
Semantic Segmentation of RGBD Videos with Recurrent Fully Convolutional

Neural Networks

Ekrem Emre Yurdakul, Yücel Yemez

Computer Engineering Department, Koç University

Istanbul, Turkey

{ekyurdakul,yyemez}@ku.edu.tr

Abstract

Semantic segmentation of videos using neural networks

is currently a popular task, the work done in this field is

however mostly on RGB videos. The main reason for this

is the lack of large RGBD video datasets, annotated with

ground truth information at the pixel level. In this work,

we use a synthetic RGBD video dataset to investigate the

contribution of depth and temporal information to the video

segmentation task using convolutional and recurrent neural

network architectures. Our experiments show the addition

of depth information improves semantic segmentation re-

sults and exploiting temporal information results in higher

quality output segmentations.

1. Introduction

Semantic segmentation aims to assign an object class la-

bel to every pixel in a given image, and hence it is a key

task in computer vision towards scene understanding. Be-

fore deep neural network architectures have been proved

to be useful and have found practical applications in var-

ious vision tasks, semantic segmentation methods mostly

relied on patch-wise training of hand-crafted features with

conventional classifiers. The focus has recently shifted to

methods that use neural networks. In particular, deep con-

volutional neural networks, when trained on large datasets,

can achieve pixel-level segmentation on a given image and

can solve the recognition and localization problems at the

same time by globally analyzing the image as a whole.

With the introduction of fully convolutional neural net-

works [24], the use of deep neural network architectures

has become popular for the semantic segmentation task.

Most of the work done in this field is on RGB still im-

ages [1, 24, 26, 3, 23, 25, 37] with a few extensions to

RGB videos, which make use of recurrent neural networks

so as to incorporate temporal information into the segmen-

tation task [1, 38, 30, 29]. Although there are numerous

works on RGBD image segmentation [7, 14, 17, 8, 15],

there exists currently no work in the literature, except [27],

that addresses the problem of pixel-level segmentation on

RGBD videos using neural networks. The primary reason

for this is that while there exist a good number of RGB

video and image datasets available with pixel-level anno-

tation, such RGBD video datasets are fairly limited. Be-

sides, most of the existing semantic segmentation methods

transfer weights from pretrained deep convolutional neu-

ral networks such as the VGGnet [36] to train their archi-

tectures, whereas no such deep architectures pretrained on

large datasets exist with RGBD data. We believe that the

depth information contained in RGBD data can be exploited

as an additional modality to improve the performance of the

segmentation task.

In this work, we address the problem of pixel-level se-

mantic segmentation on RGBD videos using both fully

convolutional and recurrent fully convolutional neural net-

works. For our experiments, we use the Virtual KITTI

dataset [11], which contains synthetic RGBD videos with

pixel-level annotation. Our primary contribution is a fu-

sion scheme based on existing recurrent and fully convo-

lutional neural network architectures, that combines color

and depth information in RGBD videos for semantic seg-

mentation. We train our bimodal recurrent fully convolu-

tional neural network with a progressive strategy based on

weight transfer. We first convert depth images to color im-

ages, and initialize the convolutional layers with the weights

of the pretrained VGGnet, and train two separate fully con-

volutional neural networks for color and depth modalities

via backpropagation. We then transfer the weights of these

unimodal architectures to the recurrent fully convolutional

neural network to train our final bimodal architecture.

In Section 2, we review the related work on semantic

segmentation particularly using neural networks. Section 3

describes the datasets that we use to test our neural network

architectures which are then explained in Section 4. The

experiments that we conducted are presented in Section 5,

and the concluding remarks are finally given in Section 6.

367



2. Related Work

The ImageNet challenge [32] has led to (very) deep con-

volutional neural network architectures such as AlexNet

[20], VGGnet [36] and ResNet [16]. Although these net-

works were each originally trained with the goal of RGB-

based image classification, since the RGB image dataset

on which they were trained was very large, they can eas-

ily be generalized to other datasets as well as to various

other vision tasks. The most common approach to trans-

fer learning from these pretrained deep convolutional neural

networks (CNNs) is either to use them as feature extractors

or to transfer weights for network initialization [41]. This

type of transfer learning from pre-trained networks is com-

monly employed by the state of the art semantic segmenta-

tion methods.

Semantic segmentation networks existing in the litera-

ture differ in their architectures, such that they may be fully

convolutional [24], composed of a single deconvolutional

layer [24] or mirror the convolutional section of the net-

work with the corresponding deconvolution and unpool op-

erations [1, 26]. Multiple processing streams in a single

network is also a common choice of network architecture

[35, 40]. If temporal data is present, recurrent layers can be

added to exploit temporal relationships.

There exist relatively few works in the literature, that ad-

dress the problem of semantic pixel-level RGB video seg-

mentation [29, 38, 30, 33] with experiments conducted on

various datasets such as [28, 6, 12, 21]. Convolutional re-

current layers are a crucial building block of the semantic

segmentation networks that exploit temporal data. Whereas

recurrent layers accept vector inputs and produce vector

outputs, convolutional recurrent layers take matrices as in-

puts and produce matrices as outputs. As a result, spatial

information in convolutional recurrent layers is preserved

and can be exploited as opposed to standard recurrent lay-

ers [22]. In our work, we use convolutional recurrent layers

similar to [33, 38].

Although there are numerous works on RGBD image

segmentation [7, 14, 17, 8, 15], to the best of our knowl-

edge, there exists no semantic segmentation method on

RGBD video data using neural networks, except maybe

[27], which can be viewed as a preliminary work in this

field, that uses a small dataset NYUv2 [34] of only 1449

frames and an ad-hoc simplistic network architecture with

no transfer learning but with handcrafted features as input.

Furthermore, in [27], the ground-truth segmentation for all

frames of the NYUv2 dataset is estimated from the avail-

able sparse annotation based on optical flow. We also note

that there exist few other segmentation methods, such as

[17], which take RGBD videos as input, but then use the

extracted temporal information to enhance segmentation on

sparsely distributed individual frames (for which annota-

tions are available).

Since producing RGBD video datasets with pixel-level

annotation is a much harder task compared to RGB video

datasets, RGBD video segmentation remains as an unex-

plored field. There exist however very recent RGBD video

datasets [11, 31], which provide segmentation annotation at

pixel level and has hence enabled us to conduct research on

this problem.

3. Datasets

We use the Virtual KITTI dataset [11], which con-

tains photo-realistic synthetic videos with pixel accurate

ground truth for scene- and instance-level segmentation,

and depth. Aimed at providing data for autonomous driv-

ing, this dataset contains video sequences of cars navigat-

ing roads. There are 5 different worlds, each rendered in

10 variations under different camera angles, weather con-

ditions and time of day; 30-degrees-left, 30-degrees-right,

15-degrees-left, 15-degrees-right, clone; morning, sunset;

overcast, fog and rain. Each world has a different number

of video frames, however the number of video frames re-

mains the same in a world. The number of video frames in

each world is 447, 233, 270, 339 and 837 respectively. We

regroup all of the objects in the dataset into a total number

of 13 classes, ignoring the instance level categorization of

the original annotation, where for example the ”car” class

had several instances. Ground truth segmentations in the

dataset are provided as RGB color images, which we con-

vert into the one-hot matrix representation compatible with

the softmax classifier.

The images in this dataset have a resolution of 1242×375

pixels, however we resize all of the images to a resolution

of 224×224 pixels without preserving their aspect ratios.

This downsampling enables us to train our networks more

efficiently in regards to memory and computation.

From the gray-scale depth images provided in the

dataset, we generate additional data which is colorized

depth images by applying a jet colormap ranging from red

(near) over green to blue (far) as in [9] to be able to ben-

efit from the pretrained VGG weights. The standard jet

colormap is however linear, hence does not fully exploit

the color spectrum. Thus, we adopt a non-linear version

of the jet colormap. For this, we quantize the available

range of depth values nonuniformly and assign the same

color to multiple depth values. This nonlinear assignment is

achieved by first building a histogram of the available depth

values and then merging bins such that the new histogram

has roughly the same number of occurrences in all the bins.

We find the depth value that has the most number of occur-

rences and use this number as the bin size, which results in

a total of 412 bins in our RGBD dataset. Hence each depth

image in the dataset is eventually represented by using 412

depth levels, i.e. colors. We note that this nonlinear encod-

ing scheme is dataset specific and computed once over the

368



training set. We do not process the original RGB and depth

images in any other additional way.

We also use the DAVIS dataset [28] to show that our

method works on real videos, even though the dataset is

composed of RGB-only videos. There are 50 Full HD

videos totaling in 3455 frames with challenges such as oc-

clusion, motion-blur and appearance changes. The dataset

provides pixel-level annotation into 2 categories (back-

ground, foreground) and we apply the same downsampling

operation performed in the case of the Virtual KITTI dataset.

4. Method

We use custom layers in our recurrent convolutional net-

works, which we call C-RNN, C-LSTM and C-GRU. Sim-

ply put, these layers are extensions of the standard RNN

[10], LSTM [18] and GRU [4] layers; which take matrices

as inputs and produce matrices as outputs, rather than tak-

ing vectors as inputs and outputting vectors. This extension

from vectors to matrices is achieved by replacing multipli-

cation operations with convolutions.

4.1. Recurrent Convolutional Layers

Convolutional RNN Layer (C-RNN) is the convolu-

tional counterpart of the RNN layer. It is the most sim-

ple recurrent convolutional layer and is dictated by a single

equation:

Ht = relu(W1 ∗X +W2 ∗Ht−1 + b) (1)

where * denotes the convolution operation, Ht is the

hidden state matrix, relu is the rectified linear unit (ReLU),

X is the input matrix, W1 and W2 are the parameter ma-

trices, and b is the bias vector.

Convolutional LSTM Layer (C-LSTM) is the convo-

lutional counterpart of the LSTM layer and calculates its

gates and state according as follows:

I = sigm(W1 ∗X +W2 ∗Ht−1 + b1)

F = sigm(W3 ∗X +W4 ∗Ht−1 + b2)

O = sigm(W5 ∗X +W6 ∗Ht−1 + b3)

J = tanh(W7 ∗X +W8 ∗Ht−1 + b4)

Ct = Ct−1 ◦ F + I ◦ J

Ht = tanh(Ct) ◦O

(2)

where ◦ denotes the Hadamard product, I is the input

gate matrix, F the forget gate matrix, O the output gate

matrix, Ct the cell state matrix, Ht the output matrix, X

the input matrix, sigm the sigmoid function, tanh the hyper-

bolic tangent function, W1 to W8 are parameter matrices

and b1 to b4 are bias vectors.

Convolutional GRU Layer (C-GRU) is the counterpart

of the GRU layer, defined by the following equations:

Z = sigm(W1 ∗X +W2 ∗Ht−1 + b1)

R = sigm(W3 ∗X +W4 ∗Ht−1 + b2)

Hh = tanh(W5 ∗X +W6 ∗ (R ◦Ht−1) + b3)

Ht = Z ◦Ht−1 + (1−Z) ◦Hh

(3)

where Z is the update gate matrix, R the reset gate ma-

trix, Ht the output matrix, X the input matrix, sigm the

sigmoid function, tanh the hyperbolic tangent function, W1

to W6 the parameter matrices and b1 to b3 are the bias vec-

tors.

C-RNN is the easiest layer to train, however has the least

number of parameters. In order to increase the learning ca-

pacity of networks, C-LSTM is a more preferable choice,

since it has more parameters than C-RNN with internal

memory, but increases the time required for training. To

speed up training C-GRU can be used, which provides simi-

lar performance compared to C-LSTM with less parameters

than C-LSTM and more parameters than C-RNN [5]. In

the semantic segmentation task we focus on, we expect C-

LSTM to perform better than the C-RNN and C-GRU vari-

ants, since it has the most number of parameters and pos-

sesses internal memory that is potentially capable of learn-

ing more information from successive video frames in deal-

ing with challenging conditions such as occlusions and un-

covered regions.

Although the parameters of the convolution operations

(stride, window size, padding...) in our custom layers are

tunable, we set them the same as the convolution layers in

our networks, since the results of our initial experiments

presented the most performance boost with this configura-

tion.

4.2. Networks

Our networks have different architectures to accommo-

date various input data types shown in Table 1.

Network Input Type Input Channels

D Colorized Depth 3

RGB Color 3

RGBD Color and Colorized Depth 3 + 3

Table 1. Input types accepted by our networks. -D and -RGB net-

works accept a single input, whereas the -RGBD networks accept

dual inputs.

Network Architectures We base our network architec-

tures on the VGG-19 (Model E) [36] network by mirroring

its first 12 convolution and 3 pooling layers. -D and -RGB

networks share the same architecture; accept a single in-

put of size 224×224×3, but their input types are different.

-RGBD networks on the other hand, accept two inputs of

the same size 224×224×3, where each input is processed

369



Figure 1. Block diagram of the -RGBD networks unrolled in time starting from t=0 to sequence length t=N.

by a different stream in the network. In the end, the two

streams are fused together in the deconvolution layer [24]

by element-wise addition. Tables 3 and 4 show the architec-

tures of our networks layer by layer, and Figure 1 visualizes

the structure of the -RGBD networks. Only the Conv net-

work is fully convolutional, whereas the RNN, LSTM, GRU

networks are recurrent fully convolutional networks. In the

-RGBD networks, depth and RGB are processed by two dif-

ferent steams of convolution layers. Next, they are fused by

elementwise addition and fed to the convolutional recurrent

layer, which is either a C-RNN, C-LSTM or C-GRU layer.

The output of the convolutional recurrent layer is then fed to

the deconvolution layer [24] and softmax is applied, which

determines the final output.

In all of our networks, all convolution and deconvolu-

tion layers are followed by ReLU activations, which are not

shown for brevity. All convolution layers have padding=1

and stride=1. Deconvolution layers have padding=2 and

stride=4. Pooling operations are maximum pooling with

stride=window=2. We call the first 15 layers of the VGG-

19 network TVGG-19 (Trimmed VGG-19) and use it as a

building block in our networks. The architecture of TVGG-

19 is given in Table 2.

Initialization and Weight Transfer Initial weights of

the Conv-D and Conv-RGB networks are picked as the

weights of the convolution layers of the VGG-19 network

(Model E) pretrained on ImageNet. With this initialization,

we benefit from the data learned by the VGG-19 network,

since our data is composed of RGB and colorized depth.

In training the Conv-RGBD network, we use the trained

weights from the Conv-D and Conv-RGB networks as the

initial weights of the convolutional layers in the correspond-

TVGG-19

conv3-64 (×2)

pool

conv3-128 (×2)

pool

conv3-256 (×4)

pool

conv3-512 (×4)

Table 2. Layers of TVGG-19, which are repeated consecutively by

the number of times written in parenthesis.

Conv RNN LSTM GRU

Input Input Input Input

TVGG-19 TVGG-19 TVGG-19 TVGG-19

C-RNN C-LSTM C-GRU

deconv deconv deconv deconv

Softmax Softmax Softmax Softmax

Table 3. Architectures the of -D and -RGB networks, layer by

layer.

ing streams. This transfer of weights reduces training time

by increasing the convergence rate and improves pixel-wise

accuracy. The recurrent fully convolutional networks are

then initialized with the trained weights of the fully convo-

lutional networks. This second transfer makes it easier for

the recurrent fully convolutional networks to learn. For ex-

ample, after having trained the Conv-D and Conv-RGB net-

works, LSTM-D and LSTM-RGB can be trained. It is possi-

ble to train LSTM-RGBD only after the trainings of LSTM-

D and LSTM-RGB are completed. This requirement is the

370



Conv RNN LSTM GRU

Depth RGB Depth RGB Depth RGB Depth RGB

TVGG-19 TVGG-19 TVGG-19 TVGG-19 TVGG-19 TVGG-19 TVGG-19 TVGG-19

C-RNN C-LSTM C-GRU

deconv deconv deconv deconv

Softmax Softmax Softmax Softmax

Table 4. Structure of the -RGBD networks layer by layer. In each network, there are two different streams (TVGG-19) one for depth and

one for RGB data.

same for the RNN and GRU networks. As opposed to no

weight transfer at all, our weight transfer scheme provided

about a 10% accuracy boost in our initial experiments. In

all of our networks, we initialize the deconvolution weights

with the bilinear distribution [24], the weight matrices and

biases of the C-RNN, C-LSTM and C-GRU layers with the

Xavier distribution [13] and zeros, respectively.

5. Experiments

We employ end-to-end training by minimizing the pixel-

wise negative log-likelihood with Adam [19] and use pixel-

wise accuracy as our quantitative evaluation metric. In all

settings, the learning rate is 10−5. We train Conv-D and

Conv-RGB networks for 100, Conv-RGBD for 50 and the

remaining networks for 25 epochs. Conv-D and Conv-RGB

networks have a minibatch of size 24, whereas Conv-RGBD

has of size 16. The remaining networks do not have mini-

batching. The recurrent networks are trained with back-

propagation through time (BPTT) algorithm [39], where the

number of time steps D is 1.

We implemented all of our networks in the programming

language Julia [2] with the deep learning package Knet [42],

which provides GPU support. We used a single NVIDIA

K80 in a high performance cluster to train each network,

which took about between 6 hours and 2.5 days for a sin-

gle network, depending on the configuration and amount

of training data. At test time, our Conv-RGBD and LSTM-

RGBD networks perform semantic segmentation at 18 and

13 FPS (frames per second) on average for a single frame,

respectively. Our code and pretrained models will be made

available on GitHub.

We have two different setups for the Virtual KITTI

dataset. In all setups, we use all of the worlds in the dataset.

Setup 1 is designed to measure the variance of the networks

to the angle of the camera. 30-deg-left, 30-deg-right, clone

variations are used for training; 15-deg-left, 15-deg-right

variations are used for testing. Setup 2 is more challeng-

ing than the first setup; the first halves of all the variations

are used for training and the second halves are used for test-

ing. In the first setup there are 6378 train and 4252 test

images, and in the second setup there are 10630 train and

test images. We choose the best performing network on the

first setup and continue the rest of our experiments with that

network, which is the LSTM-RGBD network. Therefore, we

no longer train the RNN and GRU networks for setup 2.

The results acquired are provided in Table 6. In each

setup, the best performing network is written in bold. We

test both the linear and nonlinear depth encoding schemes

(described in Section 3) in setup 2, while in setup 1 we

experiment only using the linear depth encoding scheme.

We first observe that LSTM-RGBD and Conv-RGBD out-

perform all other networks in the first and second setups,

respectively. Although we expected LSTM-RGBD to be the

winner also in the second setup, this is not the case. This

might be due to the fact that the number of training images

in setup 2 is much higher than in setup 1 and the LSTM-

RGBD network cannot fully exploit the temporal informa-

tion on a scale this large. Despite slightly lower accuracy,

the LSTM-RGBD network outputs higher quality segmenta-

tions as in Figure 2, where the boundaries around the cars

are sharper and finer details are much more visible. We

also observe that, in setup 2, the nonlinear depth encod-

ing scheme increases the accuracy of depth-only LSTM-D

by 5.43% and reduces the gap between Conv-RGBD and

LSTM-RGBD from 0.48% to 0.14%. In any case, -RGBD

networks perform better in test accuracy and show the ad-

dition of depth information improves segmentation results

and quality.

Network Test Accuracy (%)

Conv-RGB 94.56

LSTM-RGB 95.22

Table 5. Results acquired on the DAVIS dataset.

For the experiments on the DAVIS dataset, we use all of

the video sequences provided in the dataset and train our

networks with the first halves of the sequences. The re-

maining second halves are used for testing. Since there is

no depth data provided in this dataset, we can not train -D

and -RGBD networks and only train -RGB networks.

Table 5 presents our results on the DAVIS dataset. LSTM-

RGB network architecture performs better in test accuracy

and provides higher quality visual segmentation outputs

compared to the Conv-RGB network as in Figure 3. The

371



Network

Test Accuracy (%)

Setup 1 Setup 2 Setup 2

(linear encoding) (nonlinear encoding)

Conv-D 73.73 73.75 76.99

Conv-RGB 84.87 80.01 80.01

Conv-RGBD 85.81 82.70 82.76

RNN-D 69.58 - -

RNN-RGB 84.09 - -

RNN-RGBD 85.81 - -

LSTM-D 68.68 71.49 76.92

LSTM-RGB 85.26 79.95 79.95

LSTM-RGBD 86.23 82.22 82.62

GRU-D 69.81 - -

GRU-RGB 85.14 - -

GRU-RGBD 85.89 - -

Table 6. Results acquired on the Virtual KITTI dataset.

boundaries are sharper and the general shape of objects are

much more precise. Finer details are captured better by the

LSTM-RGB network, while the Conv-RGB network gener-

ates coarser segmentations.

6. Conclusion

In this paper, we have explored the performance of recur-

rent fully convolutional networks in the domain of RGB and

RGBD videos for the semantic segmentation task. Through

experiments, we have shown that fully convolutional net-

works possess the potential to benefit from depth infor-

mation when combined with RGB data. In adding recur-

rent layers to fully convolutional networks, we observe fur-

ther improvement in quantitative results and achieve bet-

ter quality in visual segmentation results. By transferring

weights from fully convolutional networks to recurrent con-

volutional networks, we manage to reduce the training time

of recurrent convolutional networks and also improve the

accuracy.

Our future goals are to explore the effects of increasing

the number of time steps used in backpropagation through

time in our recurrent networks. We also aim to improve

the input resolution, deepen our networks with more con-

volutional and recurrent layers and develop different fusion

methods by transfer learning from RGB to depth. Perform-

ing experiments on real RGBD video datasets, rather than

synthetic as in our current experiments, may also prove in-

teresting.

7. Acknowledgements

This work was supported by the Scientific and Tech-

nological Research Council of Turkey (TUBITAK) Grants

114E628 and 215E201.

References

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. CoRR, abs/1511.00561, 2015.

[2] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah.

Julia: A fresh approach to numerical computing. CoRR,

abs/1411.1607, 2014.

[3] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Semantic image segmentation with deep convolu-

tional nets and fully connected crfs. CoRR, abs/1412.7062,

2014.

[4] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations

using RNN encoder-decoder for statistical machine transla-

tion. CoRR, abs/1406.1078, 2014.

[5] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical

evaluation of gated recurrent neural networks on sequence

modeling. CoRR, abs/1412.3555, 2014.

[6] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

CoRR, abs/1604.01685, 2016.

[7] C. Couprie, C. Farabet, L. Najman, and Y. LeCun. In-

door semantic segmentation using depth information. CoRR,

abs/1301.3572, 2013.

[8] Z. Deng, S. Todorovic, and L. J. Latecki. Semantic segmen-

tation of rgbd images with mutex constraints. In 2015 IEEE

International Conference on Computer Vision (ICCV), pages

1733–1741, 2015.

[9] A. Eitel, J. T. Springenberg, L. Spinello, M. A. Riedmiller,

and W. Burgard. Multimodal deep learning for robust RGB-

D object recognition. CoRR, abs/1507.06821, 2015.

[10] J. L. Elman. Finding structure in time. Cognitive Science,

14(2):179–211, 1990.

[11] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual

worlds as proxy for multi-object tracking analysis. CoRR,

abs/1605.06457, 2016.

[12] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In

Conference on Computer Vision and Pattern Recognition

(CVPR), 2012.

[13] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In In Proceed-

ings of the International Conference on Artificial Intelligence

and Statistics (AISTATS10). Society for Artificial Intelligence

and Statistics, 2010.

[14] S. Gupta, R. B. Girshick, P. Arbelaez, and J. Malik. Learning

rich features from RGB-D images for object detection and

segmentation. CoRR, abs/1407.5736, 2014.

[15] C. Hazirbas, L. Ma, C. Domokos, and D. Cremers. Fusenet:

Incorporating depth into semantic segmentation via fusion-

based cnn architecture. In ACCV, 2016.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015.

[17] Y. He, W. Chiu, M. Keuper, and M. Fritz. RGBD seman-

tic segmentation using spatio-temporal data-driven pooling.

CoRR, abs/1604.02388, 2016.

372



Conv-RGBD

LSTM-RGBD

Ground Truth

RGB Input

Colorized Depth

Figure 2. Comparison of output segmentations of the Conv-RGBD and LSTM-RGBD networks obtained on the clone sequence of world

0020 in the Virtual KITTI dataset for setup 2 with nonlinear depth encoding. The third row shows the ground truth annotations and the last

two rows are inputs to the networks at time t. The horizontal axis (from left to right) depicts time.

[18] S. Hochreiter and J. Schmidhuber. Long short-term memory,

1997.

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. CoRR, abs/1412.6980, 2014.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012.

[21] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video

segmentation by tracking many figure-ground segments. In

ICCV, 2013.

[22] M. Liang and X. Hu. Recurrent convolutional neural network

for object recognition. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2015.

[23] Z. Liu, X. Li, P. Luo, C. Loy, and X. Tang. Semantic image

segmentation via deep parsing network. In The IEEE Inter-

national Conference on Computer Vision (ICCV), December

2015.

[24] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. CoRR, abs/1411.4038,

2014.

[25] D. Marmanis, J. D. Wegner, S. Galliani, K. Schindler,

M. Datcu, and U. Stilla. Semantic segmentation of aerial

images with an ensemble of cnns. ISPRS Annals of Pho-

togrammetry, Remote Sensing and Spatial Information Sci-

ences, pages 473–480, June 2016.

[26] H. Noh, S. Hong, and B. Han. Learning deconvolution net-

work for semantic segmentation. CoRR, abs/1505.04366,

2015.

[27] M. S. Pavel, H. Schulz, and S. Behnke. Recurrent convolu-

tional neural networks for object-class segmentation of rgb-

d video. In 2015 International Joint Conference on Neural

Networks (IJCNN), pages 1–8, July 2015.

[28] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool,

373



Conv-RGB

LSTM-RGB

Ground Truth

RGB Input

Figure 3. Comparison of output segmentations of the Conv-RGB and LSTM-RGB networks on the blackswan sequence in the DAVIS

dataset. The first and second rows are outputs of the Conv-RGB and LSTM-RGB networks, respectively. The third row shows the ground

truth annotations and the last row the input at time t. The horizontal axis (from left to right) depicts time.

M. Gross, and A. Sorkine-Hornung. A benchmark dataset

and evaluation methodology for video object segmentation.

In Computer Vision and Pattern Recognition, 2016.

[29] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe. Full-

resolution residual networks for semantic segmentation in

street scenes. CoRR, abs/1611.08323, 2016.

[30] M. Ren and R. S. Zemel. End-to-end instance seg-

mentation and counting with recurrent attention. CoRR,

abs/1605.09410, 2016.

[31] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and

A. Lopez. The SYNTHIA Dataset: A large collection of

synthetic images for semantic segmentation of urban scenes.

In CVPR, 2016.

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,

A. C. Berg, and F. Li. Imagenet large scale visual recognition

challenge. CoRR, abs/1409.0575, 2014.

[33] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo.

Convolutional LSTM network: A machine learning ap-

proach for precipitation nowcasting. CoRR, abs/1506.04214,

2015.

[34] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

ECCV, 2012.

[35] K. Simonyan and A. Zisserman. Two-stream convolu-

tional networks for action recognition in videos. CoRR,

abs/1406.2199, 2014.

[36] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[37] S. Tsogkas, I. Kokkinos, G. Papandreou, and A. Vedaldi.

Semantic part segmentation with deep learning. CoRR,

abs/1505.02438, 2015.

[38] S. Valipour, M. Siam, M. Jägersand, and N. Ray. Recurrent

fully convolutional networks for video segmentation. CoRR,

abs/1606.00487, 2016.

[39] P. J. Werbos. Backpropagation through time: What it does

and how to do it. Proceedings of the IEEE, 78(10):1550–

1560, 1990.

[40] Z. Wu, Y. Jiang, X. Wang, H. Ye, X. Xue, and J. Wang.

Fusing multi-stream deep networks for video classification.

CoRR, abs/1509.06086, 2015.

[41] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How

transferable are features in deep neural networks? CoRR,

abs/1411.1792, 2014.

[42] D. Yuret. Knet: beginning deep learning with 100 lines of

julia. In Machine Learning Systems Workshop at NIPS 2016,

2016.

374


