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Abstract

Modern data-driven computer vision algorithms require

a large volume, varied data for validation or evaluation.

We utilize computer graphics techniques to generate a large

volume foggy image dataset of road scenes with differ-

ent levels of fog. We compare with other popular synthe-

sized datasets, including data collected both from the vir-

tual world and the real world. In addition, we benchmark

recent popular dehazing methods and evaluate their per-

formance on different datasets, which provides us an ob-

jectively comparison of their limitations and strengths. To

our knowledge, this is the first foggy and hazy dataset with

large volume data which can be helpful for computer vision

research in the autonomous driving.

1. Introduction

We have witnessed the fast development in autonomous

vehicle systems recently [38]. In most autonomous vehicle

systems, the visual sensors (i.e. cameras) are the key com-

ponent that is used to sense the circumstance nearby. This

visual information is further used to understand the driving

conditions and events. To understand the scene captured

by the cameras, machine learning approaches are always

used to train the system to have the ability for some com-

puter vision tasks like scene parsing [13], object recogni-

tion [14] [2], object detection [25] [39] [30], tracking [41],

etc. Usually, a dataset with large size and large variety is

required to train a robust system for the computer vision

tasks [28]. For this reason, some datasets are provided in

the research community such as KITTI [9], Cityscapes [5]

which are specific for road scenes in city. However, most of

the existing datasets, either from real scenes or from ren-

dered scenes, are captured under good weather condition

with clear scenes. As pointed by Taral et al. [34], one of the

causes of vehicle accidents is the reduced visibility caused

Figure 1. The same scenes in good weather and haze. (Left) real

images from [40]; (right) simulated images from our dataset.

by bad weather such as foggy and hazy weather. Fog and

haze are common bad weather. They are caused by floating

particles in the atmosphere which absorb and diffuse the

light transmission and subsequently cause the foggy/hazy

effect [19]. In the foggy or hazy weather, the visibly is

greatly reduced (see Fig. 1 for example) and may impair

the performance of the computer vision systems.

The algorithms which are able to recover the visual visi-

bly is called ”dehazing” or ”defogging” algorithms (we will

use the term dehazing in the rest of the paper). In the past

two decades, there has been a significant progress in im-

proving visibility of foggy or hazy images [19]. Although

a large number of dehazing works have been proposed, a

quantitative evaluation of the dehazing methods on large

dataset of road scene is never done. The challenges are from

the fact it is impossible to capture clear / hazy image pair

when other conditions (e.g. lighting) are exactly the same.

Some works render hazy effect using the depth map [6].

However, getting the depth information is not easy. There-

fore, [6] only provided 11 images for evaluation. Another
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approach is to use computer graphics technique to render

the scene, an example is FRIDA. However, their rendering

is too far from the real scene, making it less convincing for

evaluation. For this reason, we generate this dataset. Com-

pared with capturing real atmospheric scenes, using syn-

thetic data costs lower and ensures greater flexibility and

variety. We use the physics based rendering technique to

ensure the closeness with the real scene. In the following of

the paper, we will describe the dataset, and our experiments

on the dataset. Our contribution can be summarized as :

Our first contribution is to generate large volume, photo-

realistic and varied dataset for data-driven computer vi-

sion research and autonomous driving systems under bad

weather. In the first version of our dataset, it contains ap-

proximately 2000 frames, which based on three Japanese

cities models. Our dataset provides foggy and hazy images,

depth map and masks.

Our second contribution is to compare popular foggy and

hazy images datasets, which include scenes captured from

the virtual world as well as the real world. Fattal [6] used the

camera image and the depth map to synthesize the dataset,

but it only contains 11 images. FRIDA [35] utilized com-

puter graphics techniques to synthesize road images from

virtual world. However, the dataset has small volume data

but also does not provide non-sky mask to reduce error of

evaluation.

Our third contribution is a quantitative benchmark of

a number of popular dehazing methods. Our experiment

shows that recent work [3] and [26] generally perform bet-

ter than previous methods.

The article is organized as follow. Section 2 reviews re-

lated works on using synthetic data for data-driven com-

puter vision research and autonomous driving systems un-

der bad weather. Section 3 describes the methods to build

photo-realistic simulation, introducing approaches to con-

structing virtual world and dynamics of rendering images.

In Section 4, we report our experiments on comparison for

popular foggy and hazy dataset. Moreover, we benchmark

recent popular single image dehazing methods. We con-

clude in Section 5.

2. Related Work

Several works have investigated the use of synthetic data

to solve data-driven computer vision problems and the re-

search of automatic driving systems. For example, Satkin

et al. [29] utilized the rendered 3D model to create a rich

understanding of the scene. Pepik et al. [24] also utilized

the 3D synthetic data to tackle computer vision problems

such as object detection. Initially, 3D simulation has been

used in the research of computer vision to model object like

human shape [10]. However, as Vaudrey et al. [37] sug-

gested, the ground truth which was produced by synthetic

data is easy to estimate and these synthetic scenes lack pho-

torealism, which creates the difference between the virtual

world and the real world. However, as Gaidon et al. [7]

introduced, pre-training computer vision algorithms on vir-

tual data improve the performance of the algorithm. To our

knowledge, however, the popular foggy and hazy datasets

do not contain enough images for training and validation.

The strengths and drawbacks of popular foggy and hazy

datasets for the autonomous driving system are discussed

in the following.

The progress of computer graphics and advanced gener-

ics platforms allows wider use of synthetic data. Stark et

al. [31] indicated that the multi-view detector model can be

built only through the 3D source. Marin et al. [20] sug-

gested that the appearance detector model trained by the

virtual world can be used in the real world. Hattori et al.

[11] proposed a related approach to learn a pedestrian de-

tector model without using data from the real world. Taylor

et al. [36] provided publicly available visual surveillance

simulation test bed for system design and evaluation, which

is based on commercial game engines.

Only a few works focus on training and evaluating au-

tonomous driving systems and data-driven computer vision

research under bad weather. Chen et al. [4] evaluated their

direct perception model on TORCS, it allows users to con-

trol the object in the simulator through user interface di-

rectly. TORCS is a highly portable multi-platform car rac-

ing simulation. TORCS provides different kinds of cars,

tracks, and opponents. The roads and objects in the simu-

lator are all related to the racing car. But as the dataset for

training and testing autonomous driving systems, it lacks

diverse context and does not contain enough labeled ground

truth.

Virtual KITTI [7] provides efficient real-to-virtual

world cloning methods with labeled with accurate ground

truth for tackling computer vision problems such as object

detection and depth. The dataset is photo-realistic synthetic

video dataset, aiming to learn and evaluate autonomous

driving systems. The Virtual KITTI provides 50 monocu-

lar videos, which are based on urban traffic road. However,

Virtual KITTI provides few images about driving environ-

ment under bad weather. In addition, the dataset does not

provide non-sky masks. When evaluating algorithms, non-

sky masks are usually used to reduce the estimation error.

SYNTHIA [27] aims to tackle semantic segmentation

and the related scene understanding problem for automatic

driving. It has a large volume of data, which includes

European-style town, modern city, highway and green ar-

eas. The dataset also contains various dynamic objects and

multiple seasons. However, the dataset does not provide

non-sky masks and the various level of haze and fog image

for evaluating dehazing algorithm.

Fattal’s dataset [6] provides ground truth, corresponding

images and non-sky masks, of which are captured in the real
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Figure 2. Samples from our dataset.

world. The dataset is mainly used in evaluating dehazing al-

gorithm. However, the dataset only contains 11 synthesized

images, which is not large enough for evaluating dehazing

algorithms and autonomous driving systems.

FRIDA [35] provides numerical synthetic images,

which are used in evaluating the performance of the au-

tomatic driving system in a systematic way. The dataset

could contribute to the improvement of vision enhancement

in the foggy environment. FRIDA dataset provides differ-

ent foggy and hazy images such as uniform fog, heteroge-

neous fog, cloudy fog, and cloudy heterogeneous fog. But

the settings and context are not diverse enough, which only

took from similar roads in a city. Also, the dataset only has

420 images.

In this paper, we propose an method to tackle the is-

sues mentioned above, especially for data-driven computer

vision research and autonomous driving system under bad

weather. The current methods have two mainly limitations:

(1) It is costly and time-consuming to produce large volume

data. (2) Many datasets do not provide non-sky masks. Be-

cause of these limitations, only a few previous works have

achieved the full potential of synthesized data.

3. Generating Virtual Driving Environment

Our approach to achieving virtual photo-realistic simu-

lation mainly consists three steps, which are shown as fol-

lowing three sections: (1) Investigation of real-world data,

which includes real-world traffic situation, the size of vehi-

cles and driving environment. (2) Generating virtual driv-

ing environment based on the investigation. (3) Rendering

and collecting the images, which includes rendering depth

image and utilizing atmospheric scattering model to form

foggy and hazy images.

3.1. Investigating realworld data

First of all, we investigated real-world data about traffics

and driving environment, which includes road types, pub-

lic facilities and traffic rules, the proportion of the size of

vehicles, pedestrian and building.

In order to promote the diversity and reality of our

dataset, we investigated different traffic situations and pub-

lic transport facilities, which includes city, residential, var-

ious traffic roads, traffic poles, buildings, sky and other ob-

jects could be seen in the real world.

3.2. Generating synthetic scenarios

Unity3D 1 is decided to build the simulator. The

Unity3D has the diverse and open-source packages for con-

structing virtual environments. The images can be rendered

through programming and computer graphics techniques.

Also, compared with the dataset captured from the real-

world, the data collected from the virtual environment can

be more diverse. It would be less time-consumed and less

costly for building simulator and collecting images. There-

fore, the simulator is decided to be constructed by Unity3D

for the purpose of diverse scenes and budget.

The simulator is based on Japanese cities model from 3D

Urban Datamodel 2. To simulate the real-world situation,

the various traffic environments are considered and created.

The raw data are taken from various scenarios. Pedestrian

are from Unity Asset Store3.

The system consists of light, camera, vehicles, sky,

roads, poles, signs, buildings and pedestrians. The func-

1http://www.unity3D.com
2http://www.zenrin.co.jp/product/service/3d/

asset/
3https://www.assetstore.unity3d.com/

493

http://www.unity3D.com
http://www.zenrin.co.jp/product/service/3d/asset/
http://www.zenrin.co.jp/product/service/3d/asset/
https://www.assetstore.unity3d.com/


tions of each component are realized through programming.

The programmed scripts then are attached to the corre-

sponding objects. The light in the simulator creates shad-

ows. The light also adjusts the color of texture in the simu-

lator. The pedestrians have animations, which are the move-

ments of pedestrians in Unity3D 1. The states of animation

of pedestrians include walk, stand and jump. The simula-

tor also contains a number of buildings, poles, signs and

other traffic facilities, promoting diversity and reality of the

scenes.

Light is one of the essential parts in the simulator, which

allows the simulator to be more realistic by defining colors

and moods of the 3D environment. It also creates shadows

for the objects in the scene. In this simulator, the lights are

set as directional light, which illuminates the whole simula-

tor. The directional light covers a large portion of the scene

and makes the shadows.

3.3. Rendering Image

To make the images in dataset more realistic, rendering

techniques are applied. In Unity3D1, Shader is the script

of Shaderlab, which is a programming language. Shader

is used to make shading and produce special effects or do

video post-processing. They are small scripts which include

the mathematical calculations and algorithms for calculat-

ing the color for the single pixel of the object in the scenes.

For the simulator, Shader program is used to produce the

depth camera. In unity3D 1, the material of an object means

the way of its rendering. It includes the texture and tiling

information, color tints and more.

3.3.1 Depth Image rendering

The depth camera reflects the distance between objects

and camera. The depth camera displays the depth value at

each screen coordinate, which means the camera represents

the distance between objects and camera through the depth

of color. As the object stays further away from the camera,

its color becomes lighter. If the object is closer to the cam-

era, its color becomes darker. A shader is created to process

the depth texture and display. It mainly consists vertex and

fragment shader. The Vertex Shader is the program which

runs on each vertex of the object and is used for rasterizing

the object on the screen. In the design of the depth camera,

the main function of the vertex shader is to sample the tex-

ture in the fragment shader. The fragment shader is the pro-

gram run on each pixel on the screen, calculating the value

of the color on each pixel. In the simulator, the depth value

is calculated by function Linear01Depth, which returns the

linear depth to the screen. A material is set to contain the

shader. Then, the destination RenderTexture is passed to the

material and the material is attached to the camera.

3.3.2 Foggy/hazy image formation

Fog and haze are common phenomena in the real world,

which usually are caused by atmospheric particles. The no-

ticeable degradation of foggy and hazy scenes has the effect

on object detection. According to the survey provided by

[19]. we can apply optical models to build the foggy/hazy

scenes and the formation of a hazy image usually is as fol-

low:

I(x) = e−βd(x)R(x) + Linf(1− e−βd(x)), (1)

where I is the observed color, R is the scene radiance (clear

scene), Linf is the color of the environmental light, and d

is the distance from the scene objects to the camera (i.e.

depth). In this haze image formation, the observed color

is a summation of two components: the direct attenuation

e−βd(x)R(x) and the airlight Linf(1− e−βd(x)). The direct

attenuation describes the decayed scene radiance by scatter-

ing and absorb effects of the floating particles in haze. The

second component airlight [21] defines the type of scattered

environmental light captured in the observers cone of vi-

sion. The airlight causes the washout effect in hazy images.

The exponential expression is according to Koschmieder’s

law. It indicates the the scene radiance decays and haze ef-

fect increase in a exponential relationship with scene depth

d and also determined by the scattering coefficient β. Dif-

ferent scattering coefficient β will result in different levels

of haze effect (as we will use in our simulation later). The

attenuation factor e−βd(x) is often referred to as transmis-

sion factor and denoted together as t.

4. Experiments

To evaluate enhancement algorithms, in this section, vis-

ibility enhancement methods are benchmarked. Through

benchmarking various methods and datasets, we can know

the detail of comparison. In addition, popular hazy and

foggy datasets are discussed in this section.

We apply recent dehazing methods Tarel 09 [34], An-

cuti 13 [1], Tan 08 [32], He 09 [12], Meng 13 [22],

Berman 16 [3], Tang 14 [33] and Ren 16 [26] on different

datasets with ground truth. According to [23], the hazy im-

ages should be created from real atmospheric scenes where

all possible conditions ranging from light mist to various

dense fogy under the different background should be con-

sidered. Ideally, the images need be captured under the en-

vironment where cloud, sunlight distribution and illumina-

tion are fixed. Ideally, It is possible. However, in the real

world, it is rarely meet these conditions. In addition, it is

challenging in practice to capture the image of distant ob-

jects without the effect of particles. Therefore, we use syn-

thesized image to evaluate dehazing methods.

We firstly apply methods on the datasets provided by [6]

and [35]. Then, we perform the methods on our dataset.
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Table 1. The mean absolute difference of final dehazing results on Fattal’s dataset [6]. The three smallest values are highlighted.

Methods Road 1 Moebius Reindeer Road 2 Flower 1 Flower 2 Lawn 1 Lawn 2 Mansion Church Couch

Tarel 09 0.142 0.132 0.122 0.167 0.121 0.160 0.145 0.128 0.122 0.125 0.115

Ancuti 13 0.131 0.171 0.113 0.218 0.161 0.141 0.308 0.234 0.140 0.143 0.128

Tan 08 0.126 0.105 0.132 0.236 0.174 0.104 0.300 0.272 0.153 0.140 0.148

He 09 0.045 0.026 0.038 0.121 0.061 0.046 0.078 0.080 0.051 0.051 0.034

Meng 13 0.046 0.038 0.060 0.096 0.065 0.048 0.114 0.106 0.051 0.049 0.048

Berman 16 0.034 0.033 0.042 0.067 0.085 0.049 0.044 0.047 0.038 0.041 0.040

Tang 14 0.107 0.104 0.081 0.043 0.068 0.130 0.043 0.026 0.090 0.094 0.089

Ren 16 0.112 0.090 0.083 0.132 0.116 0.094 0.279 0.226 0.130 0.143 0.103

Do nothing 0.140 0.137 0.116 0.085 0.101 0.168 0.077 0.058 0.124 0.127 0.122

Table 2. The mean signed difference of final dehazing results on Fattal’s dataset [6]. The three smallest values are highlighted.

Methods Road 1 Moebius Reindeer Road 2 Flower 1 Flower 2 Lawn 1 Lawn 2 Mansion Church Couch

Tarel 09 -0.071 -0.001 0.069 0.111 0.022 -0.131 0.080 0.078 -0.063 -0.060 0.000

Ancuti 13 0.009 0.063 0.028 0.177 0.029 -0.022 0.282 0.217 0.025 0.019 0.054

Tan 08 0.056 0.045 -0.014 0.1090 0.028 0.056 0.115 0.110 0.085 0.080 0.065

He 09 -0.002 -0.001 0.013 0.070 0.023 0.014 0.034 0.041 0.022 0.019 0.009

Meng 13 0.001 0.009 -0.026 0.049 -0.009 0.004 0.047 0.050 0.020 0.014 0.005

Berman 16 0.004 -0.016 -0.015 0.007 -0.077 0.024 -0.013 -0.005 -0.009 -0.003 0.001

Tang 14 -0.102 -0.072 -0.068 -0.030 -0.060 -0.126 -0.025 -0.017 -0.088 -0.090 -0.071

Ren 16 -0.030 0.051 -0.017 0.101 0.050 -0.020 0.253 0.211 0.057 0.074 0.031

Do nothing -0.130 -0.092 -0.096 -0.057 -0.087 -0.164 -0.044 -0.036 -0.118 -0.119 -0.096

The results of the dataset and method are compared and

discussed. A number of approaches are used in dehazing,

e.g. contrast enhancement [15]. In this experiment, eight

most representative dehazing methods are compared in the

experiments. For methods proposed by [34], [12], [3] and

[26], we use the codes from authors. The codes of method

[1] and [33] were from Li et al. [19]. According to Li et al.

[19], we evaluate results quantitatively through calculating

the mean absolute difference (MAD) and the mean signed

difference (MSD), through which we can find whether the

method is overestimated or underestimated.

According to Li et al. [19], three major steps of dehazing

are the estimation of the atmospheric light, estimation of

transmission and estimation of final enhancement. Different

foggy or hazy images have different airlight estimations. In

the experiment, the airlight of some images are provided

and some methods which can detect airlight automatically,

4.1. Evaluation on Fattal’s dataset

Fattal’s dataset [6] provides 11 images from different

scenes, ranging from road to building. The dataset also pro-

vides their corresponding transmission images, which are

used for producing synthetic foggy or hazy images. The

dataset has already provided foggy and hazy images which

are synthesized by the ground truth and the depth image.

One example of the synthesized image is shown in Fig. 4.

According to Li et al. [19], one of the important steps in

dehazing is estimating atmospheric light. As the Fattal’s

dataset [6] provided, the airlight of the dataset is assumed at

[0.5, 0.6, 1]. For methods Tarel 09 [34], Ancuti 13 [1] and

Ren 16 [26], we did not use airlight provided by the dataset

because these methods can detect the airlight automatically.

For rest of the methods, airlight [0.5,0.6,1] is applied. The

dataset also provides non-sky masks to reduce error through

excluding sky regions. The MSD and MAD of the haze-free

image and hazy image were also calculated, providing more

detail on the evaluation of the methods. The results can be

seen from Table 1 and Table 2.

In the experiment, we apply the methods mentioned

above to the dataset (excluding sky regions). Average MSD

of the eight methods are shown as Fig. 3. From the Fig.

3, it can be seen that Tarel 09 obtains the least error and

performs outstandingly among all the methods in terms of

MSD, which is followed by Berman 16 [3], Meng 13 [22]

and He 09 [12], with obtaining less than 0.03 MSD. How-

ever, in terms of the MAD, Tarel 09 [34] obtains higher

error while He 09 [12], Meng 13 [22] and Berman 16 [3]

still rank at top place. The reason is that the value of the

difference between the ground truth and the dehazing result

could be negative and positive. The accumulative difference

of pixels could be very small, which leads to the inaccurate

result. The final results on church are shown in Fig. 4

4.2. Evaluation on FRIDA dataset

FRIDA [35] provides 66 synthetic images using SiVIC

software to build a virtual world, which can be used to eval-

uate the performance of the automatic driving system in

a systematic way. Unlike Fattal’s dataset [6], the data of

FRIDA [35] are from the virtual world. In addition, FRIDA

[35] provides different kinds of fog, which includes uniform
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Figure 3. The average performance of different dehazing methods on fattal’s [6].

Input: Church

He 09

Tarel 09 Ancuti 13 Tan 08Haze-free

Meng 13 Berman 16 Tang 14 Ren 16

Figure 4. Final haze removal results on the church case.

fog, heterogeneous fog, cloudy fog, and cloudy heteroge-

neous fog. In the experiment, we randomly sample 17 im-

ages using uniform fog from the database. Koschmieder’s

law is applied to produce uniform fog with meteorological

visibility distance of 80m in FRIDA [35].

We applied the same eight dehazing methods to these

17 images. In the experiment, the dataset does not provide

airlight. Therefore, we set airlight as [0.85, 0.85, 0.85] for

Tan 08 [32], He 09 [12] and Tang 14 [33]. For other meth-

ods, we set it as default because that they can detect airlight

automatically. The result is shown in Fig. 5. Examples

of the result for different dehazing methods is shown in the

Fig. 6. It can be seen that Meng 13 [22], Berman 16 [3] and

Ren 16 [26] obtain less error in terms of MAD. He 09 [12]

and Tang 14 [33] obtain more error than other methods. In

terms of MSD, Ancuti 13 [1], Meng 13 [22] and Meng 13

[3] rank top place while Tang 14 [33] and Tarel 09 [34]

obtain more errors. Compare to doing nothing, the aver-

age difference us always improved. The estimation could

be influenced by the different value of airlight. It may also

be influenced by sky region. FRIDA [35] does not provide

non-sky mask, which could affect the evaluation.

4.3. Evaluation on Our dataset

Our dataset contains more than 2000 images. In this ex-

periment, we sampled 30 frames from our dataset and we

applied each method on our dataset. The frames were cap-

tured from the view of a driving car in Asian cities. All

frames contain large depth variation. It is assumed that

space is filled with uniform haze density. Each image has its

corresponding non-sky mask, which is used in reducing the

error of estimation of evaluation. In addition, each image

has three different level of fog and haze, low level, medium

level and high level.

We have evaluated the eight methods on our dataset and

we quantify the visibility enhancement output by compar-

ing them with ground truth. MAD and MSD are used to

measure the closeness of the results to the ground truth pixel

by pixel. Fig. 7 shows the performance of each method at

the different level of haze and fog in terms of MAD and

MSD. As it shows that Berman 16 [3], Tang 14 [33] and

Ren 16 [26] perform better than other methods. One exam-

ple of the results is shown in Fig. 8.
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Figure 5. The average performance of different dehazing methods on FRIDA dataset. [35]

Input

He 09

Tarel 09 Ancuti 13 Tan 08Haze-free

Meng 13 Berman 16 Tang 14 Ren 16

Figure 6. Final haze removal result on U080-000001 case.

5. Conclusion

In this work, we introduce a new, dynamic, and large

volume road scene dataset for data-driven computer vision

research in bad weather, which is built through using mod-

ern computer graphics technology and image process tech-

niques. The dataset provides road images with the different

levels of synthetic fog, depth maps, and masks for sky re-

gion. We also discuss the comparison between our dataset

and other foggy and hazy datasets. Compared with Fat-

tal’s data [6], our dataset has large volume data and differ-

ent levels of fog for evaluation and validation. Compared

with FRIDA [35], our dataset is generated using physics-

based rendering which tend to be more realistic, and ours

has much larger volume data with non-sky mask to evaluate

dehazing algorithms comprehensively. In addition, we con-

ducted quantitative benchmark for the most representative

single image hazing methods. We found that recent work

Berman 16 [3] and Ren 16 [26] generally perform better in

the dehazing task.

There are a few future directions after this work. First,

we are planning to extend the set of synthetic images by us-

ing more models of different cities. Second, in the paper we

only benchmark the dehazing task. We have plan to label

ground truth for other computer vision tasks like semantic

segmentation, optical flow, and add to the dataset. Third, we

use the uniform haze model in the rendering. As suggested

in [8] and [35], the fog model can be improved and produces

more complicated foggy or hazy effect by introducing more

parameters. Moreover, this work only consider haze condi-

tion, other bad weather problems, e.g. rain and snow [17]

[18] [42] [43] [44], nighttime haze [16] could be included

in the extension of our dataset.
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Figure 7. Comparisons of the results of different methods on different haze levels in our dataset in terms of MSD and MAD.

Tarel 09 Ancuti 13 Tan 08

He 09 Meng 13 Berman 16 Tang 14 Ren 16

Input (β=2) Hazy-free

Tarel 09 Ancuti 13 Tan 08

He 09 Meng 13 Berman 16 Tang 14 Ren 16

Input (β=4) Hazy-free

Tarel 09 Ancuti 13 Tan 08

He 09 Meng 13 Berman 16 Tang 14 Ren 16

Input (β=6) Hazy-free

Figure 8. The result of one frame is shown as an example. First row and second row are visibility enhancement results on the sample

synthetic image with low level of fog in our dataset. Third row and second row are visibility enhancement results on the sample synthetic

image with medium level of fog in our dataset. Fifth row and sixth row are visibility enhancement results on the sample synthetic image

with high level of fog in our dataset.
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