
Scale-free content based image retrieval (or nearly so)

Adrian Popescu, Alexandru Ginsca, Hervé Le Borgne
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Abstract

When textual annotations of Web and social media im-

ages are poor or missing, content-based image retrieval

is an interesting way to access them. Finding an optimal

trade-off between accuracy and scalability for CBIR is chal-

lenging in practice. We propose a retrieval method whose

complexity is nearly independent of the collection scale and

does not degrade results quality. Images are represented

with sparse semantic features that can be stored as an in-

verted index. Search complexity is drastically reduced by

(1) considering the query feature dimensions independently

and thus turning search into a concatenation operation and

(2) pruning the index in function of a retrieval objective.

To improve precision, the inverted index look-up is comple-

mented with an exhaustive search over a fixed size list of

intermediary results. We run experiments with three public

collections and results show that our much faster method

slightly outperforms an exhaustive search done with two

competitive baselines.

1. Introduction

The development of social media and the democratiza-

tion of digital cameras led to an increasingly important role

of image based communication. Images were often a com-

plement of textual data in the early days of the Web, while

they now play the central role on platforms such as Insta-

gram, Snapchat or Flickr and a growing one on others, such

as Twitter. The increased importance of images is accom-

panied by a consequent research and development effort

that aims at making large-scale image collections accessi-

ble. As part of this effort, content-based image retrieval

(CBIR) tools are now standard components of search en-

gines such as Google or Bing.

Increasingly powerful visual features were developed

and exploited to improve CBIR accuracy. Prominent fea-

tures that were proposed during the last decade include bags

of visual words [24], Fisher vectors [20] and, more re-

cently, convolutional neural network (CNN) features [15].

Retrieval scalability improvement focused on the following

aspects (or a combination of them): (1) reduction of the

size of feature vectors [13, 17]; (2) approximate search with

partitioning trees [19] and (3) representation of the image

collection with an inverted index structure [24, 10]. CBIR

systems have to deal simultaneously with the accuracy of

results and scalability of the retrieval process [13]. Find-

ing an optimal trade-off between the two characteristics is a

hard problem that we tackle here.

We introduce a CBIR framework that has (nearly) scale-

free complexity and does not sacrifice accuracy. The main

contribution is to consider query feature dimensions inde-

pendently of one another. This modeling choice greatly

simplifies the search process since it replaces complex

mathematical operation by a concatenation. Semantic im-

age features [16, 5] encapsulate significant information in

each one of their dimensions and are used as main repre-

sentation of image content. These features are sparse [10],

a property that enables efficient representation of the im-

age collection as an inverted index. To further improve ac-

curacy, a reranking step is performed over a fixed size list

resulting from the initial concatenation of results.

After a presentation of related work, we introduce the

CBIR framework and analyze its components. We then

evaluate the proposed method and, before concluding, dis-

cuss some of its limitations.

2. Related Work

The first line of relevant work concerns the creation of

features that provide an accurate encoding of image content.

During the last decade, the most widely used image retrieval

features relied on the aggregation of local features, such as

bags of visual words (BoVW) [24]. These approaches first

extract local features, such as SIFT [18], and then aggre-

gate them into a fixed size BoVW vector that describes the

global properties of the image [24]. BoVW were improved

through the introduction of higher-order image statistics in

features such as Fisher vectors [20]. A problem shared by

these descriptors is their high dimensionality and different

compression methods were proposed to improve scalability.
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In particular, [12] compressed Fisher vectors into a simpler

representation named VLAD by using product quantization

(PQ) [13]. With VLAD+PQ representation, 100 million im-

age features are searched in approximately 250 ms on one

core. While improving scalability, the aggressive compres-

sion performed by VLAD+PQ significantly decreases accu-

racy compared to the use of full Fisher vectors.

Convolutional Neural Networks (CNN) have superseded

aggregated local features in image classification [7, 15] and

retrieval [22, 10]. While accurate, CNN features usually

have a size in the range of thousands of dimensions that

makes their direct use for large-scale retrieval cumbersome.

The compression of deep learning features has received

increasing attention. One approach exploits Transductive

SVMs and binary trees to create compact binary hashes [6].

The authors of [17] propose a method that learns binary de-

scriptors in an unsupervised manner. The results obtained

with compressed features are often close to those of full

CNN vectors. However, the complexity of the search op-

eration remains linear if an exhaustive search is performed.

The authors of [21] compared CNN, VLAD and

VLAD+PQ in retrieval task on the YFCC100M collection

that includes nearly 100 million images [25]. Results show

that the accuracy of CNN features is roughly three times

higher than that of VLAD and VLAD+PQ. Equally impor-

tant, the paper shows that it is possible to reliably evaluate

retrieval performance using an automatically created and

imperfect ground truth.

A second line of work focuses on the development of se-

mantic features such as Object Bank [16] or meta-classes

[5] that exploit low-level or intermediate features in or-

der shift image representations to a semantic space defined

by the activations of an array of visual concept detectors.

These authors aggregate multiple low-level features to learn

the detectors and show that the resulting semantic features

have higher accuracy than the basic features. A sparse vari-

ant of semantic features that was built on top of CNNs was

introduced in [10]. This feature has only dozens of non-null

dimensions and compares favorably with the basic CNN de-

scriptors both in terms of accuracy and scalability. For in-

stance, retrieving results in a collection of 100 million im-

ages takes hundreds of milliseconds if the collection is rep-

resented as an inverted index and stored in RAM.

Semantic features have also recently shown a consider-

able improvement of retrieval time for video search [14].

After concept detection, two approaches for concept adjust-

ment are proposed. While the first one deals with the logical

consistency among the concepts found in a video, the sec-

ond one addresses their distributional consistency. These

steps lead to a video representation consisting of 10 to 60

salient and consistent concepts. The authors report a re-

trieval time of 0.2 seconds on a single CPU core for a col-

lection of 100 million videos. While much faster than raw

CNN features or even VLAD+PQ, semantic features still

require arithmetic operations to retrieve results and search

complexity grows roughly linearly with the size of the col-

lection.

A third line of relevant work concerns the efficient rep-

resentation of image collections. Two main types of struc-

tures are used: partitioning trees [4] and inverted indexes

[2]. Partitioning trees are well adapted for an approximate

search over dense feature vectors and a number of varia-

tions of such structures are discussed in [19]. Classical kd-

trees [4] are of limited use in high-dimensional spaces and

approximations were proposed that implement either error

bounds [1] or time bounds [3]. The authors of [19] perform

a thorough evaluation of different types of tree structures

and show that no structure performs best over all evaluation

datasets. Depending of the dataset, best results are reported

with randomized k-d trees and with a variant of a k-means

tree. A distributed version of k-d trees is proposed in [19] in

order to scale-up the search process. A 103 - 104 accelera-

tion with a precision loss between 5% and 50% compared to

exhaustive search is reported. However, the search time is

still heavily dependent on the collection size and scaling-up

the system for larger collections requires new machines.

Inverted indexes were first used in text retrieval since

these documents have a sparse representation over the tex-

tual vocabulary [2] and they strongly reduce search time

compared to forward indexes. They were then adapted to

image retrieval when sparse features that encode image con-

tent efficiently became available [24]. Compared to deci-

sion trees, inverted indexes have the advantage of providing

a better approximation of exhaustive search if very frequent

dimensions (i.e. similar to stop words in text retrieval [2])

or very rare dimensions are removed. The results reported

in [10, 14] show that the use of an inverted index for image

and video retrieval improves search time by several orders

of magnitude. However, even if they are applied to only

dozens of non-null dimensions encoded by the inverted in-

dex, arithmetic operations are still needed and search time

increases with the size of the collection.

3. Retrieval Framework

We can state our general objective as: Given an image

collection C and a query image q, a set of x similar results

should be accurate and retrieved in a time that is nearly

independent of collection size. In Figure 1, we illustrate the

retrieval framework introduced here to tackle this objective.

There are two main steps in the pipeline that aim: (1)

to create an intermediary list of results and (2) to rerank

the elements of this list respectively. Our main contribution

is to propose a method that retrieves the intermediary list

in a time that is independent of the collection scale. If x

is the retrieval objective (i.e. the number of images to be

retrieved by the retrieval system), in practice, the size of
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Figure 1. Illustration the proposed scale-free CBIR pipeline. The data and results are represented in rectangles and the different processing

steps performed over data are presented in rounded rectangles. The collection indexing process is represented by full lines and the search

process by dotted lines.

the intermediary list of results is given by a linear function

f(x) = k × x, with k ≥ 1. The choice of a list larger

than x is motivated by the fact that relevant results might

be found beyond x depth and could be surfaced during the

reranking that provides the final list of results. Departing

from existing practices, the look-up process considers the

dimensions of the query representation independently from

one another. First, in order to obtain relevant results, it is

crucial that each dimension of the features used for look-

up encodes as much information as possible. Second, these

features should be generic enough in order to accommodate

the strongly diversified types of content available in social

media image collections. Third, these features should be

sparse in order to obtain a compact inverted index that can

be easily stored in RAM for faster processing.

Among existing image descriptors, semantic features

fulfill the three requirements since their dimensions are ac-

tivations of semantically meaningful visual concepts, they

can incorporate tens of thousands of different concepts [5]

and have optimal performance in a sparse form [10]. This

choice simplifies the exploitation of the inverted index and

makes it independent of the collection scale, as detailed in

Subsection 3.3. For instance, assuming that the query image

is described by bear cub and ice bear, the intermediary list

from Figure 1 contains a concatenation of the inverted index

entries associated to these concepts. This concatenation is

needed in order to make sure that the retrieval objective is

met. In our example, if f(x) = 5 images are needed and

if bear cub and ice bear inverted index entries have 2 and 3

associated images, both concepts should be used.

Each dimension of the query and collection images en-

codes the likelihood of a visual concept but an optimal sim-

ilarity could result from an intersection of several concepts.

To deal with this problem, we introduce a result reranking

step that refines the intermediary list to refine the results of

the look-up process. This might be necessary in order to

cope with situations in which image similarity is best de-

fined by a combination of concepts. For instance, the final

results in figure 1 favor images that are associated to both

bear cub and ice bear, while the temporary list has a top

result associated to bear cub but not to ice bear. While

semantic features are needed to simplify look-up, reranking

can be executed with any feature since it only acts on a fixed

size list of intermediary results. The main criterion for the

choice of reranking features should be their accuracy.

The retrieval pipeline includes two main processing

flows, dedicated to the collection and to the query. As usual,

collection processing (illustrated by the continuous arrows

in Figure 1) is performed offline. In the implementation pre-

sented in 1, semantic features and low-level features are first

extracted for each image of the collection. Then these fea-

tures are stored in the inverted and reranking indexes. Note

that if reranking is also based on semantic features, a sin-

gle feature extraction step is needed. We evaluate the two

combinations of features in the experimental section.

Existing CBIR pipelines fail to search results indepen-

dently of the collection size. This is explained by the fact

that they implement a result ranking that is based on im-

age features whose dimensions are exploited together. This

classical similarity computation entails a number of arith-
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metic operations that have a significant computational cost.

Costly operations, such as multiplications, are applied to all

non-null dimensions of the query to compute the ranking

scores for all the corresponding collection documents. Un-

der a dimension independence hypothesis for the query im-

age, classical arithmetic operations are replaced by a much

lighter look-up process.

3.1. Semantic Features

Semantic features encode the content of an image

using the activations of an array of n visual con-

cept classifiers [5, 16] and can be written as D =
{(v1, s1), (v2, s2), ..., (vn, sn)}), with vj the jth visual

concept and sj its activation score. This representation is

applicable to any type of low-level or intermediate visual

features. A sparse version of semantic features was intro-

duced in [10] and is discussed in detail there. In this vari-

ant, only a small fraction ci of scores si are non-zero (i.e.

c ≪ n). This representation is noted Dc and it corresponds

to the intuition that only a limited number of concepts are

actually useful to represent an image. Extensive evaluation

done on datasets surch as Wikipedia Retrieval, MIR Flickr

and NUS-WIDE in [11] results show that sparse features’

performance is quite stable for c ≥ 10. Sparsity is a desir-

able property here since it indicates that semantic features

encode a large quantity of information on a small number of

dimensions. We follow the authors of [10] and implement a

semantic feature to support scale-free retrieval. Visual mod-

els vi are created for the n = 17, 462 ImageNet concepts

that have at least 100 representative images. These mod-

els are learned independently of one another, using nega-

tive examples from a diversified negative set that is sampled

from ImageNet concepts that are not included in the feature.

The learning of independent SVMs for visual concepts in-

troduces introduces a supplementary step compared to the

direct use of CNN features. However, it has the advantage

of allowing fast enrichment of the semantic representation.

For instance, if a CNN is used directly and one wants to

add a new concept, a full retraining of the model is needed.

With independent SVMs, a single new concept is learned

in near real time. This property is especially useful in dy-

namic environments, such as social media, where new con-

cepts are continuously created and need to be represented.

To scale-up both training and test, models are learned with

the default linear SVM model from liblinear [9].

We illustrate the sparse representation of 3 images in

Figure 2 using ci = 5 concepts. Although imperfect, the

semantic features capture the most important concepts of

the images. For instance, the image to the left of the figure

is correctly annotated with gondola, punter and gondolier.

The association of sampan is incorrect but explained by the

fact that this concept is visually similar to gondola. In Ima-

geNet, raceway is defined as a canal for a current of water

  

gig:0.62 
keyboardist:0.61 
theremin:0.57 
guitarist:0.57 
singer:0.56

bear cub:0.80
ice bear:0.79 
bear:0.76 
cub:0.74 
young mammal:0.73

gondola:0.63 
punter:0.55 
gondolier:0.53 
sampan:0.52 
raceway:0.51

Figure 2. Illustration of the semantic features obtained for three

images with ci = 5. Top visual concepts are presented along with

their classification scores.

and is thus one of the common contexts of gondola. The

only concept that is wrongly associated to the image in the

middle of Figure 2 is guitarist. However, this concept is

still related to the general theme of the image. All concepts

attributed to the rightmost image are relevant, with the most

informative ones being bear cub and ice bear.

3.2. Query Image Representation

Query images have two representations, corresponding

to the described look-up and reranking steps. Look-up is

done with semantic features, while reranking exploits the

same features that were stored in the reranking index.

3.2.1 Query Representation Analysis

We depart from existing CBIR systems through the query

representation exploited during the first retrieval step per-

formed over the inverted index. First, the dimensions of

query features are considered independently of one another

during retrieval. This property is essential since it enables

an inverted index querying that replaces classical arithmetic

operations [2] with a concatenation of inverted index en-

tries. Second, since the retrieval process has a predefined

objective to find x images, the query and image collections

representations are different even if both are rooted in the

same semantic space. Depending on the query image, a

variable number of query dimensions are needed to fulfill

the retrieval objective, while the collection images are rep-

resented with a fixed ci number of non-zero dimensions.

3.2.2 Query Representation Implementation

As we mentioned, a core requirement for a successful im-

plementation of the proposed retrieval pipeline is that each

dimension of image features encodes as much information

as possible. Naturally, the query representation exploits a

version of D in which visual concepts are ranked accord-

ing to their activation score. This ranking gives priority to

visual concepts vi that are most salient in the query.
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3.3. Collection Representation and Querying

As we mentioned, the proposed retrieval pipeline in-

cludes two retrieval steps. The first one exploits an inverted

index structure to reduce the search space to an intermedi-

ary list. The list can be further processed in real-time during

the second retrieval using image representations from the

reranking index using a forward search.

When image features are sparse, as it is the case for Dc, a

forward index would contain mostly zero values that do not

contribute to the similarity between images. The collection

can then be efficiently structured as an inverted index II that

includes, for each dimension of the features only non-zero

values. Similar to collection features, the query descriptor

Dq contains cq non-zero dimensions that are the only one

used for querying II . A similarity measure is computed to

retrieve the closest neighbors of the query. This operation is

much more efficient than a forward search since it ignores

the all zero values of sparse features. It is however depen-

dent of the collection size since index entries will be richer

for larger collections and more mathematical operations are

needed to compute similarities.

To our knowledge, existing inverted index implementa-

tions dedicated to CBIR [24, 10] consider feature dimen-

sions jointly to compute image similarities. Consequently,

in order to obtain results that are equivalent to an exhaus-

tive forward search, all images associated to inverted index

entries need to be saved, thus enlarging its total size. In

contrast, following our feature dimension independence hy-

pothesis, we drastically reduce the number of images per

entry of II by relating it to the retrieval objective through

f(x) and storing only the most salient images for each vi-

sual concept. This representation of the collection is inde-

pendent of the its size since II will contain at most f(x)
images for each of the n dimensions stored in it. More

importantly, the costly mathematical operations needed to

compute similarities are replaced by a concatenation of II
entries that are associated to decreasingly important dimen-

sions of the query representation Dq . The iteration over

several query dimensions is needed since not all index en-

tries include a sufficient number of images to fulfill the re-

trieval objective. The only supplementary operation during

concatenation of results is the removal of duplicate image

identifiers that can appear when c > 1 in Dc (i.e. the same

collection image being associated to more than one concept

vi of the query).

3.4. Time Complexity Analysis

The search process from figure 1 entails three main steps

whose algorithmic complexity is discussed hereafter:

• query indexing is independent of the test collection

size and, as a consequence, has a O(1) complexity.

• intermediary results look-up is a simple concatena-

tion operation over an inverted index. The number of

entries of the index is independent of the test collection

size since images are indexed with a fixed-size visual

semantic feature. The complexity of the look-up pro-

cess only depends of f(x), which is itself independent

of the total collection size and is run in O(1). If dupli-

cate images appear, they are removed from the list of

results but the complexity of this step is much smaller

than that of the result reranking which is later operated

over f(x).

• result reranking involves the comparison of the

reranking features of the query image to those of the

top f(x) images from in the intermediary list of re-

sults. f(x) being independent of the collection size,

the complexity of similar image search is itself inde-

pendent of the scale of the entire collection (O(f(x))).
For instance, is f(x) = 10, 000, the cost of the rerank-

ing itself is the same regardless if the collection size is

1, 10 or 100 million images. The only scale dependent

operations are the extraction of f(x) features from the

reranking index. This index is stored as a database ta-

ble, which is indexed by the image identifiers and the

physical access to content is done in O(log n). How-

ever, similar image search during reranking step in-

volves arithmetic operations and is much more com-

plex than the access itself. In practice, the time needed

for similarity computation significantly exceeds the

one needed for access to content in the database and

the complexity of the reranking step can itself be con-

sidered as nearly scale-free.

4. Evaluation

We evaluate the performance of the proposed CBIR

pipeline using three public datasets. An ad-hoc retrieval

scenario is retained, i.e. a wide array of queries that are not

known in advance can be presented to the system. Mean av-

erage precision (mAP) provides a robust estimation of sys-

tem performance [26] and is adopted here. The scale collec-

tions whose scale ranges from small to very large. We in-

troduce the datasets, then evaluate overall performance and

finally vary important parameters of the pipeline. The scale

collections whose scale ranges from small to very large.

4.1. Evaluation datasets

Pascal VOC 2007 [8] (VOC07 hereafter) is a sample

of 9,963 Flickr images. It includes a complete assessment

of the presence of 20 concepts in the collection images. A

split that includes 1,000 test and 8,963 collection images is

created and will be published to facilitate reproducibility.

Wikipedia Retrieval 2010 [26] (Wiki hereafter) was

created as part of the ImageCLEF evaluation campaign1

1http://www.imageclef.org/
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and includes 237,434 Wikimedia images. The collection in-

cludes a wide range of content and it is thus fitted for ad-hoc

image retrieval experiments since diversified queries can be

launched over it. We exploit the 2010 campaign query set

and ground truth that include 118 query images associated

to 70 diversified topics.

Yahoo Flickr Creative Commons 100M [25] (abbrevi-

ated YFCC) is currently the largest publicly available mul-

timedia collection. It includes a total of 99.2 million images

licensed under different versions of Creative Commons li-

censes. The images were collected between 2004 and 2014

from a significant subset of Flickr users and the collection

can thus be considered a representative sample of the Web

corpus. A mirror of the dataset is not yet available and we

collected the 96.7 million still images that were still avail-

able in May 2015. A subset of 50 diversified textual topics

from ImageCLEF Wikipedia retrieval 2010 and 2011 query

sets is selected. Three image queries per topic are used in

the evaluation, resulting in a total of 150 examples. Al-

though a manually created ground truth is not available for

YFCC, it has been showed that reliable evaluation can be

performed with an automatically created ground truth [21].

It is created by considering the tags associated to images

by the users. The only inconvenient of this approach is that

performance measures are underestimated by a factor of 3

to 4 due to the incomplete tagging of the collection.

Following the usual TREC evaluation protocol, mAP

scores are computed over the top 1,000 results obtained for

all queries, corresponding to a retrieval objective x = 1, 000
[26] for WIKI and YFCC. Given the small total size of

VOC07, mAP@100 is used in this case.

4.2. Retrieval pipeline implementations

As we mentioned, the scale-free retrieval pipeline in-

cludes two steps: (1) looking-up an intermediary list of

results whose size is f(x) and (2) refinement of results

through an exhaustive search over the content of the inter-

mediary list. Tests are run with the first step only and with

the full pipeline.

The following image features are extracted to implement

our pipeline and to create baseline CBIR systems:

1. Extraction of V GG raw features from the standard Im-

ageNet model with 1, 000 concepts provided in [23].

An L2 normalized version of the last fully connected

layer (fc7), which consists of 4, 096 dimensions, is

exploited here. This layer is kept because its activa-

tions encode an intermediate representation of image

content. V GG was shown to be highly effective for

both image classification [23] and retrieval [21]. An

exhaustive search with V GG over each test collection

constitutes a first strong baseline here.

2. Computation of sparse semantic features, noted SEM ,

Dataset

VOC07 WIKI YFCC

mAP[%]

V GG 55.28 16.83 4.95

SEM 60.37 19.55 4.41

INT 55.64 16.13 3.69

REFV GG 56.22 18.73 5.35

REFSEM 60.59 19.56 5.04
Table 1. CBIR performance obtained with V GG and SEM ,

two strong baselines, and instantiations of the proposed retrieval

pipeline. Reported performance is the best obtained through a grid

search of ci, the number of top concepts retained for each image

in the inverted index. Results are reported for ci = 20, ci = 3 for

VOC07 and WIKI. For YFCC, results are obtained with ci = 20
and ci = 5 for REFV GG and REFSEM . The value of f(x),
which determines the reduction of search complexity, is 1, 000,

1, 000 and 10, 000. REFSEM is run cr = 20 dimensions for the

construction of the RI in all configurations.

using an improved version of the ones introduced by

the authors of [10]. Notably, a ratio of 1 : 100 be-

tween positive and negative examples was empirically

determined as optimal and is used here instead of a

fixed size negative class described in [10]. This ratio

was empirically obtained after a grid search with val-

ues between 1 and 500. These features are computed

using the fc7 layer of V GG as basic feature. Collec-

tion images are represented by a predefined number of

dimensions ci in the inverted index. Query images are

represented by a variable number of dimensions neces-

sary to fulfill the retrieval objective x. These semantic

features were shown to have competitive CBIR per-

formance when compared to the basic CNN features

from which they are extracted. They constitute a sec-

ond strong baseline for our experiments. If the rerank-

ing index is also based on semantic features, a fixed

number cr are used.

We test the following variants of our pipeline:

• INT - intermediary list of results obtained using only

the look-up of the inverted index from in figure 1.

• REFV GG - refined list of results obtained after rerank-

ing of the intermediary results with V GG features.

• REFSEM - refined list of results obtained after rerank-

ing of the intermediary results with semantic features.

4.3. Overall Results

In Table 1, we present the results obtained for the three

test collections. REFV GG and REFSEM , the two imple-

mentations of the proposed pipeline have interesting per-

formance compared to their associated baselines V GG and
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YFCC (mAP[%]) / ci
1 5 10 15 20

INT 3.88 3.72 3.69 3.69 3.69

REFV GG 4.95 5.2 5.31 5.34 5.35

REFSEM 4.59 5.04 5.04 5.01 5.02
Table 2. CBIR performance for different values of ci, the num-

ber of top concepts in Ii. The value of the objective function is

f(x) = 10, 000. REFSEM is run cr = 20 dimensions for the

construction of RI in all configurations.

SEM . Very interestingly, the largest performance gains

(8.1% and 14.3% compared to V GG and SEM ) are ob-

tained for YFCC, the dataset which best approximates the

Web corpus here. The performance gain for YFCC also

entails a drastic reduction of search complexitysince only

10, 000 images out of 96.5 million are used for the rerank-

ing step. For VOC07 and WIKI, our best performance ob-

tained is roughly equal to that of SEM , the best baseline.

Performance is still interesting but lower than that of the

baselines even with a simple usage of look-up (INT ). In

this case, the gap is growing from the smallest to the largest

dataset. Another interesting finding is that the baselines be-

have differently for YFCC compared to VOC07 and WIKI.

V GG has higher performance at large scale (YFCC), while

SEM is consistently better for the other datasets. Follow-

ing a similar trend, the best overall results are obtained with

REFV GG for YFCC and REFSEM for VOC07 and WIKI.

4.4. Parameter Evaluation

In addition to the overall evaluation, we test the robust-

ness of the proposed pipeline by varying its main parame-

ters on the YFCC collection. First, we set f(x) = 10, 000
for reranking, and report results with different values of

ci in table 2. mAP scores are rather stable for the three

but, interestingly, they do not behave identically. While the

best score for INT is obtained for ci = 1, the maximum

value for REFV GG is obtained for ci = 20 and that for

REFSEM for ci = 5. Beyond these values, the quality of

the results starts to decrease slowly and we did not inserted

results. This behavior confirms the conclusions of [10] re-

garding the fact that an optimal semantic feature includes

a few dozens of non-zero dimensions for each image. The

better behavior of INT for ci = 1 is probably explained

by the fact that, when only look-up is used, the top results

should be as clean as possible at the top of the list. Inversely,

the reranking step manages to surface good quality results

that are scattered across the intermediary list.

f(x), the size of the intermediary list of results, ap-

proximates the scalability gain obtained with our ap-

proach. We set ci = 20 and test with f(x) =
{1, 000, 10, 000, 100, 000}, corresponding to scalability

gains of six, five and four orders of magnitude respec-

tively. The obtained results for the three configurations

YFCC (mAP[%])

f(x)

1, 000 10, 000 100, 000
INT 3.69 3.72 3.69

REFV GG 4.2 5.35 4.88

REFSEM 4.72 5.02 4.51

Table 3. Performance for different f(x), the value of the objective

function. II is built using cr = 20 for REFSEM .

from table 3. The look-up of II is efficient since the per-

formance of REFV GG and REFSEM decreases beyond

f(x) = 10, 000. Otherwise said, best performance is ob-

tained with only 10−4 of the full YFCC collection used for

reranking. This finding indicates that most relevant results

are placed near the top of the intermediary results list and

an efficient reranking can be deployed to refine results.

4.5. Scalability Evaluation

Following the complexity analysis presented in Subsec-

tion 3.4, we evaluate the search time for the REFSEM with

that of baselines SEM and V GG. Below, we exclude the

query image processing since it is independent of the tested

collection size when comparing the different methods. The

extraction of V GG features takes approximately 20ms on

a Titan X and that of semantic features another 25ms.

SEM search uses an inverted index that is stored in

RAM and the search process implemented in C++. V GG

uses a forward index that is also stored in RAM and the ex-

haustive search process is implemented in C++, using SSE2

instructions to accelerate computation. To ensure compara-

bility, the sparsity of semantic features is ci = 20 for SEM

and REFSEM . The intermediary results lists has a size

f(x) = 10, 000 for REFSEM . YFCC samples of 1 and 10
million images and the full collection are tested to assess

the variation of search time for the three methods.

For the full collection, the results from table 4 indi-

cate that search is roughly one and three orders of mag-

nitude faster for REFSEM compared to SEM and V GG.

Equally important, the memory footprint is much smaller

for REFSEM since only the pruned index is stored in RAM

while the full inverted index and the full forward indexes

are stored in RAM for SEM and V GG respectively. That

search time increases linearly for SEM and V GG, while

it only increases by 2.8% and 5.6% when increasing the

collection size from 1M to 10M and from 10M to 96.5M

images for REFSEM . As expected, V GG has the worst

behavior since it implies as brute force search operation

over 4, 096 dimensions per image. SEM is better than

REFSEM for 1M images while its performance is worse

for 10M and the full scale collection.

The search time results empirically confirm the complex-

ity analysis presented in Subsection 3.4. They show that
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Collection size

Method 1M 10M 96.5M

REFSEM 107 ms 110 ms 113 ms

SEM 19 ms 192 ms 1935 ms

V GG 2034 ms 20456 ms 204634 ms
Table 4. Reranking search time for different collection sizes as an

average of 100 queries. The presented search times include only

the search steps for each method. Experiments are run on a single

core using an INTEL Xeon E5-2643 at 3.3GHz.

search time for REFSEM increases only marginally with

the size of the collection. This variation is only due to the

logarithmic complexity of the access to the features needed

for reranking.

5. Discussion and conclusions

Our approach to (nearly) scale-free image retrieval has

interesting advantages but also a number of limitations:

• While large, the array of concepts used in the imple-

mentations of the semantic features offers an incom-

plete coverage of concepts that are depicted in Web

images. However, this risk also appears for lower-level

features, including V GG that was exploited to build

the semantic features. This limitation can be tackled

via the extension of ImageNet with manual labeling

or, in a more scalable manner, via the exploitation of

noisy Web corpora to learn more classifiers [10].

• A pruned inverted index is exploited to speed-up the

search process and not all the images of large scale col-

lection are accessible. Overall, the diversity of the ob-

tained results could be smaller compared to that of ex-

haustive search processes that consider the entire col-

lection. However, diversity can be controlled by diver-

sifying the query concepts that are exploited to popu-

late the intermediary list of results and/or by increasing

the retrieval objective.

• The semantic features are learned with simple linear

classifiers whose performance is probably lower than

that of more complex methods. This choice is deliber-

ate since in ensures scalability for both the training of

semantic features and their usage.

• Assuming that the query image is part of the collection,

our pipeline does not guarantee that this image will be

in result list. This happens in cases when the scores

of the query’s top concept(s) do not place it among the

images retained in the inverted index II . This limita-

tion can be circumvented by relaxing the II pruning

in order to include more images per dimension and by

looking-up results close to the activation scores of the

query image for each dimension.

We introduced a pipeline that drastically reduces the

complexity of the CBIR process and does not degrade

the quality of results compared to exhaustive search. We

showed it is indeed possible to implement a nearly scale-

free CBIR, provided that appropriate answers are proposed

to focused research questions that were tackled. To reduced

the search process complexity, queries feature dimensions

are exploited independently of one another and the test col-

lection is efficiently stored as a pruned inverted index. Our

results indicate sparsified semantic features can be exploited

to represent images and to optimize the quantity of image-

related information encoded by each dimension. After this

reduction, any feature can be used to refine a fixed-size in-

termediary list of results and improve the overall perfor-

mance of the system. The refinement step is nearly inde-

pendent of the collection scale since only the retrieval of

features that correspond to the intermediary list depends on

the collection with logarithmic complexity.

Future work will focus on improving different aspects

of the proposed approach. First, if we include query pro-

cessing, the overall retrieval time for 96.5 million images is

just over 150 ms. We will work towards further reducing it.

The computation of semantic features takes 25ms and an

approximate version of it will be implemented in order to

speed it up. Equally important, the implementation of the

reranking index can be further optimized, for instance by

exploiting an efficient NoSQL representation format. Sec-

ond, the pipeline is generic enough to easily exploit better

reranking features that will be incorporated upon availabil-

ity. Third, one current limitation regards the coverage of

the semantic feature. We will investigate ways to add sup-

plementary visual concept detectors so as to cover a larger

spectrum of queries for instance by using webly supervised

methods to add new concepts [10].
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