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Abstract

Multi-task learning is a promising approach for effi-

ciently and effectively addressing multiple mutually related

recognition tasks. Many scene understanding tasks such as

semantic segmentation and depth prediction can be framed

as cross-modal encoding/decoding, and hence most of the

prior work used multi-modal datasets for multi-task learn-

ing. However, the inter-modal commonalities, such as one

across image, depth, and semantic labels, have not been

fully exploited. We propose a multi-modal encoder-decoder

networks to harness the multi-modal nature of multi-task

scene recognition. In addition to the shared latent represen-

tation among encoder-decoder pairs, our model also has

shared skip connections from different encoders. By com-

bining these two representation sharing mechanisms, the

proposed method efficiently learns a shared feature repre-

sentation among all modalities in the training data. Experi-

ments using two public datasets shows the advantage of our

method over baseline methods that are based on encoder-

decoder networks and multi-modal auto-encoders.

1. Introduction

Scene understanding is one of the most important tasks

for various applications including robotics and autonomous

driving and has been an active research area in computer vi-

sion for a long time. The goal of scene understanding can

be divided into several different tasks such as depth recon-

struction and semantic segmentation. Traditionally, these

different tasks have been studied independently using a ded-

icated methodology. Recently, there is a growing demand

for a single unified framework to achieve multiple tasks at

a time. By sharing a part of the learned estimator, such a

multi-task learning framework is expected to achieve better

performance with a compact representation.

In most of the prior work, multi-task learning is for-
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Figure 1. Overview of our multi-modal encoder-decoder networks.

Our model takes data in multiple modalities such as RGB images,

depth, and semantic labels as input, and generates multi-modal

outputs in a multi-task learning framework.

mulated with a motivation to train a shared feature rep-

resentation among different tasks for efficient feature en-

coding [2, 17, 25]. Accordingly, in recent convolutional

neural network (CNN)-based methods, multi-task learn-

ing often employs an encoder-decoder network architec-

ture [2, 17, 13]. If, for example, the target tasks are seman-

tic segmentation and depth estimation from RGB images,

multi-task networks encode the input image to a shared low-

dimensional feature representation and then estimate depth

and semantic labels with two distinct decoder networks.

While such a shared encoder architecture can constrain

the network to extract a common feature for different tasks,

one limitation is that it cannot fully exploit the multi-modal

nature of the training dataset. The representation capabil-

ity of the shared representation in the above example is

not limited to image-to-label and image-to-depth conver-

sion tasks, but it can also represent the common feature

for all of the cross-modal conversion tasks such as depth-

to-label as well as within-modal dimensionality reduction

tasks such as image-to-image. By incorporating these addi-

tional conversion tasks during the training phase, the multi-
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task network is expected to learn more efficient shared fea-

ture representation for the target tasks.

In this work, we propose a multi-modal encoder-decoder

networks for multi-task scene recognition. Our model con-

sists of encoders and decoders for each modality, and the

whole network is trained in an end-to-end manner tak-

ing into account all conversion paths – both cross-modal

encoder-decoder pairs and within-modal self-encoders. As

illustrated in Fig. 1, all encoder-decoder pairs are connected

via one shared latent representation in our method. In ad-

dition, inspired by the U-net architecture [20, 12], decoders

for pixel-wise image conversion tasks such as semantic seg-

mentation also have shared skipped representations from

all encoders. Since the whole network is jointly trained

with multi-task losses, these two shared representations are

trained to extract the common feature representation among

all modalities. Unlike multi-modal auto-encoders [2], our

method can further utilize auxiliary unpaired data to train

self-encoding paths and consequently improve the cross-

modal conversion performance. In the experiments using

two public datasets, we show that our proposed architec-

ture performs significantly better on cross-modal conver-

sion tasks.

The contributions of this work are three-fold. First,

we propose a novel multi-modal encoder-decoder networks

which fully utilizes the multi-modal training data to learn

the shared representation among different modalities. Sec-

ond, we also show that the performance of the proposed

method can be further improved by using auxiliary unla-

beled data. Finally, through the experimental validation on

two public datasets, we show that our method outperforms

both of the baseline multi-task network and multi-modal

auto-encoders.

2. Related Work

Multi-task learning is motivated by the trait that feature

representation for one task could be of use for the other

tasks [3]. In prior work, multiple tasks, such as scene clas-

sification, semantic segmentation [15], character recogni-

tion [30] and depth estimation [8, 7], have been addressed

with a single input of an RGB image, which is referred as

Single-modal Multi-task Learning. Hand et al. [10] demon-

strated that multi-task learning of gender and facial parts

from one face image leads to better accuracy than individ-

ual learning of each task. Teichmann et al. [26] presented

neural networks for scene classification, object detection,

segmentation of a street view image. Uhrig et al. [28] pro-

posed an instance-level segmentation method via simultane-

ous estimation of semantic labels, depth, and instance center

direction. Li et al. [14] proposed fully convolutional neural

networks for segmentation and saliency tasks. In those pro-

posed neural networks, feature representation of the single

input modality is shared in an intermediate layer for solving

multiple tasks. In contrast, the proposed method fully uti-

lizes the multi-modal training data by learning cross-modal

shared representations through joint multi-task training.

There have been several prior attempts on utilizing multi-

modal inputs for deep neural networks. They proposed

to use multi-modal input data such as RGB and depth

images [9], visual and textual features [24], audio and

video [17], and multiple sensor data [19] for single-task

neural networks. In contrast to such multi-modal single-

task learning methods, relatively few studies have been

made on multi-modal multi-task learning. Ehrlich et al. [6]

presented a method to identify person’s gender and smil-

ing based on two feature modalities extracted from face im-

ages. Cadena et al. [2] proposed neural networks based on

auto-encoder for multi-task estimation of semantic labels

and depth.

Both of these single-task and multi-task learning meth-

ods with multi-modal data focused on obtaining bet-

ter shared representation from multi-modal data. Since

straightforward concatenation of extracted features from

different modalities often results in inaccurate estimation

results, some prior methods tried to improve the shared rep-

resentation by singular value decomposition [1], encoder-

decoder [21], auto-encoder [17, 2, 22], and supervised map-

ping [4]. While our method is also based on the encoder-

decoder approach, it employs the U-net architecture for fur-

ther improving the learned shared representation, particu-

larly in high-resolution convolutional layers.

Most of the prior works also assume that all modali-

ties are available for the single-task or multi-task. One

approach for dealing with the missing modal data is zero-

filling, which fills zero into the input vector correspond-

ing to the missing modal data [17, 2]. Although these ap-

proaches allow the multi-modal networks to handle missing

modalities and cross-modal conversion tasks, it has not been

fully discussed whether such an zero-filling approach can

be also applied to recent CNN-based architectures. Sohn et

al. [24] explicitly estimated missing modal data from avail-

able modal data by deep neural networks. In a difficult

task, such as a semantic segmentation with many classes,

the missing modal data is estimated inaccurately, which has

a negative influence on performance of the whole network.

In our method, at the test phase encoder-decoder paths work

individually even for missing modal data. Furthermore, our

method can perform conversions between all modalities in

the training set, and can utilize single-modal data to im-

prove within-modal self-encoding paths.

3. Multi-modal Encoder-Decoder Networks

The architecture of the proposed multi-modal encoder-

decoder networks is illustrated in Fig. 2. To exploit the com-

monality among different tasks, all encoder/decoder pairs

are connected with each other via the shared latent repre-
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Figure 2. Model architecture of the proposed multi-modal encoder-decoder networks. Our model consists of encoder-decoder networks

with the shared latent representation. Depending on the task, the decoder also employs the U-net architecture and connected with all

encoders via shared skip connections. The network consists of Conv+Norm+ReLU modules except for the final layer, which is equivalent

to Conv. We use kernel size 3 × 3 with stride 1 and padding size 1 for all convolutional layer, and kernel size 2 × 2 and stride 2 for

max-pooling.

sentation. In addition, if the decoding task is expected to

benefit from high-resolution representations, the decoder is

further connected with all encoders via shared skip con-

nections as in the U-net architecture [20]. Given one in-

put modality, the encoder generates a single representation,

which is then decoded through different decoders into all

available modalities. The whole network is trained by tak-

ing into account all combinations of the conversion tasks

among different modalities.

In the following, we discuss details of the proposed net-

work by taking the task of depth and semantic label esti-

mation from RGB images assuming a training dataset con-

sisting with three modalities: image, depth and semantic

labels. In this example, semantic segmentation is the task

where the advantage of the skip connections has been al-

ready shown [12], while such high-resolution representa-

tions are not always helpful for depth and image decoding

tasks. It is also worth noting that the task and the number of

modalities are not limited to this particular example. More

encoders and decoders can be added to the model, and the

decoder can be trained with different tasks and loss func-

tions.

3.1. Model Architecture

As illustrated in Fig. 2, each convolution layer (Conv)

in the encoder is followed by a batch-normalization

layer (Norm) and activation function (ReLU). Two max-

pooling operations are placed in the middle of seven

Conv+Norm+ReLU components, which makes the dimen-

sion of the latent representation 1/16 of the input. Similarly,

the decoder network consists of seven Conv+Norm+ReLU

components except for the final layer, while max-pooling

operations are replaced by un-pooling operations for ex-

panding a feature map. The max-pooling operation pools a

feature map by taking maximum values, and the un-pooling

operation restores the pooled feature into un-pooled feature

map by embedding the same values. The final output of

the decoder is then rescaled to the original input size. The

rescaled output is further fed into a softmax layer to produce

the class probability distribution at the label decoder.

As discussed earlier, all encoder/decoder pairs are con-

nected with the shared latent representation. Letting x ∈
{xi,xs,xd} be the input modalities for each encoder; im-

age, semantic label and depth map, and E ∈ {Ei,Es,Ed}
be the corresponding encoder functions, then the outputs
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from each encoder r, which means latent representation,

is defined by r ∈ {Ei(xi),Es(xs),Ed(xd)}. Here, r ∈
R

C×H×W where C, H , and W are the number of channels,

height and width, respectively. Because r from all the en-

coders are encoded to the same shape C × H × W by the

convolution and pooling operations at all E, we can obtain

the outputs y ∈ {Di(r),Ds(r),Dd(r)} from any r, where

D ∈ {Di,Ds,Dd} are decoder functions. The latent rep-

resentation between encoders and decoders are not distin-

guished among different modalities, i.e., the latent represen-

tation decoded by an encoder is fed into all decoders, and at

the same time each decoder has to be able to decode latent

representation from any of the decoders. In other words,

latent representation is shared for all encoder/decoder pairs.

For semantic segmentation, we also employ the U-net

architecture with skip paths to propagate intermediate low-

level features from encoders to decoders. Low-level fea-

ture maps in the encoder are concatenated with feature maps

generated from latent representations and then convolved in

order to mix the features. Since we use 3 × 3 convolution

kernels with 2 × 2 max pooling operators for the encoder

and 3 × 3 convolution kernels with 2 × 2 un-pooling oper-

ators for the decoder, the encoder and decoder networks are

symmetric (U-shape). Our model has skip paths among all

combinations of the encoders and decoders, and also shares

the low-level features in the same manner as the latent rep-

resentation.

3.2. Multi­task Training

In the training phase, a batch of training data is passed

through all forwarding paths for calculating losses. For

example, given a batch of paired RGB, depth, and se-

mantic label images, three decoding losses from the im-

age/depth/label decoders are first computed for the image

encoder. The same procedure is then repeated for depth and

label encoders, and the global loss is defined as the sum of

all decoding losses from nine encoder-decoder pairs. The

gradients for the whole network are computed based on the

global loss by back-propagation. If the training batch con-

tains unpaired data, we only compute within-modal self-

encoding losses. In the following, we describe details of

the cost functions defined for semantic label decoder, im-

age decoder, and depth decoder.

Semantic Labels In this work, we define label images so

that each pixel has a one-hot-vector that represents the class

that the pixel belongs to. The number of the input and out-

put channels is thus equivalent to the number of classes.

We define the loss function of semantic label decoding by

the pixel-level cross entropy. Letting K be the number of

classes, the softmax function is written as

p(x)(k) =
exp

(

fs(x)
(k)

)

∑K

i=1 exp
(

fs(x)(i)
)
, (1)

where fs(x)
(k) ∈ R indicates the value at the location x in

the k-th channel of the tensor given by the final layer output.

Letting P be the whole set of pixels in the output and N be

the number of the pixels, the loss function Ls is defined as

Ls =
1

N

∑

x∈P

K
∑

k=1

tk(x) log p(x)
(k), (2)

where tk(x) ∈ {0, 1} is the k-th channel ground truth label,

which is one if the pixel belongs to the k-th class, and zero,

otherwise.

RGB Images For image decoding, we set the loss LI to

the ℓ1 norm distance of RGB values as

LI =
1

N

∑

x∈P

∥I(x)− fi(x)∥1, (3)

where I(x) ∈ Z
3
+ and fi(x) ∈ R

3 are the ground truth

and predicted RGB values, respectively. If the goal of the

network is realistic RGB image generation from depth and

label images, the image decoding loss can be further ex-

tended to DCGAN [18] based architectures; however, since

the main goal of this work is depth and semantic label pre-

diction, we used the simple ℓ1 loss for simplicity.

Depth Maps For the depth decoder, we also use ℓ1 norm

distance between the ground truth and predicted depth

maps. The loss function Ld is defined as

Ld =
1

N

∑

x∈P

|d(x)− fd(x)|, (4)

where d(x) ∈ R and fd(x) ∈ R are the ground truth

and predicted depth values, respectively. We normalize the

depth values to [0, 255] by the linear interpolation. In the

evaluation step, we revert the normalized depth map into

the original scale.

3.3. Implementation Details

In our network, learnable parameters are initialized by

a normal distribution. We set the learning rate to 0.001
and the momentum to 0.9 for all layers with weight de-

cay 0.0005. The input image size is fixed to 96 × 96. We

treat the paired and unpaired data as training data, which are

mixed randomly in every epoch. Let T denote the number

of all RGB images including unpaired data, and U(≤ T )
denote the number of RGB images paired with semantic la-

bels and depth maps. A set of training data is denoted by
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{(Im, Ln, Dn)}, where 1 ≤ m ≤ T and 1 ≤ n ≤ U . In the

training phase, we prepare a set of RGB, labels, and depth

images {(Ii, Li, Di)} from the paired data (1 ≤ i ≤ T ).

Training begins with Ii as an input and (Li, Di) as outputs.

In the next step, Li is used as an input, and (Ii, Di) are

used as outputs. These steps are repeated on all combina-

tions of the modalities and input/output. A loss is calculated

on each combination and used for updating parameters. We

train the network by the mini-batch training method with a

batch including at least one labeled RGB image.

4. Experiments

In this section, we evaluate the proposed multi-modal

encoder-decoder networks for semantic segmentation and

depth estimation using two public datasets: NYUDv2 [23]

and Cityscape [5]. The baseline model is the single-

task encoder-decoder networks (enc-dec) and single-modal

(RGB image) multi-task encoder-decoder networks (enc-

decs) that have the same architecture as ours. We also com-

pare our method to multi-modal auto-encoders (MAE) [2],

which concatenates latent representations of auto-encoders

for different modalities. Since the shared representation in

MAE is the concatenation of latent representations in all

the modalities, it is required to explicitly input zero-filled

pseudo signals to estimate the missing modalities. Also,

MAE uses fully connected layers instead of convolutional

layers, so that input images are flattened when fed into the

first layer.

For semantic segmentation, we use the mean intersec-

tion over union (MIOU) scores for the evaluation. IOU is

defined as

IOU =
TP

TP + FP + FN
, (5)

where TP, FP, and FN are the numbers of true positive, false

positive, and false negative pixels, respectively, determined

over the whole test set. MIOU is the mean of the IOU on

the all classes.

For depth estimation, we use several evaluation measures

commonly used in prior works [16, 8, 7]:

• Root mean squared error:

√

1
N

∑

x∈P
(d(x)− d̂(x))2

• Average relative error: 1
N

∑

x∈P

|d(x)−d̂(x)|
d(x)

• Average log 10 error: 1
N

∑

x∈P

∣

∣

∣
log10

d(x)

d̂(x)

∣

∣

∣

• Accuracy with threshold:

Percentage of x ∈ P s.t. max
(

d(x)

d̂(x)
,
d̂(x)
d(x)

)

< δ,

where d(x) and d̂(x) are the ground truth depth and pre-

dicted depth at the pixel x, P is the whole set of pixels in

an image, and N is the number of the pixels in P .

Depth Estimation
Semantic

Segmentation

Error Accuracy

Rel log10 RMSE δ<1.25 δ<1.252 δ<1.253 MIOU

MAE 1.147 0.290 2.311 0.098 0.293 0.491 0.018

enc-dec (U) - - - - - - 0.357

enc-dec 0.340 0.149 1.216 0.396 0.699 0.732 -

enc-decs 0.321 0.150 1.201 0.398 0.687 0.718 0.352

Ours 0.296 0.120 1.046 0.450 0.775 0.810 0.411

Ours (+extra) 0.283 0.119 1.042 0.461 0.778 0.810 0.420

Table 1. Performance comparison on the NYUDv2 dataset. Each

row corresponds to MAE [2], single-task encoder-decoder with

and without U-net architecture, single-modal multi-task encoder-

decoder, our method with and without extra RGB training data.

First six columns show performance metrics for depth estimation,

and the last column shows semantic segmentation performances.

4.1. Results on NYUDv2 dataset

NYUDv2 dataset has 1, 448 images annotated with se-

mantic labels and measured depth values. This dataset con-

tains 868 images for training and a set of 580 images for

testing. We divided test data into 290 and 290 for valida-

tion and testing respectively, and used the validation data

for early stopping. The dataset also has extra 407, 024 un-

paired RGB images, and we randomly selected 10, 459 im-

ages as unpaired training data, while other class was not

considered in both of training and evaluation. For semantic

segmentation, following prior work [11, 29, 7], we evaluate

the performance on estimating 12 classes out of all available

classes.

Table 1 shows depth estimation and semantic segmen-

tation results of all methods. Each row corresponds to

MAE [2], single-task encoder-decoder with and without

skip connections, single-modal multi-task encoder-decoder,

our method with and without extra RGB training data. First

six columns show performance metrics for depth estima-

tion, and the last column shows semantic segmentation per-

formances. The performance of our method was better

than the single-task network (enc-dec) and single-modal

multi-task encoder-decoder network (enc-decs) on all met-

rics even without the extra data, showing the effectiveness

of the multi-modal architecture. The performance was fur-

ther improved with the extra data, and achieved the best per-

formance in all evaluation metrics. It shows the benefit of

using unpaired training data and multiple modalities to learn

more effective representations. More detailed results on se-

mantic segmentation are shown in Table 2. Each column

shows class-specific IOU scores for all models. Our model

with extra training data outperforms the baseline models

with 10 out of the 12 classes and achieved 0.063 points im-

provement in MIOU.
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book cabinet ceiling floor table wall window picture blinds sofa bed tv mean

MAE 0.002 0.033 0.000 0.101 0.020 0.023 0.022 0.005 0.001 0.004 0.006 0.000 0.018

enc-dec (U) 0.055 0.371 0.472 0.648 0.197 0.711 0.334 0.361 0.274 0.302 0.370 0.192 0.357

enc-decs 0.071 0.382 0.414 0.659 0.222 0.706 0.363 0.336 0.234 0.300 0.320 0.220 0.352

Ours 0.096 0.480 0.529 0.704 0.237 0.745 0.321 0.414 0.303 0.365 0.455 0.285 0.411

Ours (+extra) 0.072 0.507 0.534 0.736 0.299 0.749 0.320 0.422 0.304 0.375 0.413 0.307 0.420

Table 2. Detailed IOU on the NYUDv2 dataset. Each column shows class-specific IOU scores for all models.

road
side

walk

build

ing
wall fence pole

traffic

light

traffic

sigh

vege

tation
terrain sky person rider car truck bus train

motor

cycle
bicycle mean

MAE 0.688 0.159 0.372 0.022 0.000 0.000 0.000 0.000 0.200 0.000 0.295 0.000 0.000 0.137 0.000 0.000 0.000 0.000 0.000 0.099

enc-dec 0.931 0.556 0.757 0.125 0.054 0.230 0.100 0.164 0.802 0.430 0.869 0.309 0.040 0.724 0.062 0.096 0.006 0.048 0.270 0.346

enc-decs 0.936 0.551 0.769 0.128 0.051 0.220 0.074 0.203 0.805 0.446 0.887 0.318 0.058 0.743 0.051 0.152 0.077 0.056 0.241 0.356

Ours 0.925 0.529 0.770 0.053 0.036 0.225 0.049 0.189 0.805 0.445 0.867 0.325 0.007 0.720 0.075 0.153 0.133 0.043 0.218 0.346

Ours (+extra) 0.950 0.640 0.793 0.172 0.062 0.280 0.109 0.231 0.826 0.498 0.890 0.365 0.036 0.788 0.035 0.251 0.032 0.108 0.329 0.389

Table 4. Detailed IOU on the Cityscape dataset.

Depth Estimation
Semantic

Segmentation

Error Accuracy

Rel log10 RMSE δ<1.25 δ<1.252 δ<1.253 MIOU

MAE 3.675 0.441 34.583 0.213 0.395 0.471 0.099

enc-dec (U) - - - - - - 0.346

enc-dec 0.380 0.125 8.983 0.602 0.780 0.870 -

enc-decs 0.365 0.117 8.863 0.625 0.798 0.880 0.356

Ours 0.387 0.115 8.267 0.631 0.803 0.887 0.346

Ours (+extra) 0.290 0.100 7.759 0.667 0.837 0.908 0.389

Table 3. Performance comparison on the Cityscape dataset.

4.2. Results on Cityscape dataset

The Cityscape dataset consists of 2, 975 images for train-

ing and 500 images for validation, which are provided to-

gether with semantic labels and disparity. We divide the

validation data into 250 and 250 for validation and testing

respectively, and used the validation data for early stopping.

This dataset has 19, 998 additional RGB images without

annotations, and we also used them as extra training data.

There are semantic labels of 19 class objects and a single

background (unannotated) class. We used the 19 classes

(excluding the background class) for evaluation. For depth

estimation, we used the disparity maps provided together

with the dataset as the ground-truth. Since there were miss-

ing disparity values in the raw data unlike NYUDv2, we

adopted the image inpainting method [27] to interpolate dis-

parity maps for both training and testing.

The results are shown in Table 3, and the detailed com-

parison on semantic segmentation are summarized in Ta-

ble 4. Our model achieved improvement over both of the

MAE [2] and our baseline networks in most of the target

classes. While the proposed method without extra data did

not improve MIOU, it resulted in 0.043 points improvement

with extra data. Our method also achieved the best perfor-

Depth Estimation
Semantic

Segmentation

Error Accuracy

Rel log10 RMSE δ<1.25 δ<1.252 δ<1.253 MIOU

image-

to-depth
0.283 0.119 1.042 0.461 0.778 0.810 -

label-to-

depth
0.258 0.128 1.114 0.452 0.741 0.779 -

image-

to-label
- - - - - - 0.420

depth-

to-label
- - - - - - 0.476

Table 5. Comparison of auxiliary task performances on the

NYUDv2.

mance on the depth estimation task, and the performance

gain from extra data illustrates the generalization capability

of the proposed training strategy.

4.3. Auxiliary Tasks

Although our main goal is semantic segmentation and

depth estimation from RGB images, in Fig. 3 we show other

cross-modal conversion pairs, i.e., semantic segmentation

from depth images and depth estimation from semantic la-

bels on cityscape dataset. From left to right, each column

corresponds to ground-truth (a) RGB image, (b) upper for

semantic label image lower for depth map and (c) upper

for image-to-label lower for image-to-depth, (d) upper for

depth-to-label lower for label-to-depth. The ground truth

depth maps are ones after inpainting. As can be seen, our

model could also reasonably perform these auxiliary tasks.

More detailed examples and evaluations on NYUDv2

dataset is shown in Fig. 4 and Table 5. Left side of Fig. 4

shows examples of output images corresponding to all of

the above-mentioned tasks. From top to bottom on the left

side, each row corresponds to the ground-truth (a) RGB im-

age, (b) semantic label image, estimated semantic labels
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(a) (b)                                        (c)                                          (d)

Figure 3. Example output images from our model on the Cityscape dataset. From left to right, each column corresponds to (a) input

RGB image, (b) the ground-truth semantic label image (top) and depth map (bottom), (c) estimated label and depth from RGB image, (d)

estimated label from depth image (top) and estimated depth from label image (bottom).

from (c) the baseline enc-dec model, (d) image-to-label, (e)

depth-to-label conversion paths of our method. (f) depth

map (normalized to [0,255] for visualization) and estimated

depth maps from (g) enc-dec, (h) image-to-depth, (i) label-

to-depth. Interestingly, these auxiliary tasks achieved bet-

ter performances than the RGB input cases. Clearer object

boundary in the label and depth images is one of the poten-

tial reasons of the performance improvement. In addition,

right side of Fig. 4 shows image decoding tasks and each

block corresponds to (a) the ground-truth RGB image, (b)

semantic label, (c) depth map, (d) label-to-image, and (e)

depth-to-image. Although our model could not correctly

reconstruct the input color, object shapes can be seen even

with the simple image reconstruction loss.

5. Conclusion

This paper proposed a multi-modal encoder-decoder net-

works for efficient multi-task learning with a shared feature

representation. In our method, encoders and decoders are

connected via the shared latent representation and shared

skipped representations. Experiments showed the potential

of shared representations from different modalities to im-

prove the multi-task performance.

One of the most important future works is to investi-

gate the effectiveness of the proposed multi-modal encoder-

decoder networks on different tasks such as image caption-

ing and DCGAN-based image translation. More detailed in-

vestigation on learned shared representations during multi-

task training is another important future direction to under-

stand why and how the multi-modal encoder-decoder archi-

tecture addresses the multi-modal conversion tasks.
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Figure 4. Example outputs from our model on the NYUDv2 dataset. From top to bottom on the left side, each row corresponds to (a) the

input RGB image, (b) the ground-truth semantic label image, (c) estimation by enc-dec, (d) image-to-label estimation by our method, (e)

depth-to-label estimation by our method, (f) estimated depth map by our method (normalized to [0, 255] for visualization), (g) estimation

by enc-dec, (h) image-to-depth estimation by our method, and (i) label-to-depth estimation by our method. In addition, the right side

shows image decoding tasks, where each block corresponds to (a) the ground-truth RGB image, (b) label-to-image estimate, and (c)

depth-to-image estimate.
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