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Abstract

The foreground-background segmentation of video se-

quences is a low-level process commonly used in machine

vision, and highly valued in video content analysis and

smart surveillance applications. Its efficacy directly re-

lies on the contrast between objects observed by the sen-

sor. In this work, we study how the combination of sen-

sors operating in the long-wavelength infrared (LWIR) and

visible spectra can improve the performance of foreground-

background segmentation methods. As opposed to a clas-

sic visible spectrum stereo pair, this multispectral pair is

more adequate for foreground object segmentation since it

reduces the odds of observing low-contrast regions simulta-

neously in both images. We show that by alternately mini-

mizing a stereo disparity energy and a binary segmentation

energy with dynamic priors, we can drastically improve the

results of a traditional video segmentation approach ap-

plied to each sensor individually. Our implementation is

freely available online for anyone wishing to recreate our

results.

1. Introduction

Video segmentation and stereo matching are two classic

tasks that have recently gained more attention in the context

of computer vision outside the visible spectrum. The goal

of video segmentation is to partition images based on a se-

mantic analysis of their content, or using appearance and/or

motion cues to isolate regions of interest (i.e. the scene

“foreground”). On the other hand, stereo matching allows

visual data captured from two different sensors to be reg-

istered to the same coordinate system, and simultaneously

provides depth information about the observed scene via the

depth-disparity relation [15]. These tasks have been studied

extensively on visible spectrum datasets [26,33,34,42], and

are now more commonly considered on data captured using

unconventional sensor types.

In this work, our focus lies on foreground-background

video segmentation based on foreground motion partition-
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Figure 1. Example of mutual foreground segmentation improve-

ment for a visible-LWIR stereo pair. The initial foreground masks

obtained via background subtraction are shown in the top row as

regions highlighted in blue. These are refined almost ideally us-

ing our proposed approach in the bottow row, where green shows

added foreground pixels, and red removed foreground pixels.

ing and/or background modeling [6,18,36]. While this fam-

ily of segmentation approaches is not usually affected when

applied to unconventional imagery types, it still ultimately

fails when the contrast between foreground and background

regions is poor, or when the observed scene is affected by

large-scale variations in imaging conditions (e.g. illumina-

tion fluctuations). Our goal is to address these long-standing

problems in video segmentation by combining the visual in-

formation of two different types of sensors. In the context of

video surveillance, the combination of complementary im-

age spectra (or modalities) has the potential of drastically

improving the overall performance of the detection and an-

alytics components of a system under difficult imaging con-

ditions (as shown in Fig. 1). This goal however implies the

registration of multimodal data sources, which is not triv-
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ial if a beam splitter cannot be used with the sensors, or if

depth information about the observed targets must be kept.

Unlike traditional stereo registration methods that oper-

ate on images of the same spectrum band, a multimodal

method must account for cases where region matching does

not provide reliable results despite favorable imaging condi-

tions (i.e. good object contrast, no occlusions). This is due

to the fact that the physical phenomena captured by sensors

may be different in each imaging modality. For example, in

visible and near-infrared (NIR) imagery, surfaces are gen-

erally perceived by their capacity to reflect light, whereas

in long-wavelength infrared (LWIR) imagery, their appear-

ance is generally tied to their temperature. There is obvi-

ously no clear link between our visual representation of a

surface and its temperature, which makes the stereo match-

ing problem for image content registration much more chal-

lenging [5].

We propose in this paper a new method that improves

the foreground-background segmentation masks provided

by a traditional video segmentation method while simul-

taneously solving the multimodal stereo registration prob-

lem using appearance and shape motion cues. We formulate

both tasks using Conditional Random Field (CRF) models

over the input image pixels, and use their partial segmenta-

tion and disparity estimation results as dynamic priors for

the iterative minimization of their respective stereo match-

ing and binary partitioning energies. This novel approach

essentially solves the “chicken and egg” dilemma caused

by having to use shape contours to estimate stereo dispar-

ities, and stereo disparity maps to correct shape contours.

We demonstrate the effectiveness of our proposed method

by evaluating it on the VAP dataset [25], and show that

our approach improves the overall F-Measure obtained by

a state-of-the-art video segmentation method by over 12%.

We have made our full implementation available online for

future comparisons and for anyone wishing to replicate our

results1.

2. Related Work

Below, we primarily discuss works related to segmen-

tation and stereo registration in multimodal images. For

an overview of video segmentation based on motion detec-

tion and/or background modeling, we refer readers to the

surveys of [8,18]. For a comprehensive overview of two-

viewpoint stereo registration methods in the visible spec-

trum, we refer readers to [33]. Finally, for more information

on CRFs and their uses in image segmentation and coseg-

mentation, we refer to the seminal works of [7,13] and the

survey of [45].

Multimodal stereo registration has been studied exten-

sively in the past, but accurate region matching still re-

1https://github.com/plstcharles/litiv

mains a challenge today [46]. While using a hardware so-

lution such as a beam splitter [17,43] can eliminate this

problem completely, the total loss of scene depth informa-

tion incurred by this approach is rarely desired. Most soft-

ware registration solutions proposed in the literature thus

far deal with modalities that are not too ”distant” in re-

gard to their imaging characteristics, e.g. visible and NIR.

These solutions are however much less effective for modal-

ity pairs such as visible-LWIR, in which object appear-

ance is much less correlated, as stated before. The stud-

ies of [5,27] demonstrate that traditional gradient-based de-

scriptors and local similarity measures do not always pro-

vide ideal matching performance for stereo registration with

LWIR imagery. Even modern descriptors based on self-

correlation response encoding [19] are not ideal in this set-

ting. Nonetheless, HOG [10,27], LSS [35,40], MI [23,28]

and DASC [19] are still often seen as the most reliable

means to find dense correspondences via appearance in

multimodal stereo pairs.

An alternative approach in multimodal stereo registra-

tion is based on the extraction of correspondences using

motion cues from foreground shapes instead of appearance

cues. This approach assumes that the sensors capture im-

ages continuously, and that the objects of interest for regis-

tration are those moving in the observed scene (as is typ-

ically the case in video surveillance setups). Using mo-

tion to detect and isolate these objects is thus possible, as

the scene’s background motion is typically either known,

or null. Registration can then be achieved using correspon-

dences found on the contours of objects segmented via mo-

tion layers [39,44] or from shape trajectories [9,41]. In both

cases, even large differences in the imaging characteristics

of the sensors do not hinder the registration process, and the

trajectories or contours obtained for both images should be

fairly similar, as long as the contrast with the background

is sufficient in each modality. The main disadvantage of

this approach is the overall lower number of correspon-

dences that can be found in a given image pair, leading most

methods to rely on sparse disparity maps or simplified pla-

nar registration models [37]. Also, relying on point corre-

spondences found via shape contours or trajectories makes

occlusion handling much more difficult. In our proposed

method, we combine stereo matching via appearance cues

(using gradient-based descriptors) and shape motion cues

(using object contour descriptors) to provide highly accu-

rate and robust disparity maps.

Mutual foreground segmentation, or more generally im-

age cosegmentation, has been studied in very different con-

texts over the years [45]. The work of [32] coined coseg-

mentation as the simultaneous partitioning of several im-

ages sharing similar semantic content in the same modal-

ity, but without any constraint on viewpoint or object in-

stances. This task is therefore much more generic than what
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we focus on here, as we assume a camera setup where reg-

istration is possible. The specific case that we address is

more akin to mutual segmentation as described by Riklin

et al. [29], in which fragmented segments caused by occlu-

sions or low contrast regions were corrected using a copla-

nar contour template taken from another viewpoint. Be-

sides, most cosegmentation methods rely on the implicit

assumption that all images contain and share a unique in-

stance of the same foreground class, with varying cluttered

backgrounds. On the other hand, our proposed method is

able to segment multiple visually distinct foreground ob-

jects observed simultaneously in the same scene, without

supervision.

Finally, some authors have studied unsupervised mul-

timodal mutual foreground segmentation before. In [41]

and [44], similar methods using per-blob planar registration

and multiple object tracking are proposed to cleanup the

segmentation masks of two background subtraction mod-

els a posteriori. This approach however does not handle

occlusions directly, and requires several instances of seg-

mentation and tracking algorithms tuned for each modal-

ity to run simultaneously in order to solve the “chicken and

egg” stereo registration problem using shape contour points.

In [24], a mutual segmentation method based on low-rank

representation model is proposed which properly exploits

the complementarity of grayscale-visible and LWIR im-

agery. It however does not address the registration prob-

lem, meaning that it can only be applied to preregistered

planar scenes. Lastly, a method for pedestrian segmentation

was proposed by Palmero et al. in [25] based on trimodal

(visible-LWIR-depth) feature fusion using a learning-based

approach. This method however also requires a trained

model of the scene for planar registration.

3. Proposed Method

Our approach can be split into two major compo-

nents: the stereo matching CRF model for disparity estima-

tion, and the shape matching CRF model for foreground-

background segmentation. Both tasks are formulated as

discrete energy minimization problems that are iteratively

solved using fusion moves, as described in Section 4. In

more formal terms, given a set of rectified images I = {Ik}
(with k = {0, 1} in our stereo case), the disparity label

space LD= {0, . . . , dmax}, and the background-foreground

label space LS= {0, 1}, our goal is to find the optimal pixel-

wise disparity and segmentation labelings D= {Dk} and

S = {Sk} such that:

Dk = argmin
Dk

Estereo
k (Dk), (1)

Sk = argmin
Sk

E
segm

k (Sk), (2)

where Dk = {dp,k : p ∈ Ik, dp,k ∈ LD} is a disparity la-

beling, Sk = {sp,k : p ∈ Ik, sp,k ∈ LS} is a segmentaton

labeling, and where the energy cost functions Estereo
k and

E
segm

k are described in Sections 3.1 and 3.2, respectively.

These two functions are linked through their estimation re-

sults (Dk and Sk) which are used as dynamic priors. More

specifically, disparity labels dp,k for each pixel p in Ik are

used as priors to improve inter-modality shape consistency

in (12) and (13). Additionally, shape descriptors are recom-

puted in S0 and S1 after every segmentation update, and

the affinity between these descriptors is used in (4) to im-

prove stereo matching in foreground regions. Besides, note

that we sometimes omit the k subscript in the following sec-

tions to simplify the notation, as most equations only deal

with one image of the stereo pair at a time.

3.1. Stereo Energy

Since we are working with rectified image pairs, regis-

tration can be formulated without loss of generality as a 1D

search for matches on epipolar lines [15]. Calculating the

disparity (or offset) between the locations of each pixel p

in I0 and its best match in I1 is our ultimate goal in this

section, as it will allow us to properly overlay and improve

foreground shapes in the next section. We define the energy

cost for a disparity labeling configuration D as

Estereo(D) = Eappearance(D) + Eshape(D)

+ Esmooth1(D) + Euniqueness(D).
(3)

Each term in this cost function promotes a property of the

desired output labeling: the appearance and shape terms

help find adequate matches based on inter-modal cues, the

smoothness term penalizes inconsistency in disparity la-

beling, and the uniqueness term penalizes multiple stereo

matches to or from a unique pixel location.

Appearance and shape terms. These two unary terms

are very similar in nature, as they express the cost of match-

ing two image patches of the stereo pair. These are both

defined as

E{appearance, shape}(D) =
∑

p∈I

A(p, r(p, dp)) · W(p), (4)

where r(p, dp) returns the location obtained by shifting

pixel p by disparity dp on its epipolar line, A(p, q) encodes

the affinity cost for matching descriptor patches centered

at p and q in each image, and W(p) encodes the match

saliency at pixel p. DASC descriptors [19] are densely com-

puted over I0 and I1 for the appearance term, while Shape

Context descriptors [4] are densely computed over S0 and

S1 for the shape term. The patches used in the affinity map

A are 15x15, and their affinity cost is computed by accumu-

lating the L2 distances between the normalized descriptors.
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Finally, the saliency map W is defined as

W(p) = max

{

H

(

[

A
(

p, r(p, d)
)

∀ d∈LD

]

)

,H
(

K(p)
)

}

,

(5)

where K(p) returns the matrix of descriptors in the patch

around pixel p, and H(·) computes Hoyer’s sparseness met-

ric [16] over a vector or matrix. The reasoning behind us-

ing saliency is that, as stated before, multimodal matches

are often unreliable. Here, if all affinity values are uniform

(i.e. all disparity offsets have the same cost), and if the lo-

cal patch’s descriptor bins are all uniform, then the cost of

assigning a disparity label to p will be greatly lowered due

to W(p) (which is always ∈ [0, 1]). Besides, for the shape

term, we also nullify the saliency outside foreground shapes

to avoid influencing background disparity estimation near

foreground object contours. We can assume that disparity

estimation for background regions will be less accurate due

to this missing term contribution, but since we primarily fo-

cus on the registration of foreground shapes, this is incon-

sequential.

Smoothness term. We impose a truncated pairwise

smoothness constraint on the disparity labeling produced

by our solution. The idea here is that neighboring pixels

should have similar disparity labels, especially if the local

image gradient between them is small, while object edges

should still be sharp. We define this smoothness term as

Esmooth1(D) = λs1·
∑

〈p,q〉∈N

min
(

|dp−dq|, 10
)2

·Gk(p, q), (6)

with

Gk(p, q) = exp
(

1−
∇Ik(p,q)

g

)

, (7)

and where λs1 is a fixed cost scaling factor, N is the set

of first order cliques in the graph model, ∇Ik(p,q) returns

the normalized local image gradient intensity between pix-

els p and q of image Ik, and g is a constant value which

defines the expected object contour gradient intensity (we

used g=32). The truncation value (10 is used) allows large

discontinuities to occur by capping the maximum smooth-

ness penality.

Uniqueness term. The purpose of this term is to penal-

ize stereo associations to pixels which are already matched

elsewhere, thus helping spread disparities in regions with

very little salient information. Unlike the mutual exclusion

constraint of the uniqueness term proposed in [20] (i.e. in-

finite cost beyond the first match), our term encodes a soft

constraint, meaning that many-to-one correspondences are

allowed, but at a cost. The advantage of this approach is that

the labeling can evolve faster during early inference steps,

as matches can be temporarily “stacked” on individual pix-

els to allow larger label moves. Over time however, matches

are automatically “unstacked” by our optimizer to regain the

added cost. The very large majority of pixels end up having

a single match once the solution converges, which typically

happens in fewer iterations using this approach. We define

the uniqueness cost incurred by pixel p as

U(p) =

{

∑N(p)−1
n=1

w·n
w+n−1 if N(p) > 1

0 otherwise
, (8)

where, N(p) returns the number of matches held by pixel

p, and w is a small weighting constant (we used w=3). We

thus keep track of pixel association counts as latent vari-

ables in our model. However, since we rely on large la-

bel moves to solve the inference problem, many correspon-

dences may be removed in a single iteration, making the to-

tal cost of a move over several pixels hard to predict with (8)

due to its nonlinearity. To solve this problem, we define our

uniqueness cost for a given labeling as

Euniqu.(D) = λu·
∑

p∈I

−U(r(p, d̃p))

N(r(p, d̃p))
+

w·N(r(p, dp))

w+N(r(p, dp))− 1
,

(9)

where d̃p indicates the last disparity label given to p, and λu

is a cost scaling factor. This formulation guarantees that es-

timated pixel move costs provided to the solver will always

be greater or equal to their real costs once the full move is

complete, but remain fairly similar.

Finally, note that we initialize the disparity labeling of

our model by naively minimizing our energy function while

considering only the unary terms Eappearance and Eshape. This

results in disparities roughly equivalent to those obtained

using a naive winner-takes-all sliding window matching ap-

proach, which is a good enough starting point for rapid con-

vergence.

3.2. Segmentation Energy

Our ultimate goal is to refine the binary segmenta-

tion masks obtained using a traditional video segmentation

method. We opted for the method described in [38], for

which the implementation was available online. Thus, for

each frame in the analyzed sequence, we initialize the la-

beling within our model using the masks generated by that

method. Then, we define our overall energy cost for a given

foreground-background labeling S as

Esegm(S) = Ecolor(S) + Econtour(S) + Esmooth2(S). (10)

Each term in this cost function once again promotes a prop-

erty of the desired output labeling: the color term maxi-

mizes the separation between foreground and background

color distributions, the contour term penalizes shape mis-

matches between the input masks, and the smoothness term

penalizes label discontinuities away from local image gra-

dients.
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Color term. We use two Gaussian mixtures with K =
5 components to build the full foreground and background

color appearance models for each image of the stereo pair,

similar to the approach used in [30] for interactive image

segmentation. In our case however, we rely on our initial

labeling mask and its evolution over each resegmentation

iteration to refine our mixture models. We define our color

term as

Ecolor(S)=
∑

p∈I







− log
(

h(Ip;β1,µ1,Σ1)
)

if sp = 1

− log
(

h(Ip;β0,µ0,Σ0)
)

otherwise
,

(11)

where h(x;β,µ,Σ) returns how well a pixel color x fits a

Gaussian mixture model with component weights β, means

µ and covariance matrices Σ. Note that subscripts to Gaus-

sian mixture parameters in (11) indicate either foreground

(1) or background (0) model. These parameters are initial-

ized using k-means, and refitted after every minimization

step using the latest binary partitioning.

Contour term. This term’s role is to combine fore-

ground shapes across the two captured images, and it is ul-

timately responsible for the elimination of erroneously clas-

sified blobs and for the reconnection of shape fragments. It

does so simply by using foreground and background dis-

tance transform maps based on prior segmentation masks

to penalize the labeling of pixels far from their respective

shape contours. We reuse subscript k here to properly high-

light the contribution of each modality to this term, which

is defined as

Econtour
k (Sk)=λc·

∑

p∈Ik

{

Fk

(

p
)

+0.5·Fk′

(

r(p, dp)
)

if sp,k =1
Bk

(

p
)

+0.5·Bk′

(

r(p, dp)
)

otherwise
,

(12)

where λc is a cost scaling factor, k′ is the opposite index

of k in the stereo pair, Fk(p) returns the Euclidean distance

between pixel p and the closest foreground pixel present in

the previous segmentation mask S̃k of sensor k, and sim-

ilarly for Bk(p) with background pixels. Note here that

the inter-modal cost contribution is scaled by half, meaning

that shape contours will slightly prefer sticking to their own

previous results. This improves the stability of the segmen-

tation while optimizing, reducing the risks of eliminating

relevant shape fragments too rapidly.

Smoothness term. This last term serves the same pur-

pose as (6), i.e. it penalizes label discontinuities everywhere

except for regions where local image gradients are strong.

Its formulation in the segmentation energy is also very sim-

ilar to (6), but we reuse the inter-modality contribution idea

of (12), and apply it this time to the gradient scaling factor.

We define it as

Esmooth2
k (Sk)=λs2·

∑

〈p,q〉∈N

(

sp,k⊕sq,k

)

·
(

Gk

(

p,q
)

+0.5·Gk′

(

p′,q′
)

)

,

(13)

where λs2 is a fixed cost scaling factor, ⊕ is the XOR oper-

ator, p′ is a shorthand for r(p, dp), and q′ is a shorthand for

r(q, dq). The inter-modality contribution here allows shape

contours from one modality to “snap” onto edges that are

only present in the other, making it possible to expand and

relocate contours inside low contrast image regions.

4. Implementation Details

We optimize our two energy functions using fusion

moves via QPBO [14,31] based on Fix et al.’s generalized

approach from [11], adapted to be used in the OpenGM

framework [3] without parallelization. While this strategy

initially allowed rapid prototyping of our energy functions,

we could have used a more constrained and much faster

max-flow optimization strategy instead (e.g. FastPD [22]

or SoSPD [12]) since all pairwise terms in our two models

also verify the submodularity test [21]. As stated before, we

alternate between the minimization of (3) and (10) in order

to continuously improve their respective priors. Inference

termination is automatically reached when no more label

moves in LD or LS can reduce the energies of (3) or (10).

This typically happens after between 100 to 500 iterations,

depending on the quality of the initialization labelings. For

reference, with our naive optimization implementation, 500

iterations took approximately 130 seconds when computed

on a 3rd generation Intel i7 processor at 3.4 GHz.

For the fixed parameters presented in the previous sec-

tion, we empirically determined that λs1 = 0.0025, λu = 1,

λc = 10, and λs2 = 10 offered adequate performance,

and that finer tuning would not affect the final results much

more. For more implementation details, we invite the reader

to refer to our code online (the link is provided in Section 1).

5. Evaluation

For our experiments, we adapted the dataset of Palmero

et al. [25] to our needs, which was originally intended for

trimodal (visible-LWIR-depth) video segmentation. This

dataset consists of 5724 frame triplets split into three

scenes, with for each frame a groundtruth foreground-

background segmentation mask. We obtained the cali-

bration images they used to learn their planar registration

model, and rectified all visible-LWIR image pairs using the

OpenCV [2] calibration toolbox. The depth images were

left unused during all our experiments, and the second scene

of the dataset had to be removed due to missing calibration

data. Finally, the groundtruth masks we used for our eval-

uation were manually selected from the dataset at approxi-

mately 2 Hz while focusing on intervals with visible actors

interacting. This is done to avoid skewing the evaluation

results by continuously segmenting empty frames or frames

with purely static and unoccluded foreground regions.

We could not compare our method to its closest match
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Category Pr Re FM

Scene 1 (visible) 0.819 0.810 0.815

Scene 1 (LWIR) 0.755 0.975 0.851

Scene 3 (visible) 0.716 0.688 0.702

Scene 3 (LWIR) 0.514 0.969 0.671

Average (visible) 0.768 0.749 0.759

Average (LWIR) 0.634 0.972 0.761

Average (Scene 1) 0.787 0.892 0.833

Average (Scene 3) 0.615 0.828 0.686

Average (Overall) 0.701 0.860 0.759

Table 1. Baseline results obtained using the PAWCS

method of [38] on the recalibrated stereo pairs from the

VAP segmentation dataset [25].

in the literature ([44]) as the authors’ dataset is not public,

their source code is not available, and some of their imple-

mentation details are missing (e.g. tracking & background

subtraction parameters). Instead, we compare our mutual

segmentation results to the results obtained by a traditional

video segmentation approach applied to each video stream

individually (as they also did in [44]). In our case how-

ever, we opted for a more modern baseline, i.e. the method

of [38]. According to [1], this method is the top performer

in unsupervised foreground-background segmentation for

static camera viewpoints, and one of its main advantages is

that it does not require fine tuning for each video sequence.

Besides, we could not obtain the results of [25] to compare

their trimodal segmentation to our new bimodal approach

on their modified dataset. To ease future comparisons with

this work, we make this modified dataset available online2.

We rely on three binary classification metrics commonly

used to quantitatively evaluate the performance of binary

segmentation methods, namely Precision (Pr), Recall (Re),

and F-Measure (FM). These are defined as

Precision =
TP

TP + FP
, (14)

Recall =
TP

TP + FN
, (15)

F-Measure =
2·Precision·Recall

Precision + Recall
, (16)

where TP, TN, FP and FN are respectively the True Posi-

tives, True Negatives, False Positives, and False Negatives

classification counts obtained by pixel-wise comparisons of

our segmentation masks with the groundtruth masks.

We present the quantitative results obtained using [38]

(Table 1) as well as our proposed method (Table 2). Bold

entries represent the best result obtained between the two.

2http://www.polymtl.ca/litiv/vid/index.php

Category Pr Re FM

Scene 1 (visible) 0.875 0.931 0.902

Scene 1 (LWIR) 0.845 0.922 0.881

Scene 3 (visible) 0.723 0.942 0.818

Scene 3 (LWIR) 0.691 0.958 0.803

Average (visible) 0.799 0.936 0.860

Average (LWIR) 0.768 0.940 0.842

Average (Scene 1) 0.860 0.926 0.892

Average (Scene 3) 0.707 0.950 0.810

Average (Overall) 0.784 0.938 0.851

Table 2. Improved results obtained using the proposed

mutual segmentation method on the recalibrated stereo

pairs from the VAP segmentation dataset [25].

We can observe that our method outperforms [38] for all

Precision and F-Measure entries, and for six out of nine Re-

call entries. This demonstrates that our proposed approach

can most of the time improve the segmentation results of a

state-of-the-art method without introducing more false pos-

itive or negative pixel labelings. For the categories where

our Recall measures are lower, we can observe that [38]’s

precision is very low, meaning that it was probably detect-

ing far too many foreground regions that our approach had

to eliminate. By contrast, our precision in those categories

is fairly good, meaning our method eliminated most of these

false positives, but also created some false negatives in the

process. The best F-Measure improvement is achieved for

LWIR imagery in Scene 3 (19.7% increase over the origi-

nal result), whereas the overall average F-Measure improve-

ment for both scenes is 12.1%. Finally, we show in Fig-

ures 2 and 3 typical segmentation improvements obtained

for various frame pairs of the dataset, from which we can

see that our method is often able to find the optimal middle

ground between two very noisy initial segmentation masks.

6. Conclusion

We introduced a novel approach for the mutual segmen-

tation of foreground objects observed using a multimodal

stereo pair that also fully addresses the data registration

problem. Through our experiments, we demonstrated that

our method successfully combines motion and appearance

cues from visible and LWIR imagery to improve stereo

matching and to find object contours despite unfavorable

imaging conditions. Our evaluation shows that our solu-

tion vastly outperforms a state-of-the-art video segmenta-

tion method based on background modeling applied to in-

dividual video streams. Moreover, we did not need to use

specific tuning or special heuristics to handle each image

modality, meaning that our method could be applied to any
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Scene 1 (Visible) Scene 1 (LWIR)

Output GT Output GT

Figure 2. Visualization of segmentation improvements achieved over [38] using our proposed approach in Scene 1 of the VAP dataset [25].

Each pair of columns shows the improved segmentation masks as well as the groundtruth for a given modality. Blue image regions indicate

unmodified foreground segmentation, red indicates removed foreground, and green indicates added foreground. Images have been cropped

to show more details. The bottom row of the LWIR columns shows a case where many foreground labels are wrongly removed.

multimodal stereo pair. Our method however does not yet

consider the content overlap between consecutive frames,

meaning segmentation masks and stereo disparity maps are

not linked temporally or reused for model reinitialization.

For our future work, we intend to add temporal connec-

tivity constraints to our graphs through higher-order terms

in order to improve the spatiotemporal consistency of the

segmentation.
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