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Abstract

Hyperspectral signal reconstruction aims at recovering

the original spectral input that produced a certain trichro-

matic (RGB) response from a capturing device or observer.

Given the heavily underconstrained, non-linear nature of

the problem, traditional techniques leverage different sta-

tistical properties of the spectral signal in order to build in-

formative priors from real world object reflectances for con-

structing such RGB to spectral signal mapping. However,

most of them treat each sample independently, and thus do

not benefit from the contextual information that the spatial

dimensions can provide. We pose hyperspectral natural im-

age reconstruction as an image to image mapping learn-

ing problem, and apply a conditional generative adversar-

ial framework to help capture spatial semantics. This is the

first time Convolutional Neural Networks -and, particularly,

Generative Adversarial Networks- are used to solve this

task. Quantitative evaluation shows a Root Mean Squared

Error (RMSE) drop of 44.7% and a Relative RMSE drop of

47.0% on the ICVL natural hyperspectral image dataset.

1. Introduction

Hyperspectral (HS) imaging has gained relevance over

the last couple of years in the applied vision community.

Remote sensing, UAV-based imaging, precision agriculture

or autonomous driving are only some of the fields that are

already benefiting from the use of imaging devices that

provide a response that spans the spectral dimension with

narrow-band channels to produce an image with higher

spectral resolution than the standard RGB trichromatic one.

While the evolution of HS imaging devices has under-

gone major breakthroughs, it is also true that there is still a

trade-off inherent to the fact that we are ultimately captur-

ing three dimensional information with a two dimensional

sensor, which limits the quality or resolution of the acquired

signal in either of those dimensions: spatial, spectral or tem-

poral. On top of that, the cost of such devices is orders of

magnitude above that of conventional RGB cameras.

In this context, HS signal reconstruction from broadband

or limited acquisition channels (typically, from RGB sen-

sors) arises as a natural computational alternative, either to

compete against native HS systems or to be included as part

of their signal post-processing backends. The spectral re-

construction problem is a severely underconstrained, highly

non-linear one, and the algorithms trying to solve this map-

ping should exploit the low dimensionality of the natural

HS images [6] and learn informative priors of diverse forms

from real world object reflectances, to be leveraged in the

reconstruction phase. Note, however, that most of the exist-

ing solutions handle each pixel individually. By doing so,

they are not taking advantage of the latent contextual infor-

mation available in the spatially local neighborhood [6].

Generative adversarial Networks (GAN) are a class of

neural networks which have shown to be able to success-

fully generate samples from the complex manifold of real

images. In this work, we use this class of algorithms to

learn a generative model of the joint spectro-spatial distri-

bution of the data manifold of natural HS images and use

it to optimally exploit spatial context information. To our

knowledge, this is the first time Convolutional Neural Net-

works (CNN) are used in the task of spectral reconstruction

of natural images. We quantitatively evaluate our approach

on the largest HS natural image dataset available to date,

i.e. ICVL, by comparing against [2], and show error drops
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of 44.7% (RMSE) and 47.0% (relative RMSE) over their

state of the art results.

1.1. Related work

A number of works are relevant to the proposed ap-

proach. This task was first addressed by isolating its spatial

component and focusing on the reconstruction of homoge-

neous, well-established reflectances of real world surfaces

such as Munsell chips, either from multispectral, RGB com-

ponents [18] or from the tristimulus values [3, 1].

Initial attempts on the spectral reconstruction of natural

images from full size RGB input required additional con-

strains or multiple input forms to help in their task: [22]

and [5] use the aid of a low resolution HS measurement in

addition to the RGB input, [28] restricts to the skylight sam-

ples domain, and [34, 35, 16], among others, rely on the

aid of computational photography-like multiplexed narrow

band lighting. The latter does, however, use spatial informa-

tion for learning, as does [6], which focuses on the statistics

for this class of images and defines a representation basis

and computation method for the associated coefficients, but

does not tackle reconstruction.

Solutions relying on a single RGB image input at test

time are scarce, and almost none of them leverage the spa-

tial context: [33] uses a Radial Basis Function network and

produces an estimate of scene reflectance and global illumi-

nant, but assumes a known camera color matching function,

and directly depends on the performance of a white balanc-

ing stage as part of the workflow. [52] presents the ma-

trix R method for spectral reflectance reconstruction, which

additionally requires a calibration target to build a camera

model. [2] learns a sparse dictionary of HS signatures as

bases for the reconstruction. By treating each pixel inde-

pendently, the ability to use the surround information is lost

e.g. for producing distinct spectral outputs for metameric

RGB pairs dependent on the context.

Remarkably, [40] exploits spatial material properties of

the imaged objects by extracting not only spectral, but also

convolutional features resulting from the application of the

filter banks from [48], and adopting a constrained sparse

coding-based reconstruction approach. In parallel to our de-

velopment, we found a similar approach [15] which makes

use of a CNN-based encoder-decoder to address this task.

Finally, there exists a certain relation between the HS re-

construction and the image colorization [7] tasks, which has

been previously addressed in a similar fashion [51, 21], but

under different evaluation requirements. We can think of

the former being a generalization of the latter for an arbi-

trary number of input/output channels.

None of these methods would have been possible with-

out the existence of publicly available HS natural image

datasets. Until recently, the amount of images per set was

the limiting factor for the development of HS reconstruc-

tion algorithms that learn on the basis of images or image

patches [14, 50, 6, 33, 12, 13]. [2] changed this releasing a

set of 201 high resolution images that we show is enough

for the successful training of deep neural networks.

2. Adversarial spectral image reconstruction

from RGB

This section describes the core functioning of our

method, along with some of the mathematical developments

that derived into the proposed models.

2.1. Adversarial learning

Generative Adversarial Networks (GANs) GAN-s [17]

are generative statistical models that learn to produce real-

istic samples y that lay in the data manifold by relying on a

setup consisting on two competing agents: the generator G
takes noise z as input as a source of randomness, and creates

fake data samples G(z). It is trained to make the generated

samples as realistic as possible. On the other end, the aim

of the discriminator, D, which randomly takes as input both

samples from the training data set and those generated by

G, is to learn to tell if the received input samples are real or

fake. Typically, both G and D are neural nets, and they are

trained iteratively to progressively become better in their re-

spective tasks. The objective function associated to such a

setting is:

LGAN (G,D) = Ey∼pdata(y)[logD(y)]+

+ Ez∼pnoise(z)[log(1−D(G(z)))] (1)

where G tries to minimize this loss and D attempts to max-

imize it, yielding the objective function:

G∗ = argmin
G

max
D

LGAN (2)

This adversarial framework has successfully been applied

to the unsupervised generation of data of different modali-

ties, including natural images [11], and empirical architec-

ture guidelines for G and D have been derived [37] for such

cases, along with common tricks to stabilize the training

process [43].

Conditional Generative Adversarial Networks (cGANs)

cGANs [31] extend this framework by feeding both G and

D with additional information x to be used to condition

on the output of the generator. Such conditioning input

could adopt different modalities, and range from simple cat-

egorical labels [31] to more sophisticated content, such as

text [38] or images [27], either alone or as a combination

of multiple input modalities [39, 53]. This has been proved

useful for a number of tasks and output types [49, 30]. Eq. 3

shows the updated loss function for conditional GANs. In

this case, G attempts to generate images that look realistic
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Figure 1. Adversarial spatial context-aware spectral image reconstruction model

given the additional provided input x (be it the class of y,

a descriptive text, or an additional image), and D tries to

determine whether the given (x, y) pair makes sense or not

as a mapping.

LcGAN (G,D) =

= Ex,y∼pdata(x,y)[logD(x, y)]+

+ Ex∼pdata(x),z∼pnoise(z)[log(1−D(x,G(x, z)))] (3)

As a result, cGANs open the door to using generative statis-

tical modeling for our HS reconstruction problem by con-

ditioning the generation of an HS outcome on a given input

RGB image.

Adversarial image to image mapping Many modern

computer vision tasks can better be regarded under the com-

mon reference framework of image to image mapping learn-

ing, in which a generator model G is learned that trans-

lates an input image x into the most probable representa-

tion y of such image in the output domain. This is the

case e.g. for semantic segmentation [45], instance segmen-

tation [10], or depth and surface normal estimation from

single image [4], among others. Most of these tasks have

been recently addressed making use of Convolutional Neu-

ral Networks that yield deterministic results as generators,

and which are specifically tailored, in terms of architecture

design, objective function or other specific training details,

for their respective tasks.

There are, in addition, some tasks for which this map-

ping is not unique, and one same input image could have

multiple equally correct representations in the output do-

main. Realistic image rendering from semantically labeled

images (inverse of the semantic segmentation problem) or

from hand-drawn sketches, or image colorization [7], are

just a few examples of this. The choice of the objective

functions to use in each of these cases is a particularly chal-

lenging design aspect; applying an otherwise useful ℓ2 loss

to x, y image pairs is known to be problematic and yield

blurry results [26], as the generator tends to average over

the space of valid image representations.

For all of the above, [21] proposes a common image to

image mapping learning framework based on the cGAN ad-

versarial setting, which, provided that one can feed it with

co-registered image pairs of input and output domains, is

able to learn the most suitable loss function for each of the

tackled tasks in a data-driven approach. This is done implic-

itly using the adversarial objective from eq. 3, enforced by

the discriminator trying to identify the fake images and, this

way, encouraging the generator to become better at trying

to deceive it.

By doing this, [21] manages to get rid of the blur in-

herent to ℓ2 distance-based models and produce sharp re-

sults. Nevertheless, it has been previously shown [36, 46]

that combining one of the traditional loss functions with the

adversarial objective LcGAN can help produce more spa-

tially consistent results and make the generator less prone

to artifacts inherent to the adversarial scheme. They thus

place an additional ℓ1 term (eq.4) on the generator, which is

known to yield less blur:

Lℓ1(G) = Ex,y∼pdata(x,y),z∼pnoise(z)[‖y−G(x, z)‖1] (4)

and produce the following combined objective function:

G∗ = argmin
G

max
D

LcGAN (G,D) + λLℓ1(G) (5)

where λ is a weighting factor for the ℓ1 term, which is set to

100 in [21]. In essence, LcGAN (G,D) would be in charge
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of producing sharp, realistic looking results, while ℓ1 takes

care of the global image structure.

Interestingly, the stochastic output pursued by the noise

input to cGAN-like models does not manifest itself under

this design (see details in section 2.2), and the resulting

mapping is a fundamentally deterministic one. A probable

interpretation is G learning to ignore the effect of the noise.

As a result, [21] gets rid of the noise input and leaves test-

time dropout as unique source of randomness.

Adversarial spectral reconstruction networks The for-

ward correspondence learning between the RGB and hyper-

spectral signals is a heavily under-constrained one, which

could benefit from an approach that aims at exploiting the

underlying priors present in both the spectral and spatial di-

mensions and learn a model that specifically produces real-

istic outcomes as a target. It not only requires mapping a 3-

dimensional image to a much higher dimensional one (typ-

ically 31 spectral channels and the two spatial dimensions),

but such mapping can be context-dependent as well, as is in

the case of metameric colors. The inverse mapping, how-

ever, i.e. the rendition of RGB images from their spectral

counterparts, is well defined, and deterministic under the

only assumption of the color matching functions defining

the observer, or the spectral sensitivity functions that char-

acterize specific sensors. This makes it immediate to gener-

ate perfectly aligned (RGB, hyperspectral) image pairs (see

section 3) to be used under the described solution.

Hyperspectral image reconstruction from RGB can then

be posed as one of the aforementioned image to image map-

ping learning problems and thus be solved under the condi-

tional adversarial network-based image to image translation

framework proposed by [21].

The resulting adversarial and combined objectives would

then become:

Ladv = EIrgb,Ihs∼pdata(Irgb,Ihs)[logD(Irgb, Ihs)]+

+ EIrgb∼pdata(Irgb)[log(1−D(Irgb, G(Irgb)))] (6)

Lrgb2hs(G,D) = Ladv + λLℓ1 = Ladv+

+ λEIrgb,Ihs∼pdata(Irgb,Ihs)[‖Ihs −G(Irgb)‖1] (7)

where Ihs represents the original hyperspectral image, Irgb
is the corresponding input image in the RGB domain and λ
is scalar weight used to balance both loss terms (and is set

to 100 in all our experiments, unless otherwise stated). Note

that we have explicitly removed any reference to the input

noise, and the RGB image remains as the only input to G.

Figure 1 shows an overview of the whole adversarial

spatial context-aware spectral image reconstruction process.

We depart from a database of perfectly aligned RGB and

hyperspectral image pairs, which are extracted one pair at a

time. In a first iteration, a first pair of real images of size

H × W is taken: {IRGB , IHS}. The generator G takes

IRGB as input, and yields the corresponding hyperspec-

tral reconstruction of size H × W , ÎHS . The discrimina-

tor D is now fed with two pairs of images, {IRGB , IHS}
and {IRGB , ÎHS} and uses the associated labels indicating

if they are real or fake {1, 0} to compute the adversarial loss

and update its gradients. G’s weights are also updated, and

both D and G continue to become better at their respective

tasks iteratively.

2.2. Architecture design and training

As for the specific implementation of the models, since

G needs to yield full-size detailed images, a U-Net-like ar-

chitecture [42] is used. Regular autoencoder networks [25]

exhibit a progressively reduced representation size until a

bottleneck layer and there is no way for the last layers of

accessing the original data, which negatively affects the

results when we aim at detailed outcomes. Unlike these,

the U-Net incorporates skip connections between layers of

equal representation size, and concatenates local activations

from the upscaling phase with those coming from the down-

scaling stages, which has shown to achieve superior perfor-

mance on tasks were the details are relevant. It was first pro-

posed with semantic segmentation tasks in mind, but orig-

inal spectral signal reconstruction falls within the kind of

tasks that can clearly benefit from accessing the original in-

put levels at each sample (i.e. pixel).

The discriminator D, defined as PatchGAN, is simpler

in terms of convolutional layer count, and is focused solely

on modeling high-frequency structure. Each of the M ×M
output neurons is restricted to see only a limited N × N
receptive field from the input image, which can be signif-

icantly smaller than the input image size. Consequently,

only the adversarial loss term is placed over D (eq 5).

The use of this design solution for D is consistent with

our initial hypothesis that local spatial context can help bet-

ter reconstruct the spectral signal. Specifically, we hypoth-

esize that the proposed approach could help disentangling

the illuminant and object body reflectance components of a

pixel’s trichromatic response, as defined by the dichromatic

reflection model [44]. The design of D, with its attached

ℓ1 objective, helps capture the high frequencies that char-

acterize the textures in the image. These are, together with

the body color component, one of the main features charac-

teristic of the different materials which, ultimately, produce

distinct spectral responses. Therefore, convolutionally inte-

grating the trichromatic response of adjacent pixels should

yield a better estimate of the central spectral response. To

this respect, the PatchGAN design isolates D’s response as-

sociated to pixels separated by more than one input patch.

For small enough patch sizes, this effectively implies that

the discriminator is learning a loss function tailored for tex-

ture or material recognition, making sure that the recon-
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Figure 2. Random RGB samples from the ICVL dataset [2].

structed spectra falling within the patch are not only plau-

sible in the spectral domain, but also spatially consistent in

the close proximities.

The illuminant-specific component of [44], on the other

hand, is typically largely constant or slowly varying across

big portions of the image (especially in terms of chromatic-

ity and conversely, spectral shape), and the ℓ1 norm does a

good job taking care of its global image-wide consistency,

along with that of the low-mid frequency spatial structures.

Avoiding Batch Normalization Given the intrinsically

exact nature of our task (some of the described design

choices help leverage spatial structure consistency for our

task, but we ultimately want the reconstructed spectra to be

accurate), we choose to remove all the Batch Normaliza-

tion [20] layers present in the generator architectures pro-

posed in [21]. While this technique has shown to be use-

ful to help accelerate and regularize the training process for

a wide variety of tasks by reducing the internal covariate

shift, the fact that it makes the signal lose track of its origi-

nal value, along with the deterministic nature of the desired

output, makes it non-advisable for reconstruction tasks. We

experimentally found that including Batch Normalization

produced inferior results.

2.3. Implementation details

We now provide some details on the configurations used

for our implementation. We use Keras with Theano backend

and take the implementation of [21] made by [9] as starting

point, modifying it for our purposes. We use Adam opti-

mizer [24] for both G and D, with a learning rate of 2 ·10−4

and β1 = 0.5. We use a minibatch size of 1 in order to ben-

efit from the regularization provided by the gradient estima-

tion noise [23], and following common practice [21]. The

training is performed iteratively and alternates between the

two models: at each step, the discriminator is first trained

for 50 iterations and then the generator gets trained for 25
more minibatches.

We crop the original 1392 × 1300 images during the

training phase by extracting one random crop of size 256×
256 (the H,W values from section 2) per image and epoch.

The models are fed with these crops during training, while,

for the testing phase, each full size RGB image is divided in

tiles of 256× 256 with no overlap, which effectively yields

image sizes of 1280× 1280 pixels. Each tile gets processed

by the generator independently and we reconstruct the full

image back before evaluating it.

The generator G accepts input images of size 256× 256.

Its encoding stage is composed by eight successive 3 × 3
convolutions with stride 2 and a leaky ReLU after each of

them, thus yielding a 1 × 1 activation in the most narrow

point of the main branch. The initial number of filters is 64,

which gets doubled at each convolutional layer up to 512,

keeping it constant after that. On the decoding part, eight

transposed convolution blocks successively double the acti-

vation size up until the original 256 × 256 size, while pro-

gressively reducing the number of filters in a symmetric way

with respect to the encoding stage. Each block comprises

the transposed convolution itself, followed by a train-time-

only Dropout layer (with a drop rate of 10%) and a leaky

ReLU activation. After each Dropout, the correspondent

activations from the encoding stage are concatenated, thus

producing eight skip connections between levels of equiv-

alent activation size. Finally, two 1 × 1 convolutions are

added at the end before the output tanh activation, with a

leaky ReLU in between, in order to get the direct input im-

ages adequately combined with the upstream features.

The discriminator D is a simple single-branch net com-

posed of four 3× 3 convolutional layers with stride 2, each

of them followed by a leaky ReLU, with filter numbers dou-

bling at each step. A fifth 3× 3 convolution with a sigmoid

yields the output 8× 8 prediction.
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3. Experimental evaluation

This section contains an overview of the experiments

performed to quantitatively assess our algorithm’s perfor-

mance as compared to previous methods.

3.1. Dataset

Given the amount of images, diversity and resolution, we

evaluate our approach on the dataset presented in [2]. At the

time of writing, it comprised 201 hyperspectral images (see

Figure 2 for RGB renditions of a few random samples) of

1392 × 1300 spatial resolution and 519 spectral bands in

the 400nm − 1000nm range, with a spectral resolution of

1.25nm. As for the acquisition, a Specim PS Kappa DX4

hyperspectral camera was used, together with a rotary stage

for spatial scanning. This aspect is noticeable in some of the

samples, in which common objects such as cars exhibit as-

pect ratios that do not match those we find in real life. There

is also a spectrally downsampled version of 31 bands in the

400nm − 700nm range. Following practice from [2], we

use the latter for our reconstruction experiments. There is

no illuminant information available for each of the images,

which would allow for object reflectance recovery; there-

fore, our task consists on the estimation of the radiance cor-

relate represented by the captured hyperspectral images.

3.2. Preparation

In order to get the aligned image pairs dataset required

by our method, and given the deterministic correspondence

between spectral and RGB samples once the observer (or

sensor sensitivity functions) and the output color space are

specified, we render wide band trichromatic RGB versions

of the spectral images in the sRGB color space as follows:

we first obtain the CIE XY Z tristimulus values for each

spectral image pixel location x, making use of the color

matching functions corresponding to the CIE 1964 10◦ stan-

dard observer:

X(x) = K(x)
700nm∑

λ=400nm

S(λ, x)x̄(λ)∆λ (8)

where S(λ, x) is the relative spectral power distribution of

pixel x, X = {X,Y, Z}, x̄(λ) = {x̄(λ), ȳ(λ), z̄(λ)} are

the color matching functions, ∆λ = 10nm and K(x) is the

normalization factor, defined, for illuminant L(λ, x), as:

K(x) =
100

∑700nm
λ=400nm L(λ, x)ȳ(λ)∆λ

(9)

Note that, before going through this computation, the orig-

inal spectral power distribution captured by the camera for

each image S′(λ, x) is preprocessed with min value sub-

traction and max value scaling. The final step is producing

the sRGB renders. We do so by applying the associated

3× 3 transformation matrix and unlinearizing (i.e. gamma-

correcting) the result with a 1/2.4 power law gamma with

a linear segment in low luminance values.

While not suffering from the same lack of an adequate

performance evaluation method that affects typical genera-

tive modeling tasks [47], spectral signal reconstruction al-

gorithms assessment is an active research field that lacks

consensus on what is the most adequate metric to measure

spectral match of signals [19]. When the signals comprise

the visual spectrum, the task can be tackled from a variety of

perspectives, ranging from the pure signal processing point

of view of spectral curve difference metrics, to a full spec-

trum of metric families that place different levels of percep-

tual load on their computation: metameric indexes, CIE ∆E
color difference equations, or weighted spectral metrics.

If we widen the scope onto full reference image differ-

ence metrics, little work has been done on the spectral ex-

tension of these families [32]. We here focus on four of

the most widely used metrics, namely RMSE (Root Mean

Squared Error, computed across the spectral dimension for

each pixel and then averaging for whatever number of pixels

present in the image or the dataset), RMSERel (i.e. RMSE

relative to the value of the real signal), GFC (Goodness

of Fit Coefficient [41]) and ∆E00 (CIEDE2000) percep-

tual color difference formula [8] computed over the recon-

structed tristimulus values.

3.3. Experiments and discussion

We compare our method with the only other one having

reported on the ICVL dataset, i.e. [2]. In their general exper-

iment over the whole set (we do not have enough samples in

each of the domain-specific ones that they define to be able

to learn), which was back then composed of 100 images,

they perform a leave-one-out procedure, and learn from pix-

els sampled along the whole set except for the unique im-

age being tested at a time. We choose to split the dataset

in two equal partitions of 100 images each, training on one

and reporting on the other, running two full train-test cy-

cles and averaging the results across folds and runs. Table 1

compares the obtained values for the aforementioned met-

rics over each of the testing sets, showing an average per-

pixel error drop of 44.7% in terms of RMSE and 47.0% in

terms of RMSERel with respect to [2]. While [2] does not

provide any further evaluation metric, note that our aver-

age GFC values are all above the GFC threshold which [41]

considers a very good reconstruction, and one which im-

plies missing only 0.2% of the signal energy in the process.

Also, the average per-pixel color difference (which does not

account for spatial perceptual effects) is constrained around

as low as 2∆E00 units.

Figure 3 shows the sRGB rendition of original and re-

constructed hyperspectral images for some randomly cho-

sen test image samples. In addition, for each image, we
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Method RMSE RMSERel GFC ∆E00

Arad et al. [2] 2.633 0.0756 - -

Ours (weighted avg.) 1.457± 0.040 0.0401± 0.0024 0.99921± 0.00012 2.044± 0.341
Ours (fold 0) 1.452± 0.101 0.0383± 0.0024 0.99906± 0.00001 1.861± 0.324
Ours (fold 1) 1.463± 0.022 0.0420± 0.0024 0.99936± 0.00023 2.228± 0.358

Table 1. Summary results of the conducted experiments over ICVL dataset. Black pixels contained in the original hyperspectral images

(derived from the variable image width) are not taken into account for evaluation purposes in any of the experiments, and folds are weighted

accordingly. RMSE values are in the [0− 255] range. Two train-test cycles were run and the results averaged.

Figure 3. Sample results for our method. For each triplet, left, center: sRGB rendition of original and reconstructed hyperspectral signals,

respectively. Right: Original (dashed) and reconstructed (solid) spectra of eight random pixels identified by the colored dots.

show the original and estimated spectra for eight randomly

selected pixels from the image.

3.3.1 Does the spatial information actually help?

In an attempt to empirically validate our main hypothe-

sis of contextual spatial information on a local neighbor-

hood being relevant for the correct spectral reconstruction

of any given central pixel, we conduct a branch pruning

experiment. We depart from a minimal version of our

net, in which both the main branch and all the skip con-

nections have been removed, except for the one connect-

ing the 256 × 256 input with the last pair of 1 × 1 con-

volutions (such model predicts each output pixel indepen-

dently by design, without incorporating any spatial contri-

bution), and keep adding skip connections at successively

deeper levels (extending the receptive field of the model

and thus increasing the spatial contribution at each step)

until we end up with the full net, after the addition of the

main 1 × 1 stream branch. Figure 4 shows the results of

running at least two train-test cycles on each of these nets,

and testing over the 1280 × 1280 versions of the images in

fold 1. All the four metrics show a closely correlated out-

come, with a very significant average performance improve-

ment (−20.8% RMSE, −23.5% RMSERel, −47.1%∆E00)

when transitioning from the model with a single skip con-

nection and a 1 × 1 receptive field to that with 2 skip con-

nections and a 3 × 3 receptive field. Further increases

of the model’s theoretical receptive field (by adding new

branches) yield only marginally better results (models la-

beled as 3/7 × 7, 4/15 × 15) and, from there on, addi-

tional deeper skip connections produce increasing test error

rates. We hypothesize that this is due to the influence of

overfitting for experiments 5/31 × 31 and onwards. Given

this, a straightforward way of improving the reported results

could be that of increasing the regularization associated to

the deepest branches by, e.g., increasing their dropout rate.
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Figure 4. Branch pruning experiment results. Top-left: RMSE. Top-right: RMSERel. Bottom-left: GFC. Bottom-right: ∆E00. Leftmost

bar is the model with a single skip connection at 256 × 256 activation size level and 1 × 1 receptive field (RF). Each additional bar adds

one skip connection at increasingly deeper levels of the U-Net. The rightmost bar is the full net, resulting from the addition of the main

branch, and its RF (which would be 512× 512 in an unconstrained scenario), is here limited by the 256× 256 patch size. The addition of

this last layer is justified by the notion of effective RF presented in [29], which may be significantly smaller than its theoretical counterpart.

It is also noticeable the substantially higher variance that

the results seem to suggest for the model with a 1 × 1 re-

ceptive field. This would mean that the addition of local

spatial information does not only improve the overall pre-

diction accuracy, but it does so in a more robust manner as

well.

4. Conclusion

We propose a convolutional neural network architecture

that successfully learns an end-to-end mapping between

pairs of input RGB images and their hyperspectral counter-

parts. We adopt an adversarial framework-based generative

model that shows itself effective in capturing the structure

of the data manifold, and takes into account the spatial con-

textual information present in RGB images for the spectral

reconstruction process. State of the art results in the ICVL

dataset suggest that individual pixel-based approaches suf-

fer from the fundamental limitation of not being able to ef-

fectively exploit the local context when applied to spectral

image data in their attempt to build informative priors. The

observed performance in terms of both reconstruction error

and speed open the door to a full range of potential higher

level applications in sectors of increasing demand for spec-

tral footage at a lower cost.
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