be remedied by adding a small portion of super-

vision to guide the initial model to choose appropriate per-

sons in each frame as corresponding to the action category.

We utilize a similar formulation for the semi-supervised

case as in the weakly-supervised one. The loss function is

the same, except that for a small portion of the frames, the

loss simply uses standard supervised loss:

F =
∑

f∈S

{loss(xf
i∗ , af ) +

∑

j 6=i∗

loss(xf
j , bg)}

+
∑

f∈W

min
i
{loss(xf

i , af ) +
∑

j 6=i

loss(xf
j , bg)}

(3)

where x
f
i∗ is the ground truth detection for the specified ac-

tion class in frame f , S is the collection of frames with full

330



Action Classification Network
0.2 0.7 0.1

Action Classification Network
0.2 0.2 0.6

Action Classification Network
0.4 0.1 0.5

Weakly
Supervised

Loss

Inference

...

...

3-pointlayup background

Figure 2: Shown above is the network structure for weakly-supervised action localization. The top detections from a player detector (Faster-RCNN) are

fed into identical action classifier networks. This generates action scores for all action classes, plus the background category. For each frame, one detection

should be classified into the action class of the frame. The remaining detections should be classified as background. In the weakly supervised setting, the

player performing the action is not given at training time and has to be inferred during learning. In a semi-supervised setting, a portion of the frames come

with full labeling including which player performs the action.
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Figure 3: An illustration for the intuition behind the temporal attention model. The stereotypical action poses are very distinct from the background

players and are shared by almost all clips of certain actions. Focusing on such core poses would lay a good foundation for the model to understand less

distinctive cases.

ground truth supervision, and W contains the remainder of

the frames.

3.3. Localization with Temporal Attention

The intuition behind weakly-supervised localization is

the assumption that different players take similar poses

when performing the same action. This is mostly true for

the key moments of each action – for instance, shots, dunks,

layups, etc. each contain moments of similarity within each

category. However, the temporal definition of actions are

vague, precise supervision is impractical, and it is unlikely

that the training clips contain only those key moments. This

leaves a number of frames where the target player pose

varies greatly, due to the variability in actions before/after

the key moments.

This might not be a problem in the supervised setting

where positive examples are abundant. The ambiguous

or improperly labeled data could be overcome with quan-

tities of correctly labeled positive data. For the weakly-

supervised or semi-supervised case, this problem is much

harder. In a frame where none of the players has the de-

sired pose, if the model has to choose one of the detections

as a positive example of a certain action class, it will likely

significantly harm performance.

To alleviate such problems, we introduce the following

temporal attention model. The attention model encourages

the localization network to put more emphasis on the eas-

ily recognizable or distinguishable examples by assigning

a weight to the loss of every frame. During training, the

attention model will learn to assign low weights to frames

incurring high error. Since stereotypical action poses are

easier to distinguish, this should focus training on more ap-

propriate examples.

The attention value is computed for each frame, and then

normalized over each clip with a softmax. The attention

value is computed from holistic frame-level features and

the responses of all action classifiers from all players. A

multi-layer perceptron takes both inputs to generate the fi-

nal attention value, using the loss function:

F =
∑

f∈S

wf · [loss(xf
i∗ , af ) +

∑

j 6=i∗

loss(xf
j , bg)]

+
∑

f∈W

wf · [min
i
{loss(xf

i , af ) +
∑

j 6=i

loss(xf
j , bg)}]

(4)

where wf is the attention of f -th frame, given by

wf = softmax(φ(ff , rf )) (5)

ff = CNNf (If ) (6)

rf = [CNNa(x1, a1),CNNa(x1, a2), . . . ,

CNNa(x2, a1), . . . ,CNNa(xK , aN )]
(7)

where ff is the holistic frame-level feature generated from
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Figure 4: Shown above is the temporal model structure. On top of the base model, a frame feature extraction network is introduced. Both frame feature

and action scores are sent to the temporal networks and generate a weight for the frame indicating its importance in the training.

CNNf , a frame-level network jointly trained with the local-

ization model, rf is the responses of all action classifiers for

all players in the frame and φ is a multi-layer perceptron.

In summary, our approach learns an action model by

utilizing fully and weakly-labeled data. For the weakly-

labeled data, we define a loss function that selects the high-

est scoring person in each frame according to the specified

action category, balanced against background labels for all

other people. Further, an attention model is applied to each

video clip, allowing the model to focus on the most distinc-

tive poses for each category.

4. Experiments

We conduct experiments on action grounding in sports

video. We collect a novel dataset, mining structured text de-

scriptions of basketball games along with associated video

footage. Experiments evaluate the effectiveness of our

method in a semi-supervised setting, and verify the effec-

tiveness of the attention model.

Dataset: We collected a new dataset to test our action

grounding system. The training set contains 746 clips from

13 NBA basketball games; a separate test set has 398 clips

from 6 games. Clips are extracted according to correspond-

ing play-by-play descriptions from espn.com. Each clip is

one second long and covers the action described in the play-

by-play. All clips are actions performed by a player of the

Golden State Warriors. We sample 9 frames from each clip,

for a total of 6714 frames in the training set and 3582 in

the testing set. The clips fall into 5 categories: free-throw,

layup, dunk, two-point and three-point. The label assign-

ment is purely according to the play-by-play description

with no manual adjustment. We will release the data an-

notations to enable comparisons.

Pre-processing: We train a player detector using the

Faster-RCNN network[17] on the NCAA dataset [16]. Note

that the camera angle and resolution of NCAA games differ

from that of NBA games, leading to some erroneous detec-

tions. Frames of 40 NCAA games are used in training the

detector. We run the detector over on our dataset and take

the top 10 detections, resized to 256 × 256, as the input to

our localization network.

Semi-supervision: Our experiments are done in a semi-

supervised setting where the grounding label (key player lo-

cation) of a small subset is provided in training. For frames

without a detection whose IoU with ground-truth is greater

than 0.5, the loss function will take all candidates as back-

ground examples. In the experiments below, number of su-

pervision means the number of clips per action category

whose grounding labels are provided in training. Up to 5 su-

pervised clips per category (225 frames in total) are used in

the experiments. Since the choice of fully supervised clips

influences the performance, we run all experiments for 5 re-

peats with different fully supervised clips, reporting mean

and standard deviation.

Network structure details: The action classification

and frame feature networks both use the Alexnet structure.

The input to the temporal attention model are the fc7 layer

of the frame network and the fc8 layer of the localiza-

tion network. In the attention model, both inputs are first

each sent to a fully connected layer resulting in vectors of

the same dimension. The two vectors are added, fed into

two fully connected layers to produce a scalar before being

normalized across frames from the same clip. The frame

network is initialized from the Caffe ImageNet pre-trained

model. For the action localization network, we pre-train on

our fully supervised data for 1000 iterations and then fine-

tune on the whole dataset in the semi-supervised setting.

All models are trained with a learning rate of 0.001, with 27

frame mini-batches (3 clips).

Evaluation: We annotate the ground truth bounding

boxes for frames where the player performing the action

is visible. These bounding box annotations are independent
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Model Supervised Only Semi-Supervised Semi-Supervised with Attention

#supervision 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

free-throw 0.541 0.773 0.837 0.895 0.912 0.635 0.940 0.942 0.949 0.948 0.756 0.942 0.943 0.944 0.944

dunk 0.231 0.356 0.397 0.448 0.497 0.167 0.422 0.533 0.547 0.654 0.207 0.516 0.571 0.612 0.646

layup 0.213 0.273 0.313 0.375 0.407 0.200 0.402 0.472 0.521 0.579 0.275 0.510 0.535 0.563 0.582

two-point 0.214 0.260 0.331 0.385 0.406 0.218 0.405 0.477 0.523 0.585 0.305 0.529 0.574 0.598 0.609

three-point 0.216 0.333 0.364 0.416 0.437 0.256 0.444 0.525 0.616 0.659 0.261 0.565 0.618 0.656 0.673

overall 0.268 0.378 0.426 0.481 0.504 0.297 0.508 0.573 0.630 0.675 0.353 0.607 0.646 0.673 0.687

overall std 0.059 0.030 0.010 0.025 0.020 0.132 0.122 0.140 0.093 0.003 0.125 0.048 0.031 0.018 0.015

Table 1: Action grounding accuracy for all models on transductive set with different number of supervision. Both semi-supervised model and semi-

supervised with attention model outperforms their initialization model trained on only on supervised data, successfully extracting information from weakly-

supervised data. Semi-supervised models with attention demonstrate best performance among all models in both grounding accuracy and stability.

Model Supervised Only Semi-Supervised Semi-Supervised with Attention

#supervision 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

free-throw 0.644 0.857 0.939 0.966 0.958 0.616 0.986 0.985 0.988 0.988 0.799 0.986 0.987 0.987 0.986

dunk 0.356 0.422 0.554 0.585 0.605 0.320 0.573 0.713 0.728 0.802 0.405 0.764 0.771 0.791 0.795

layup 0.229 0.306 0.366 0.409 0.464 0.277 0.509 0.593 0.630 0.667 0.330 0.630 0.659 0.677 0.674

two-point 0.295 0.367 0.445 0.522 0.543 0.321 0.539 0.627 0.683 0.748 0.417 0.710 0.729 0.742 0.742

three-point 0.284 0.431 0.453 0.524 0.545 0.380 0.570 0.630 0.723 0.797 0.399 0.756 0.774 0.788 0.786

overall 0.384 0.517 0.579 0.636 0.652 0.415 0.670 0.727 0.775 0.822 0.508 0.793 0.807 0.818 0.817

overall std 0.065 0.058 0.028 0.024 0.026 0.192 0.124 0.135 0.082 0.005 0.168 0.022 0.011 0.003 0.002

Table 2: Action grounding accuracy for all models on inductive set with different number of supervision. Conclusions drawn from transductive set still

applies with no obvious over-fitting.

of the candidate bounding boxes from the automated player

detector. We follow the previously constructed loss function

to find the target player, specifically, we take the candidate

detection x
∗
i as the prediction from the model, where i∗ is

defined by

i∗ = argmin
i
{loss(xf

i , af ) +
∑

j 6=i

loss(xf
j , bg)} (8)

During testing, we ignore frames where the desired target is

not visible. For the rest of the frames, if the highest score

candidate x
∗
i in the frame has an IoU greater than 0.5 with

the ground truth box we take it as correct. Since we provide

localization labels for only a small portion of the training

data (up to 225 frames), we first test on the training data

where the instance labels are not provided (transductive set-

ting). In addition, the trained models are also tested on the

testing set whose frames are not used in the training phase

(inductive setting). All of the 225 frames that are poten-

tially used for supervision are excluded from test for fair

comparison.

4.1. Semi­supervised Localization

In the semi-supervised setting, we explore the influence

of the number of supervised examples. Supervision from 1

clip per action to a maximum of 5 clips per action is pro-

vided. To combat model drift, we “burn in” the network by

pre-training with only the fully-labeled data. The model is

first trained only on the supervised part for 1000 epochs and

later fine-tuned with all the data.

Results are presented in Tab. 1. The semi-supervised

models consistently outperform their fully-supervised

equivalents, demonstrating the utility of our weakly-

supervised approach.

4.2. Temporal Attention

The same settings are used for the temporal attention

model (1 to 5 fully labeled examples). Models are fine-

tuned for 30000 iterations from the fully-supervised model

trained on the supervised part only. Results in Tab. 1 indi-

cate that such temporal guidance is helpful in all cases for

both performance and stability, especially with little super-

vision provided. The larger performance gap at lower su-

pervision demonstrates the ability of the temporal attention

model to extract the right information from complicated and

challenging situations. As the amount of the amount super-

vision grows, advantages moderate but remain. The likely

reason is that when both model can easily distinguish the

easy targets with the help of more supervision, the gap be-

tween performance relies more on their ability to recognize

less distinguishable examples the attention model does not

explicitly emphasize. It is worth noting that the temporal at-

tention model does not over-fit on the easy examples, with

more supervision its performance also grows like the semi-

supervised model.

4.3. Inductive Test

We also present inductive results on new data not used

as weak supervision. The results in Tab. 2 demonstrates the

same conclusions as the transductive ones. Note that the
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Model Supervised Only Semi-Supervised from Supervised Semi with Attn from Supervised

#supervision 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

action accuracy 0.326 0.384 0.421 0.482 0.493 0.603 0.659 0.664 0.692 0.703 0.623 0.707 0.714 0.711 0.720

bbox accuracy 0.393 0.495 0.562 0.624 0.633 0.402 0.649 0.709 0.763 0.812 0.496 0.784 0.798 0.808 0.810

overall accuracy 0.179 0.270 0.323 0.388 0.397 0.305 0.514 0.541 0.590 0.620 0.383 0.608 0.624 0.632 0.637

Table 3: Action grounding on inductive test with no frame label provided. Action labels(from five action category) and bounding box are infered

simultaneously. Bounding box accuracy is similar to results with frame label provided, indicating model’s ability to distinguish key player. Due to the

training procedure and confusion in the label set, the action accuracy is not as good.

clips in training transductive inductive

200 0.566 ±0.023 0.723 ±0.026
400 0.633 ±0.020 0.790 ±0.013

full dataset 0.687 ±0.015 0.817 ±0.002

Table 4: Grounding accuracy for semi-supervised different number of

clips used in traing, all with 5 clips per action category as supervision

higher performance (for all methods) is due to the higher

detection recall and higher percentage of (easier) free-throw

frames in the inductive test set.

In the experiments above, frame level labels are provided

to perform the grounding. We evaluate the ability of our

inference criterion to predict simultaneously the action class

as well as the bounding box as follows:

i∗, a∗f = argmin
i,af

{loss(xf
i , af ) +

∑

j 6=i

loss(xf
j , bg)} (9)

where af is chosen from the five action categories. Pre-

sented in Tab. 3 are: action accuracy measuring the per-

centage of frames where the action prediction is correct,

bounding box accuracy measuring the percentage of frames

where the predicted bounding box has an IoU over 0.5 with

groundtruth, and overall accuracy measuring the percentage

of frames where both the action and bounding box are cor-

rectly predicted. Results show that bonding box accuracy is

close to the grounding performance with frame labels pro-

vided, indicating the model’s ability to distinguish the key

player. The action accuracy is not as good since the model

is explicitly trained for such a task. Note that the two-point

classes are not carefully distinguished from the dunk and

layup classes in the play-by-play texts, leading to certain

confusion across categories.

4.4. Amount of Weakly­supervised Data

The advantage we expect from semi-supervised learn-

ing is its ability to learn from the weakly-supervised data.

It would be beneficial if the model’s performance can im-

prove by just taking in more weakly-supervised data which

is less demanding to collect. Here we test the model’s abil-

ity to utilize weakly-supervised data by training with 200

clips, 400 clips and all 746 clips, all with fully supervised

grounding labels for 5 clips per action category. The results

present in Tab. 4 indicate sustained improvement with more

#supervision 1 2 3 4 5

overall 0.238 0.278 0.316 0.337 0.354

overall std 0.103 0.071 0.041 0.021 0.026

Table 5: Overall grounding accuracy and std for models without back-

ground term in loss trained on the fully supervised data only with different

number of supervision.

weakly-labeled data, validating the potential from semi-

supervised learning.

4.5. Background Class in the Loss Function

One observation we take advantage of when proposing

the approach is that only one of the players should be per-

forming the labeled action while others should be perform-

ing none of the possible actions. In comparison, conven-

tional multiple instance learning methodology would use a

weaker assumption that at least one of the players is per-

forming the target action.

We evaluate the effect of the background model. Tab. 5

shows results of a fully-supervised model without the back-

ground term in the loss function (c.f. Tab. 2 left); semi-

supervised models fail to learn in this setting. The reduced

performance is likely due to the lack of use of background

examples in correcting weak supervision, combating data

noise, and shaping the decision boundary with positive ex-

amples.

5. Conclusion

We demonstrated that attention models can be used to se-

lect distinctive frames for learning action localization from

weakly supervised data. We created a dataset of weakly

supervised action data by combining basketball video data

with action labels extracted from text descriptions of the

games. The weak supervision lacks spatial and precise tem-

poral localization of action, but our model is capable of

overcoming these challenges.

Our experiments explored the use of weakly supervised

action data in isolation. Further, the weakly supervised data

was used to augment a fully supervised dataset to improve

action localization results. Ablation studies showed that

the attention model and learned weak supervision are effec-

tive means of increasing action localization performance.

Further study demonstrates the effectiveness of the semi-
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three point free-throw layup dunk

supervised

only

semi-

supervised

semi-

supervised

attention

Table 6: Visualization of player detection from different models. Blue box is the ground truth and red box is the highest score

candidate. Adding semi-supervision and temporal attention allows the model to extend knowledge from supervised examples

to the whole dataset and recognize distinctive moments that vary from the limited cases from supervising clips.

Attention 0.108 0.078 0.145 0.141

Frame

Attention 0.078 0.108 0.151 0.154

Frame

Attention 0.059 0.133 0.172 0.078

Frame

Attention 0.167 0.170 0.091 0.088

Frame

Table 7: Visulization of attention values for frames. Blue box is the ground truth and red box is the highest score candidate. 4

frames from each clip are shown with their frame attention value on top. The attention scores demonstrate the model’s ability

to attend to distinctive moments. The last row also indicates that low attention values are assigned to cases where the model

is confused, which helps the model to be robust to uncertainty in the training process.

supervised approach to extract information from weakly-

supervised data.
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