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Abstract

We present a new “learning-to-learn”-type approach for

small-to-medium sized training sets. At the core lies a deep

architecture (a Set2Model network) that maps sets of ex-

amples to simple generative probabilistic models such as

Gaussians or mixtures of Gaussians in the space of high-

dimensional descriptors. The parameters of the embedding

into the descriptor space are discriminatively trained in the

end-to-end fashion. The main technical novelty of our ap-

proach is the derivation of the backprop process through

the mixture model fitting. A trained Set2Model network fa-

cilitates learning in the cases when no negative examples

are available, and whenever the concept being learned is

polysemous or represented by noisy training sets. Among

other experiments, we demonstrate that these properties al-

low Set2Model networks to pick visual concepts from the

raw outputs of Internet image search engines better than a

set of strong baselines.

1. Introduction

The ability to learn concepts from small training sets has

emerged as an important frontier in AI. It is well known [29]

that such ability is a hallmark of human intelligence, as hu-

mans demonstrate remarkable ability to learn complex vi-

sual concepts from only few representative images. Despite

surpassing human intelligence in many narrow application

domains, AI systems are not able to match this human abil-

ity.

Such ability has important practical applications. For ex-

ample, to pick up a new visual concept, most modern com-

puter vision systems require a set of images depicting this

concept. Such an image set is usually mined from the World

Wide Web using an Intenet image search engine or comes

from a website containing tagged images. Most notable and

influential in this respect is the Image-Net project [5] that

has the goal of obtaining a “clean” image set for each of

the 80,000+ visual synsets corresponding to English nouns.

For each such noun, the image set is first obtained by query-

ing the search engine and is then curated through crowd-

sourced human labour. The second step (screening by hu-

mans) represents a significant burden. As a result, while the

positive influence of the Image-Net project on the fields of

computer vision and artificial intelligence has been enor-

mous, the progress towards its initial goal has stalled at

about one quarter (at the time of submission 21,841 synsets

out of 80,000 have been indexed).

The use of uncurated image sets from Internet search en-

gines can potentially enable computers to learn visual con-

cepts automatically and without humans in the loop. Such

capability is highly beneficial for intelligent systems, es-

pecially in certain scenarios, such as open-vocabulary im-

age retrieval that allows users to formulate queries to image

collections using arbitrary natural language queries. The

use of uncurated image sets obtained from the web, how-

ever, is known to be challenging [8, 15], since despite the

ever-improving performance of image search engines, the

returned image sets still contain irrelevant images, since

many natural language queries are inherently polysemous,

and since many visual concepts often correspond to differ-

ent visual aspects (e.g. outdoor and indoor views of a certain

landmark building).

Here, we introduce a new meta-learning approach that

is based around a new deep learning architecture called

Set2Model (S2M) network. An S2M network can be trained

to learn new concepts from small-to-medium sized train-

ing sets. To map a set of examples to a generative model,

a pre-trained S2M network first embeds them into a high-

dimensional space, and then fits a generative model in that

space to the outputs of the mapping. The training process

for the S2M model considers a large set of modeling tasks

and corresponds to the tuning of the parameters of the non-

linear embedding in order to facilitate easy generative learn-

1357



͞raspberry͟

Internet 

image 

search

Deep embedding 

(end-to-end 

meta-learning)

Image dataset

Few-shot fitted 

mixture model

dataset 

descriptors

Set2Model Network

Figure 1. Top (blue): the Set2Model (S2M) network, which takes the set of data points (e.g. images), maps them through a non-linear

architecture (e.g. a deep ConvNet) to a high-dimensional descriptor space, and then fits a generative model (e.g. Gaussian mixture) to the

resulting set of descriptors. The parameters of the deep embedding are optimized in the end-to-end meta-learning stage, while the generative

model is fitted in the few-shot learning stage. Bottom (green): our motivating application (Internet-based learning and retrieval). Given

a visual concept “raspberry”, the user obtains a noisy image set depicting raspberries from an Internet image search engine. A pre-meta-

learned Set2Model network then maps the set to a mixture model in the descriptor space. Given an unannotated dataset of images, the user

can search for images with raspberries by mapping every image to the descriptor space (using the same deep embedding from the S2M

network) and evaluating the likelihood w.r.t. the obtained model.

ing for the embedded data.

Unlike analogous meta-learning approaches [28, 31, 32]

that learn to learn discriminative classifiers, a trained

Set2Model outputs generative models (in this work, we in-

vestigate Gaussians and Gaussian mixtures with diagonal

covariance matrices). Consequently, a trained Set2Model

can learn concepts from only positive examples, which

is a more natural setup in many scenarios where nega-

tive/background class can be much more diverse than the

positive class. Through the use of Gaussian mixtures, S2M

networks can also efficiently handle polysemous concepts

as well as outliers in the provided training sets. This makes

Set2Model networks suitable for picking up concepts from

uncurated Internet search engine outputs.

Below, we briefly discuss relevant prior works in Sec-

tion 2, detail our approach in Section 3, present results of

experimental comparisons in Section 4 and conclude with a

short discussion in Section 5.

2. Related work

Meta-learning and Few-shot Learning Meta-learning

(aka “learning-to-learn”) [6, 26] has been a popular ap-

proach to handle multi-shot learning scenarios. Interplays

between discriminative training and generative probabilis-

tic models in the small training size regime has been in-

vestigated in [23, 9, 18], where some of the parameters of

such models were optimized based on discriminative crite-

ria. Minka [21] has pointed out a principled way to derive

discriminatively-trainable models.

Learning concepts from small training sets (sometimes

referred to as “few-shot learning”) has been a subject of in-

tense recent research in meta-learning. The common idea

is to learn internal representation, where few-shot learning

is simple by observing a large number of few-shot learning

tasks. The previous approaches [28, 25, 32, 31] invariably

focused on learning multi-class discriminative classifiers for

such few-shot learning problems. Our approach however

focuses on single-concept learning problems, which are pre-

sented in the form of positive one-class samples. We sep-

arate discriminative and generative learning across the two

layers of our meta-learning system. In particular, once the

embedding within a S2M network is trained discrimina-

tively, a generative learning process in the descriptor space

(which is fixed after the S2M training) is used to fit a gen-

erative model over those embeddings.

The approach [20] learns a metric in the image feature

domain in order to improve distance-based image classifica-

tion and shows that the resulting metric generalizes well to

the classes unseen during training. It also proposes a Near-

est Class Mean (NCM) classifier as a distance to a mean of

image class descriptors which we use as one of the baseline

methods.

Historically, Internet image search relied mostly on tex-

358



tual information surrounding the image using image content

to improve ranking [7, 27].

[1] addressed large-scale image retrieval problem using

image sets as queries and SIFT-based bag-of-words vectors

as image features, considering several variants including bi-

nary SVM learned on the query set with randomly sampled

negatives, ranking using averaged query feature vectors and

averaging of the rankings for each individual query from

the query set. The works [4, 3] developed these methods

further proposing cascades of classifiers for real-time on-

the-fly object category retrieval in large image and video

datasets using various features including deep features in

[3].

Our approach is also closely related to certain direc-

tions pursued in the information retrieval and multimedia

search communities including a large body of query rerank-

ing approaches, some of which use discriminative learning

[10, 33].

3. Set2Model Networks

Set2Model networks imply two levels of learning fol-

lowing the ”learning-to-learn” principle (e.g., [25]). It im-

plies that a system has two timescales, and the rapid one

is associated with learning to solve a task, while the grad-

ual one aims at acquisition of knowledge across tasks. In

case of the Set2Model network, on the rapid timescale the

network maps a number of samples to a generative model,

while on the gradual timescale the parameters of the net-

work are tuned based on a large number of sample class-

modeling problems. We call the training process happening

at the gradual timescale the meta-learning stage. The ap-

plication of the network to a particular problem is called

the learning stage. Below, we discuss the details of these

stages, first starting with the learning stage, and then dis-

cussing the meta-learning stage.

3.1. Learning models with pre­trained S2M net­
works

The learning stage (Figure 1,top) considers the set of ex-

amples X = {x1, x2, . . . , xN}, X ⊂ X , such as a set of

images depicting a certain concept. In the learning stage,

the S2M network maps X to a probabilistic model that can

be used to evaluate probabilities of other elements belong-

ing to the same concept.

Modeling the probability distribution in the original

space (e.g. images) might be overly complex. Therefore,

the S2M network firstly maps the elements of X to a spe-

cially constructed latent space of descriptors and then uses

a simple parametric probability density function (pdf) to

model it in the new space. We denote this mapping as

f(x;w) : X 7→ R
n, whereas w denotes the parameters

of the mapping. In this work, we focus on deep convolu-

tional networks as such mappings, though our approach is

not specific to a particular architecture.

The mapping f thus transforms the original set X into a

descriptor set D = {d1, d2, . . . , dN}, where di = f(xi;w).
The last stage of the learning process fits a parametric gener-

ative model with the pdf pGM (d; θ) to the set D, where θ are

the model parameters. In this work, we consider Gaussian

and mixture of Gaussian models with diagonal covariance

matrices. We chose a generative approach to descriptor set

modelling because it led to better precision while using the

pre-learned deep features in our experiments (see Table 1,

’Gauss-PL’ vs ’SVM-PL’).

The fitting of the model to the set D is performed us-

ing maximum likelihood (ML). Thus the parameters θ∗ that

maximize the likelihood function l(θ|D) are sought:

θ∗ = argmax
θ

l(θ|D), l(θ|D) =
N
∑

i=1

log pGM (di, θ).

(1)

Overall, the learning performed by an S2M network can be

regarded as the mapping:

F : X → θ∗. (2)

And the relevance of a new data point (e.g. an image) z to

the concept represented by the set X can be estimated using

the obtained density function:

p(z|X;w) = pGM (f(z;w), F (X;w)). (3)

The resulting probabilistic relevance measure can be used

e.g. to perform retrieval from an untagged set (Figure 1,bot-

tom).

3.2. Meta­Learning S2M Networks

The goal of the meta-learning is to find the parameters

w of the mapping f(x,w) such that the learning process

discussed above works well for different concepts.

The meta-learning is performed using the set of tuples

{Ti = (Xi, Z+,i, Z−,i)}, where each tuple Ti includes the

concept-describing set Xi = {x1
i , x

2
i , . . . , x

Ni

i }, the rele-

vant examples set Z+,i = {z1+,i, z
2
+,i, . . . , z

M+,i

+,i } and the

irrelevant examples set Z−,i = {z1
−,i, z

2
−,i, . . . , z

M−,i

−,i }.

For example, X1 can be some set of images of apples from

the Internet, the set of Z+,1 can be another set of different

images also containing apples, and all the images from Z−,1

will not contain apples. The second training tuple can then

include the sets X2 and Z+,2 of pear images and the set of

Z−,2 of non-pear images, and so on.

Generally, the meta-learning stage seeks the parameters

w such that across all training tuples, the probabilistic rel-

evances estimated using (3) are higher for the members of

the relevant sets than for the members of the irrelevant sets,

i.e.:

p(zk+,i|Xi;w) > p(zl
−,i|Xi;w), (4)
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for various i, k, l.

There are several ways to design loss functions that seek

to enforce (4). E.g. a loss that draws random elements of

relevant and irrelevant sets and computes a monotonic func-

tion of the differences in their relevance values. Here, we

use a tuple-level loss that directly estimates the probability

of the (4) to be violated. Given a tuple (Xi, Z+,i, Z−,i),
let θ∗i be F (Xi;w). Using (3), we compute the relevance

scores for the elements of the relevant and irrelevant sets.

Let R+,i be the set of relevances for the rel-

evant set Zi,+ (i.e. R+,i = {p(z1+,i|Xi;w),

p(z2+,i|Xi;w) . . . p(z
M+,i

+,i |Xi;w)}), and let R−,i be

the set of relevances for the irrelevant set Zi,−. Then the

loss based on the probability of the violation of (4) can be

computed as:

L(w) =
∑

i

1

M+,iM−,i

M+,i
∑

k=1

M−,i
∑

l=1

χ
[

Rk
+,i < Rl

−,i

]

, (5)

where χ[·] returns one if the argument is true and zero other-

wise. Here, each term in the outer summation corresponds

to the empirical estimate of the probability of violation of

(4).

While the loss (5) is not piecewise-differentiable, we

consider a histogram trick recently suggested in [30] for

metric learning. The idea is to accumulate the relevances

for the relevant and irrelevant sets into histograms, and then

estimate the required probability (5) using these histograms.

Here, to compute the histograms, we fix the triangular ker-

nel density estimator K(s, ω) that for the argument s and

the width parameter ω is defined as:

K(s, ω) = max{1−
2|s|

ω
, 0}. (6)

We choose lmin,i and lmax,i to be the lower and the upper

bounds of the numbers in the union of R+,i and R−,i, and

further accumulate the two normalized histograms h+,i and

h−,i spanning the range from lmin,i to lmax,i having B bins

each and corresponding to the sets R+,i and R−,i respec-

tively. As discussed in [30], the entries of the histograms

h+,i and h−,i depend in a piecewise-differentiable manner

on the entries of R+,i and R−,i.

Given the two histograms, the loss for the tuple

(Xi, Z+,i, Z−,i) is defined as:

L(w) =
∑

i

B
∑

k=1

hk
−,i

B
∑

l=1

hl
+,i , (7)

where hk
−,i and hl

+,j denote the entries of the histograms.

Note that the new loss (7) can be regarded as piecewise-

differentiable approximation to the non-differentiable loss

(5).

Given the loss (7) (or any other piecewise-differentiable

loss enforcing (4)), the meta-learning process follows the

standard stochastic optimization procedure. The training

tuples are sampled randomly, the stochastic approximations

of the loss (7) based on single tuples are computed by for-

ward propagation. During forward propagation, the maxi-

mum likelihood fitting (1) is done by conventional means

(e.g. closed form for Gaussian distribution, EM-algorithm

for Gaussian mixture model). The estimated loss is then

backpropagated through the S2M network. Any of the

SGD-based optimization algorithms such as ADAM [12]

can be used to update the mapping weights w. Backprop-

agation through the S2M network F (X,w) however relies

on the ability to backprop through the maximum-likelihood

model fitting (1). This backprop step is discussed below.

3.3. Backpropagation through model fitting

We now detail the backpropagation through the ML

model fitting (1), i.e. the computation of the partial deriva-

tives ∂θ∗

∂di
(j)

, where ·(j) denotes the j-th component of a vec-

tor. We start with the Gaussian model, for which this com-

putation is based on a simple closed-form expression, and

then proceed to the case of Gaussian mixtures.

In the first case, we consider the Gaussian pdf

pG(d, θ) = N (d, µ,Σ):

N (d, µ,Σ) = (2π)−n/2|Σ|−1/2e−1/2(d−µ)TΣ−1(d−µ),

(8)

where µ is a mean and Σ is a covariance matrix which we

take to be diagonal, and θ =
(

µT , φT
)T

, denoting Σ =
diagφ. The optimal (in the ML sense) parameters θ∗ can

then be found as:

µ∗ =
1

N
di, φ∗

(i) =
1

N

∑

j

(

d
j
(i) − µ∗

(i)

)2

, (9)

Differentiation of these formulas w.r.t. the descriptor vec-

tors di leads to the following:

∇diµ∗ =
1

N
1
n,

∂φ∗

(i)

∂d
j
(k)

= δik
2

N
(dj(k) − µ∗

(i)), (10)

where 1
n is a vector of ones of dimension n, δik is a Kro-

necker symbol, which is zero when i 6=k and one for i=k.

In the case of Gaussian mixtures (GMM), we consider

the following pdf:

pGMM (d, θ) =
k

∑

i=1

vi N (d, µi,Σi), (11)

where k is a number of GMM components, N denotes

Gaussian pdfs, {µi}
k
i=1 are the means, Σi = diag(φi) are

the diagonal covariance matrices, {vi}
k
i=1 are weights of
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the corresponding components and θ consists of the means,

covariance diagonals and weights concatenated. The fol-

lowing constraint on the weights should be satisfied:

c(θ) =

k
∑

i=1

vi − 1 = 0. (12)

As θ∗ delivers maximum to an optimization problem with

equality constraints, the method of Lagrange multipliers can

be used to derive conditions on the partial derivatives. We

consider the scalar multiplier λ∗ corresponding to the con-

straint (12) that maximizes the Lagrangian L(θ, λ):

L(θ, λ) = l(θ|D) + λc(θ), (θ∗, λ∗) = argmax L(θ, λ),
(13)

The following conditions of optimality then holds for θ∗ and

λ∗:
{

∇θL(θ
∗, λ∗) = 0,

∇λL(θ
∗, λ∗) = 0.

(14)

Applying differentiation over di brings the following sys-

tem of equations:

{

∂2

∂θ2L∇T θ∗ + ∂2

∂λ∂θL∇
Tλ∗ + ∂2

∂di∂θL = 0,
∂2

∂θ∂λL∇
T θ∗ + ∂2

∂λ2L∇Tλ∗ + ∂2

∂di∂λL = 0,

(15)

and these are linear equations w.r.t. unknown matrix ∇θ∗

and vector ∇λ∗ of partial derivatives w.r.t. di(j) (in particu-

lar, ∇θ∗ is composed of the values ∂θ∗

∂di
(j)

that are sought in

this derivation). If m is the dimensionality of θ, then (14)

contains m+1 equations. As each of the equation is differ-

entiated by nN variables corresponding to the descriptors,

the system (15) contains (m+1)nN equations on the same

number of entries in ∇θ∗ and ∇λ∗. Solving the system

(15) then yields the values of the partial derivatives ∂θ∗

∂di
(j)

.

The linear system solution is performed as the part of the

backpropagation process. The system very often becomes

sparse allowing for the significant solution process speedup,

see appendix A1.

Finally, we note that a similar derivation can be con-

ducted for other generative probabilistic models. Further-

more, one could address discriminative model fitting (e.g.

logistic regression) in the same setting as in [28, 25, 32, 31],

where the set X is augmented with class labels.

4. Experiments

Below we provide the experimental evaluation of

Set2Model networks (both using single Gaussians and

Gaussian mixtures as generative models). We investi-

gate the importance of learning the underlying features.

We show that Set2Model networks can be used as gen-

erative set models and compare the performance of the

Set2Model networks to a number of baselines. Also we ap-

ply the Set2Model networks in a few-shot learning problem

mainly for the sake of comparison to other meta-learning

approaches.

4.1. Protocols

We evaluate the S2M networks in three different sets

of experiments. The bulk of the experiments investigates

image retrieval with concept-describing image sets gener-

ated using Internet image search engines (web-initialized

retrieval). Then, we evaluate the possibility of handwrit-

ten character retrieval using the Omniglot dataset. Finally,

we show that S2M networks can be used for classification

of the characters from Omniglot. In particular, to solve the

5-way or 20-way classification problem we build a genera-

tive model for each class and compare the ranks w.r.t. these

models during test time. The latter experiment shows that

the S2M networks can achieve few-shot learning accuracy

comparable to the state of the art discriminative approaches

although they are not specifically tailored for this task. The

results of retrieval experiments are in the Table 1, and the

character classification results are in the Table 2.

In each case, we split classes into training, validation,

and testing. We form the training set out of the training

classes, and we train the methods (including ours) on such

classes. The methods are compared on the test set. During

test, we use the mean average precision (mAP) as the ac-

curacy metric for the retrieval. The meta parameters for all

methods are tuned on the validation set.

We perform web-initialized experiments with three dif-

ferent datasets. Google image search is used to obtain

the concept-describing sets at all stages (the API for the

search engine typically returns 90-100 images). We use

class names provided with the datasets to define text queries

to the engine. No textual augmentations or search modi-

fiers have been used. Since some of the considered datasets

have overlaps with the search engine output, before running

the experiments, we identified potential near-duplicates be-

tween the Google search results and the datasets using

deep descriptors from non-finetuned convolutional network

(AlexNet). We then manually checked the potential pairs

and removed the true near duplicates from consideration.

4.2. Implementation details

We use Caffe [11] framework to work with convolu-

tional networks. Web-initialized retrieval experiments are

based on the AlexNet architecture [14] and character re-

trieval ones are based on the LeNet architecture [19] (Caffe

versions are used in all cases). We note that more mod-

ern deep convolutional architectures could be used in place

of AlexNet or LeNet, however such substitution is likely to

benefit all methods equally. For the character classification,

we use our Caffe implementation of the network described
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Figure 2. Retrieval comparison for the ImageNet dataset (query = ‘crucian carp,Carassius carassius,Carassius vulgaris,’) - left and the

Oxford Flowers dataset (query = ‘silverbush’) right. Top row: part of the query image set obtained from Google Search API using the

query. Other rows: the top ranked images provided by various methods, namely AVG-FT (average), NN-FT (nearest neighbor), S2M-

Gauss (one Gaussian), S2M-GMM2 (mixture of two Gaussians), S2M-GMM3 (mixture of three Gaussians) and S2M-GMM4 (mixture of

four Gaussians) using the fine-tuned descriptors, SVM-PL using the pre-learned ’fc8’ features. Color bars encode that image belongs to

a certain mixture component. End-to-end-based methods perform better on the given examples. Mixture models successfully filter noisy

search engine outputs and capture multiple visual aspects of relevant images.

in [31]. It consists of a stack of modules, and each mod-

ule is a sequence of 3× 3 convolution with 64 filters, batch

normalization, Relu non-linearity and 2×2 max-pooling. It

takes 28×28 images as input and produces 64-dimensional

features.

When performing baseline experiments with pre-learned

features, we use 1000-dimensional features that are pro-

duced by AlexNet (for the tasks we consider, these fea-

tures performed optimally or close to optimally compared

to other layers). When performing end-to-end learning in

case of web-initialized or character retrieval experiments,

we replace the last fully connected layer with a smaller one

of the same type, of size 128 or 100 respectively.

We perform l2-normalization of the descriptors at the

end of the network. In the web-initialized experiments, we

start learning from the network weights of the AlexNet pro-

vided with Caffe, while the last fully-connected layer for

the end-to-end trained architectures is initialized randomly.

The set modelling layer and the loss layer have been im-

plemented using Theano [2], which was used mainly for

symbolic differentiation. For back-propagation and learn-

ing we use the Caffe implementation of the ADAM algo-

rithm [12] with momentum 0.9. We choose the learning rate

and the termination moment using validation sets. To solve

the linear system (15), we utilize its sparsity, since in most

cases the coefficient matrices consist of diagonal blocks.

Training of the S2M networks includes an EM algorithm

for fitting the GMMs. When a class was encountered for

the first time during training, GMM fitting was started with

random initialization, and the resulting GMM parameters

were memorized. Next time when samples from this class

appeared, the saved parameters served as an initial point for

the EM algorithm.

4.3. Baselines

Below we describe a set of baseline algorithms. For each

of these baselines, we use a certain (not necessarily proba-

bilistic) relevance score r(z|X;w) in the same way as we

use p(z|X;w) in the S2M network. The following baselines

are considered:

• The mean-based system (AVG), which ranks the im-

ages in the test set based on the scalar product be-

tween their descriptors and the mean of the descriptors

f(xi, w) of the concept-describing set:

rAVG(z|X;w) =

(

1

N

∑

f(xi, w)

)T

z. (16)

• The nearest neighbor (NN) ranker that ranks images

in the test set based on the maximum of their scalar

product with the query set descriptors:

rNN (z|X;w) = max
i

(

f(xi, w)
)T

z. (17)
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Model ImageNet
RGBD

Object

Oxford

Flowers
Omniglot

NN-PL 0.070 0.316 0.076 -

NN-FT 0.073 0.318 0.528 0.145

SVM-PL 0.080 0.481 0.145 -

AVG-PL 0.183 0.556 0.212 -

AVG-FT 0.236 0.669 0.439 0.661

Gauss-PL 0.186 0.529 0.240 -

S2M-Gauss 0.254 0.706 0.467 0.740

Gauss-AVG-FT 0.246 0.676 0.465 0.695

GMM2-PL 0.180 0.483 0.301 -

S2M-GMM2 0.265 0.711 0.560 0.689

GMM3-PL 0.174 0.473 0.319 -

S2M-GMM3 0.258 0.658 0.581 -

GMM4-PL 0.178 0.455 0.327 -

S2M-GMM4 0.250 0.690 0.577 -

Table 1. Mean average precisions for the experiments (see text

for discussion). Top row: dataset. The baselines either use pre-

learned (’-PL’) or fine-tuned (’-FT’) deep features. Gauss-Avg-FT

baseline uses features fine-tuned using an AVG baseline (same as

AVG-FT), but a Gaussian model on top. Methods with the ’S2M’

prefix are the proposed ones. We do not perform any fine-tuning

for the SVM, and we do not use GMM with 3 or 4 components

with Omniglot due to small size of the concept-describing sets

that contain only 10 images. The best achieved results are bolded.

The Set2Model networks (S2M-) outperform baselines. End-to-

end finetuning improves the results considerably for all methods

(’-PL’ vs ’-FT’). Also, using correct end-to-end learning for a sin-

gle Gaussian (S2M-Gauss) performs better than using end-to-end

learning for mean-based retrieval, while using Gaussian models

fitted to resulting features during retrieval (Gauss-AVG-FT).

Model 5-way 20-way

Matching Nets [31] 0.989 0.985

MANN (No Conv) [25] 0.949 -

Convolutional Siamese Net [13] 0.984 0.965

S2M-Gauss 0.985 0.956

Table 2. Results for the 5-shot 5-way or 20-way classification on

the Omniglot dataset. We performed meta-learning of S2M-Gauss

based on the same underlying deep network as described in [31]

using the protocol described in Section 3. During classification,

we choose the class label corresponding to the maximal rank pro-

duced by the S2M network for 5 (or 20) considered classes. The

testing protocol follows [31].

• The support vector machine (SVM) 1-vs-all classifier

as in [1], where SVM is learned using the query images

as positive class and 2|X| randomly sampled images

from other queries as negative class. If we denote the

weight vector of the SVM as u({f(xi, w)}Ni=1), then

the ranking function can be defined as:

rSVM (z|X;w) = zTu({f(xi, w)}Ni=1). (18)

We evaluate these baseline methods as well as single

Gaussian and GMM models for the pre-learned descrip-

tors(’-PL’ in Table 1). We also consider fine-tuning of the

convolutional network for the mean (AVG) and the near-

est neighbor (NN) ranking (’-FT’ in Table 1). In this case,

we use exactly the same learning architecture as explained

in the previous section, but plug the corresponding rele-

vance measure rNN (Z|X;w) or rAVG(z|X;w) instead of

(3) into the computation of the histogram loss.

Finally, our strongest baseline (Gauss-AVG-FT in Ta-

ble 1) is an ablated S2M network that is fine-tuned for the

mean-based retrieval, but uses Gaussian model fitting dur-

ing retrieval in the same way as our model based on single

Gaussian does. Alongside the baselines, we report the re-

sults of our system (S2M network) for different number of

Gaussians in the mixtures while the same number of mix-

ture components is used during retrieval and during meta-

learning (’S2M-Gauss’, ’S2M-GMMm’, m = 2, 3, 4).

4.4. Results

The quantitative results for all datasets are summarized

in Tables 1, 2. We also illustrate retrieval performance of

some of the compared methods at the Figure 2. We indicate

whether the image truly belongs to the query class by show-

ing a corresponding symbol in the bottom-right corner of

the image, output images also have a colored bar encoding

a particular mixture component ’responsible’ for this image.

ImageNet Our first experiment uses classes from the Im-

ageNet dataset [5]. Since we use networks pretrained on

the ILSVRC classes [24], we made sure that 1000 classes

included into the ILSVRC set are excluded from our exper-

iments.

To perform the experiments, we selected 509 random

synsets for training, 99 synsets for validation and 91 synset

for testing. The results (Table 1) demonstrate that end-to-

end learning is able to improve the mAP of the baseline

methods by 1-4 percent and of the proposed methods based

on distribution fitting by 5-7 percent. Importantly, the gap

between the model that fits a single Gaussian and the model

that uses the mean vector is almost 2 percent. Using mixture

models with two or three components improves the perfor-

mance further.

We also observe, that uncurated Google image search

outputs for some of the ImageNet synsets are very noisy,

S2M networks often group all relevant query images into a

single Gaussian component (Figure 2-right). This is often

a desirable performance, since being able to absorb irrel-

evant aspects of the query into a separate component may

allow to learn a better model for the relevant aspect. At

the same time, when multiple aspects are relevant, multiple

mixture components are often able to retrieve them as well

(Figure 2-left and Figure 3).

RGBD This experiment uses the RGBD-Object [16]

dataset. RGBD-Object contains multiple view images of
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Figure 3. Set2Model networks can handle polysemous queries in

a natural way. Top: part of the query image set obtained from

Google Search API (queries=’supernova’ and ’seal, sealing wax’),

bottom: relevant images retrieved by the three components of the

GMM3 model returned by the corresponding S2M network. In

these cases, each mixture component captures a certain aspect of

a visual concept.

200 tabletop objects of 51 category .

The amount of relevant images in the Internet search re-

sults in this case differs greatly from category to category.

For the polysemous categories such as ’apple’, the proposed

generative models can give significant benefit The results in

Table 1 demonstrate even greater improvements from the

end-to-end learning (perhaps due to a bigger domain gap

between the ImageNet and this dataset). Such training im-

proves the mAP for the mean classifier by nine percent and

for the proposed methods by 11-14 percent. The methods

based on distribution fitting again perform better.

Oxford Flowers We use the Oxford Flowers-102 dataset

[22], consisting of images of 102 different UK flowers. The

dataset was split into 80 categories for training and valida-

tion, and 22 for testing. The results in the Table 1 show

that end-to-end learning procedure improves the mAP on

14 percent for the mean classifier, 16-19 percent for the

proposed models. Figure 2 shows an example of the pol-

ysemous and noisy query (’silverbush’), where the ability

of the Gaussian mixture models to capture multi-modal dis-

tributions provides our approach a big advantage.

Omniglot Finally, we used the Omniglot dataset [17]

(which has become the standard testbed for meta-learning

methods) to test the ability of the S2M network to use

small concept-describing sets for generative model con-

struction. The Omniglot dataset consists of 20 hand-drawn

images for each of the 1623 characters from different al-

phabets. In the retrieval experiment, for learning and test-

ing we use concept-describing, relevant and irrelevant sets

of ten images, composing one batch of five training tuples

(Xi, Z+,i, Z−,i). We randomly split the dataset into 1200

classes for validation and training, and 423 for testing. We

rotate images by randomly generated multiples of 90 de-

grees during testing and training, following [31]. Due to

the small size of the concept-describing sets, S2M networks

based on mixtures of two Gaussians are less accurate, and

mixtures of more components were not evaluated. The re-

sults in Table 1 show that single Gaussian model performs

best .

Furthermore, to compare against the recent few-shot

learning methods we performed a classification experiment

on this dataset. During meta-learning, we used a batch con-

sisting of three training tuples with |Xi| = 5, |Z+,i| = 15,

|Z−,i| = 20. During test time, to do c-way classification we

build c models using the S2M network and choose a class

label corresponding to the model producing a maximal rank

for the test example. We compare the results to the state of

the art methods at the Table 2. Although the S2M network

is not trained to discriminate between classes, still it can be

used this way during test time and provide competitive re-

sults: better than [25], similar to [13] and not much worse

than [31].

5. Summary

In this work we have proposed Set2Model networks as a

new architecture for meta-learning that is particularly suit-

able for retrieval applications, where queries are given as

sets of positive samples. The Set2Model networks are able

to map such queries into probabilistic models in specially-

designed descriptor spaces. The parameters of such descrip-

tor embeddings are optimized end-to-end, while taking the

model fitting into account. We have shown experimentally

that such proper end-to-end training is beneficial for the re-

trieval quality.

In order to gain the ability to handle mixture model fit-

ting within our approach, we have derived a way for back-

propagation through the maximum likelihood model fitting.

We have presented a number of experiments for image re-

trieval based on noisy image sets obtained from the Internet

image search engines as well as for the hand-drawn char-

acter retrieval that show the ability of the S2M networks to

generalize across classes and handle the challenges of vi-

sual concept modeling from small and medium-sized train-

ing sets better than baseline models. We have also shown

that generatively trained S2M networks can achieve similar

accuracy to the state of the art in few shot learning prob-

lems.
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