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Abstract

This paper presents a unified deep learning framework

to recover hyperspectral images from spectrally undersam-

pled projections. Specifically, we investigate two kinds

of representative projections, RGB and compressive sens-

ing (CS) measurements. These measurements are first up-

sampled in the spectral dimension through simple inter-

polation or CS reconstruction, and the proposed method

learns an end-to-end mapping from a large number of up-

sampled/groundtruth hyperspectral image pairs. The map-

ping is represented as a deep convolutional neural network

(CNN) that takes the spectrally upsampled image as input

and outputs the enhanced hyperspetral one. We explore dif-

ferent network configurations to achieve high reconstruc-

tion fidelity. Experimental results on a variety of test images

demonstrate significantly improved performance of the pro-

posed method over the state-of-the-arts.

1. Introduction

Hyperspectral images play an important role in many

fields such as remote sensing, medical diagnosis, and space

surveillance [22, 14]. Recently, the availability of rich spec-

tral information is demonstrated to be beneficial to various

computer vision and graphic applications, such as object

tracking, face recognition, appearance modeling, and re-

lighting [23, 18, 16, 8]. However, conventional spectrom-

eters often operate in 1D line or 2D plane scanning, which

is time-consuming and not suitable for dynamic scenes [5].

Ideally, it will be great if hyperspectral images can be

directly recovered from the corresponding RGB images.

However, this problem is severely ill-posed since a large

amount of information is lost during the process of spectral

integration when RGB sensors capture the light. To make

the problem solvable, there are two kinds of approaches.

One is using controlled illumination to illuminate a tar-

get scene with several narrow-band light sources, and the

scene reflectance can be estimated across a number of wave-

lengths [13]. The other is using dictionary learning to learn

a specific hyperspectral prior, and the reconstruction prob-

lem is then formulated in a sparse coding manner [1]. Nev-

ertheless, the former approach requires rigorous conditions

of the environment (e.g., difficult to be applied outdoors),

while the latter one is limited in generalizability and the dic-

tionary learned from domain-specific images may not per-

form well on drastically different ones.

In the past decade, researchers have also developed quite

a few snapshot hyperspectral imagers with distinct opti-

cal designs and computational reconstruction algorithms

[9, 24, 7]. Take coded aperture snapshot spectral imaging

(CASSI) [2] as an example, CASSI recovers a 3D hyper-

spectral image from a single 2D measurement by leveraging

the compressive sensing (CS) theory [11, 6]. Still, the fi-

delity of computational reconstruction is limited especially

for complex scenes, and the reconstruction algorithms are

generally of high complexity.

In this paper, we propose a unified deep learning frame-

work to recover hyperspectral images from spectrally un-

dersampled projections. The most representative projec-

tion should be RGB images. Specifically, an RGB image

is first upsampled in the spectral dimension through simple

interpolation, and the proposed method learns an end-to-end

mapping from a large number of upsampled/groundtruth

hyperspectral image pairs. The mapping is represented as

a deep convolutional neural network (CNN) that takes the

spectrally upsampled image as input and outputs the en-

hanced hyperspetral one. We explore different network con-

figurations to find the optimal one that achieves the highest

reconstruction fidelity. A main insight here is that, different

from spatial super-resolution, RGB to hyperspectral conver-

sion favors CNNs with a small receptive field in the spatial

dimension.

Under the same deep learning framework as explored

above, we also investigate hyperspectral image recovery

from another representative projection, i.e., CS measure-

ments from the CASSI system. Specifically, a CASSI mea-

surement is first “upsampled” to the desired spectral reso-

lution using a simple CS reconstruction algorithm (TwIST
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[4]), and the image details missing in the CS reconstruction

are then enhanced by deep learning. A main insight here

is that, compared with RGB to hyperspectral conversion,

CASSI enhancement favors CNNs with a larger receptive

field in the spatial dimension. Moreover, the very differ-

ent residuals learned through the respective networks reflect

how information is lost in these two kinds of projections.

Experiments are conducted on a large hyperspectral

dataset provided in [1]. Compared with the state-of-the-

art sparse coding method in [1], our deep learning method

achieves a 48.7% reduction in terms of the normalized

root-mean-square-error (NRMSE) for RGB to hyperspec-

tral conversion. It is worth mentioning that, our method us-

ing the network trained from non-domain-specific images

outperforms the sparse coding method using dictionaries

trained from domain-specific images, which validates the

superior generalizability of deep learning. For hyperspec-

tral image recovery through CASSI enhancement, the pro-

posed method achieves a 45.5% NRMSE reduction over the

direct TwIST reconstruction, and outperforms an advanced

yet high-complexity CS reconstruction algorithm (3DNSR

[27]) with 1000 times acceleration.

The main contributions of this paper can be summarized

as follows:

(1) A unified deep learning framework for hyperspectral

image recovery from spectrally undersampled projections,

with different network configurations explored.

(2) State-of-the-art results on RGB to hyperspectral con-

version, which greatly facilitates hyperspectral image ac-

quisition using ubiquitous RGB cameras.

(3) The first attempt on hyperspectral image recovery

through CASSI enhancement, which serves as an efficient

alternative to the high-complexity CS reconstruction.

2. Related Work

Hyperspectral image acquisition. Conventional spec-

trometers simply trade temporal resolution for spa-

tial/spectral resolution [5]. For example, pushbroom or

whiskbroom based methods capture the spectral informa-

tion of a slit or a single point of the scene, and spatially

scan the whole scene to obtain a full hyperspectral image

[3, 19]. Filter wheel or tunable filter based methods inte-

grate multiple color bandpass filters to select one band for

each exposure, and multiple exposures are required to cap-

ture different spectral information of the scene [12, 20].

RGB to hyperspectral conversion is a low cost way of

hyperspectral image acquisition, yet remains severely ill-

posed since a large amount of information is lost during the

process of spectral integration when RGB sensors capture

the light. Solid progresses are only made recently in this di-

rection, through either controlled illumination [13] or sparse

coding [1]. Our proposed method can be regarded as a step

forward of [1] by upgrading sparse coding to deep learning.

On the other hand, to overcome the limitation of con-

ventional spectrometers and make it possible to capture

dynamic scenes, snapshot spectral imagers with compu-

tational reconstruction have been developed in the last

decade. The three representative techniques are computed

tomographic imaging spectrometry (CTIS) [9], prism-mask

spectral video imaging system (PMVIS) [7, 17], and CASSI

[24, 25, 26]. These snapshot spectral imagers support hy-

perspectral video acquisition. However, it remains a trade-

off between performance and speed of computational recon-

struction. Our proposed method offers a new perspective for

efficiently improving the reconstruction fidelity.

CNN-based super-resolution. Recovering hyperspec-

tral images from spectrally undersampled projections can

be viewed as “spectral super-resolution” and is quite similar

to single-image super-resolution that enhances the spatial

resolution of a 2D image, yet here the resolution is enhanced

in the spectral dimension. Recently, CNN-based super-

resolution (SRCNN) [10] has shown remarkable perfor-

mance on a variety of natural images. Our proposed method

is inspired by this seminal work and also the very deep

CNNs for super-resolution (VDSR) [15]. However, spectral

super-resolution differs from spatial super-resolution. After

exploring different network configurations, we find that an

adapted VDSR network works well for our tasks. Moreover,

RGB to hyperspectral conversion favors a small receptive

field in the spatial dimension, while CASSI enhancement

favors a larger one. This difference, as also reflected by

the residuals learned through the respective networks, in-

dicates that CASSI measurements preserve more spectral

details than RGB images, yet at the cost of heavier spatial

degradation. In other words, CASSI enhancement is more

like spatial super-resolution.

3. Unified Deep Learning Framework

Suppose G is an spectrally undersampled measurement

obtained from a 3D hyperspectral image F through a cer-

tain projection. To recover F from G, we first upsample

G to the desired spectral resolution through simple prepro-

cessing. Denote this upsampled image as G′, our goal is to

recover from G′ an image F ′ that is as similar as possible

to the groundtruth hyperspectral image F .

Inspired by the well-known VDSR network for spatial

super-resolution, we wish to learn a mapping F ′ = f(G′)
that consists of three procedures: patch extraction, fea-

ture mapping, and reconstruction. All these procedures

form a CNN. An overview of our deep learning framework

(HSCNN in short hereafter) is depicted in Figure 1. The

network takes the spectrally upsampled image as input and

predicts missing image details, from which the final hyper-

spectral image is recovered. We will take RGB to hyper-

spectral conversion as an example to elaborate the network

configurations and then extend to CASSI enhancement.
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Figure 1. Framework of HSCNN. The network consists of three procedures: patch extraction, feature mapping, and reconstruction. It takes

the spectrally upsampled image as input and predicts missing image details, from which the final hyperspectral image is recovered.

3.1. RGB to Hyperspectral Conversion

Denote F (x, y, λ) the 3D hyperspectral image to be re-

covered, where 1 ≤ x ≤ W , 1 ≤ y ≤ H index the spatial

coordinates, and 1 ≤ λ ≤ Ω indexes the spectral coordi-

nate. The corresponding RGB image can be obtained as

G(x, y, k) =

Ω∑

λ=1

ωk(λ)F (x, y, λ) (1)

where k = 1, 2, 3 corresponds to blue, green, and red chan-

nels respectively, and ωk(λ) denotes the spectral response

of the RGB sensor corresponding to each channel. Here we

use the CIE color matching functions for hyperspectral to

RGB projection. To recover F from G, we first upsample

G to G′ through a simple spectral interpolation algorithm

[21]. The image details missing in G′ are then recovered

through HSCNN, yielding the final hyperspectral image F ′.

Network structure. Our network has d layers. The first

layer is responsible for extracting patches from the input

image. Since the hyperspectral image is 3D, the first layer

has 64 filters of size 3 × 3 × Ω and operates on 3 × 3 spa-

tial region across Ω spectral bands. This layer produces 64

feature maps. Layers except the first and the last are of

the same type as in VDSR: 64 filters of size 3 × 3 × 64,

each reproducing 64 feature maps from those obtained by

the previous layer. The last layer consists of Ω filters of size

3×3×64, which reconstructs the hyperspectral image with

Ω spectral bands from 64 feature maps. The details of the

HSCNN structure are listed in Table 1.

Given a training set {Gi, Fi}
N

i=1
, the goal of our network

training is to learn a mapping F ′ = f(G′) that minimizes

the mean squared error ||F −F ′||2 averaged over the whole

training set. Also, residual learning, high learning rates,

and adjustable gradient clipping are inherited from VDSR,

which are demonstrated effective to optimize the network

Table 1. Network structures in terms of filter size/number.
Procedure VDSR HSCNN

Patch extraction 3× 3 / 64 3× 3× Ω / 64

Feature mapping 3× 3× 64 / 64 3× 3× 64 / 64

Reconstruction 3× 3× 64 / 1 3× 3× 64 / Ω

training. To investigate the influence of different network

configurations on the reconstruction performance, we use a

large hyperspectral dataset provided in [1], from which 100

images are used for training and 10 representative images

for testing. These hyperspectral images have a uniform res-

olution of 1392× 1300× 31.

Network depth. The network depth is an important

property of the deep learning framework. As demonstrated

by VDSR for spatial super-resolution, a deeper network

gives a better performance, partially owing to a larger re-

ceptive field (i.e., more neighboring pixels involved for re-

construction). When 3×3 filters are used, a d-layer network

has a receptive field of size (2d+1)×(2d+1). It is observed

that a 20-layer network with a 41×41 receptive field works

quite well for spatial super-resolution. However, the above

conclusion may not hold true for spectral super-resolution.

Actually, the information contained in a 3D receptive field

is much enriched compared with a 2D one. For example, a

hyperspectral cube of size 7 × 7 × 31 has nearly the same

number of pixels as a 2D image patch of size 41×41. There-

fore, the network depth fit for HSCNN is largely dependent

on the target spectral resolution.

Figure 2(a) shows the performance curves in terms of the

average NRMSE1 on the test set under different network

depths d = 3, 5, 7, 9. As can be seen, the highest fidelity

reconstruction is obtained under d = 5, equivalent to a re-

1The NRMSE between F and F ′ is defined as e(F, F ′) =
1
Ω

∑Ω
λ=1

√

1
WH

∑W,H
x=1,y=1 |

F ′(x,y,λ)−F (x,y,λ)
F (x,y,λ)

|2
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Figure 2. Exploration of optimal network configurations. (a) Performance curves for RGB to hyperspectral conversion under d = 3, 5, 7, 9

with spatial filter size of 3 × 3. (b) Performance curves for RGB to hyperspectral conversion under d = 3, 5, 7 with spatial filter size of

1× 1, as well as those under d = 5 but with spatial filter size of 3× 3 and 5× 5. (c) Performance curves for CASSI enhancement under

d = 5, 10, 15 with spatial filter size of 3× 3.

ceptive field of 11×11×31. It suggests that, different from

spatial super-resolution, RGB to hyperspectral conversion

favors a small receptive field in the spatial dimension. Be-

sides the reason mentioned above that the spectral dimen-

sion compensates for the amount of contextual information,

another underlying reason is that spatial structures are el-

egantly preserved in the RGB image. In other words, the

information loss mainly occurs in the spectral dimension.

Filter size. As investigated in the seminal work of SR-

CNN, the network performance would improve as the net-

work width (i.e., the number of filters) increases, yet at the

cost of running time. This also applies to the filter size in

the spatial dimension. Therefore, we use a default setting of

64 filters with spatial size of 3× 3 for the balance of perfor-

mance and speed. Interestingly, due to the additional spec-

tral dimension, the spatial filter size can now be as small

as 1 × 1. In this case, the network has a constant receptive

field of 1 × 1 × 31 regardless of the network depth, which

is quite different from the VDSR-like network as explored

above. Therefore, we also investigate the network perfor-

mance with spatial filter size of 1× 1.

Figure 2(b) shows the performance curves under differ-

ent network depths d = 3, 5, 7 with spatial filter size of

1×1, and we find that the fidelity of reconstruction is almost

independent of the network depth. For a more comprehen-

sive evaluation, we also compare the performance curves

under the same network depth d = 5 but with different spa-

tial filter size of 3 × 3 and 5 × 5. It can be seen that, the

3×3 filter outperforms the 1×1 filter by a large margin and

is competitive with the 5× 5 filter. Therefore, we finally set

the spatial filter size as 3× 3 considering both performance

and speed.

3.2. CASSI Enhancement

Relying on the CS theory, CASSI has made a significant

breakthrough towards snapshot hyperspectral imaging. A

typical CASSI system consists of an objective lens, a coded

aperture, a relay lens, a dispersive prism, and a detector.

The 3D hyperspectral image F is optically encoded onto a

2D detector, and the CASSI measurement can be written as

G(x, y) =

Ω∑

λ=1

ω(λ)S(x, y − φ(λ))F (x, y − φ(λ), λ) (2)

where S(x, y) denotes the transmission function of the

coded aperture, φ(λ) the wavelength-dependent dispersion

function of the prism, and ω(λ) the spectral response func-

tion of the detector. (Please refer to [24] for a detailed for-

mulation of the CASSI measurement.) To recover a full hy-

perspectral image F from G, different CS reconstruction al-

gorithms can be employed. However, advanced algorithms

such as dictionary learning are of high complexity. Here we

propose an alternative solution. That is, we first use a simple

TwIST algorithm [4] to upsample G to G′, and the image

details missing in G′ are then enhanced through HSCNN,

yielding the final hyperspectral image F ′.

For CASSI enhancement, we retain the network configu-

rations as explored in RGB to hyperspectral conversion, ex-

cept the network depth d that is sensitive to the property of

measurements. Figure 2(c) shows the performance curves

under different network depths d = 5, 10, 15. As can be

seen, the highest fidelity reconstruction is obtained under

d = 10, equivalent to a receptive field of 21 × 21 × 31. It

suggests that, compared with RGB to hyperspectral conver-

sion, CASSI enhancement favors a larger receptive field in

the spatial dimension. The underlying reason is that, owing

to the CS-based spectral encoding, the CASSI measurement

preserves more spectral details than the RGB one, yet at the

cost of heavier spatial degradation. Therefore, the network

for CASSI enhancement prefers a larger spatial dependency,

which is more like spatial super-resolution. This will be ev-

idenced by the experimental results below.
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4. Experimental Results

We conduct experiments on a large hyperspectral dataset

provided in [1], which contains a number of subsets with

diverse image content. The original hyperspectral images

have a uniform resolution of 1392 × 1300 × 31, spanning

the spectral range of 400nm to 700nm with 10nm intervals.

Images used for training and testing are specified below for

a fair comparison with the state-of-the-arts. Training pa-

rameters are set following the VDSR network. Batch size

is set to 128. Momentum and weight decay parameters are

set to 0.9 and 0.0001, respectively. All networks are trained

over 150 epochs. Learning rate is initially set to 0.1 and

then decreased by a factor of 10 every 20 epochs. Training

takes about 20 hours on a Tesla K80 GPU.

4.1. RGB to Hyperspectral Conversion

For RGB to hyperspectral conversion, HSCNN is com-

pared with the baseline interpolation method [21] and the

state-of-the-art sparse coding method [1]. The sparse cod-

ing method reports the NRMSE results on a “complete set”

containing 100 images and a few subsets with 59 domain-

specific images (belonging to the 100 images). These re-

sults are obtained by 1) selecting one image in a set for test-

ing and the rest images in the set for training the dictionary,

and 2) repeating the above step until each image in the set

has been selected for testing and the average NRMSE is cal-

culated. In this way, the sparse coding method can achieve

better results in the domain-specific subsets compared with

the complete set. Contrastively, HSCNN is performed in

a more generalizable way. We use a total of 200 images

including the complete set, and first train a CNN model

with the 141 images excluding the domain-specific subsets.

This model is tested on the 59 domain-specific images. We

then train another model with the 159 images excluding the

non-domain-specific images in the complete set, and the

obtained model is tested on these 41 images. In this way,

images for training and testing are strictly non-overlapped,

and HSCNN gets rid of the domain-specific restriction as

imposed in sparse coding.

Table 2 gives the numerical results of different methods

on the specified test sets. As can be seen, HSCNN achieve a

48.7% reduction in NRMSE compared with sparse coding

on the complete set. The results on domain-specific sub-

sets are also consistently improved, except the indoor sub-

set containing only 3 images. It demonstrates that, in most

cases, the model learned by HSCNN can be well general-

ized. Figure 3 shows the visual results of five selected bands

from a test hyperspectral image, together with the residu-

als learned by HSCNN. As can be seen, the interpolation

results well maintain the spatial structures but suffer from

large spectral deviation from the groundtruth, yet this devi-

ation is compensated in our reconstructed results. Figure 4

further shows the spectral signatures of two selected spatial

points from the test image. While interpolation can only re-

cover a smooth signature that is heavily deviated from the

groundtruth, HSCNN gives high fidelity reconstruction.

4.2. CASSI Enhancement

For CASSI enhancement, HSCNN is compared with

the baseline TwIST algorithm [4] and the state-of-the-art

3DNSR algorithm [27]. TwIST is a simple CS reconstruc-

tion algorithm using the total variation prior, while 3DNSR

is an advanced yet high-complexity algorithm using self-

learned dictionaries. We generate the CASSI measure-

ment and set the parameters of TwIST and 3DNSR fol-

lowing [27]. Table 3 reports the numerical results on the

59 domain-specific images using the other 141 images for

training. (Note we only generate the 3DNSR results in the

central 256×256 spatial region of each image, and NRMSE

is calculated in this region for all methods). HSCNN

achieves a 45.5% NRMSE reduction over TwIST and out-

performs 3DNSR by a large margin. The running time per

image on an Intel Core i7-6700K CPU is included in Table

3. Since 3DNSR also uses the TwIST results for initial-

ization, we exclude the TwIST reconstruction time for both

3DNSR and HSCNN. HSCNN is nearly 1000 times faster

than 3DNSR, as the former is one-time feed forward while

the latter needs hundreds of iterations. Although it requires

additional time for training, HSCNN could serve as an effi-

cient alternative to the high-complexity CS reconstruction.

Figure 5 shows the visual results of five selected bands

from a test hyperspectral image, together with the residu-

als learned by HSCNN. Different from RGB to hyperspec-

tral conversion, the TwIST results well maintain the spectral

consistency with the groundtruth but suffer from heavy spa-

tial corruption. This can be clearly observed from the very

different residuals learned by the respective networks. It

reflects that information losses in these two kinds of pro-

jections (RGB and CASSI) are distinct, and also explains

why CASSI enhancement favors a larger receptive field in

the spatial dimension. Figure 6 further shows the spectral

signatures of two selected spatial points from the test im-

age. While all methods faithfully recover the trend of the

signature, HSCNN gives the highest fidelity reconstruction.

Figure 7 shows the close-up results of one selected band

from the test image, from which the reconstruction of spa-

tial structures by different methods can be better observed.

The TwIST result suffers from severe spatial artifacts, e.g.,

textures on the wall and the ground are blurred. The 3DNSR

result is improved to a certain extent yet still has some

degradation. Contrastively, the HSCNN result best pre-

serves the spatial structures.

5. Conclusion

This paper presents a unified deep learning framework

for hyperspectral image recovery from spectrally undersam-
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Figure 3. Visual results of five selected bands for RGB to hyperspectral conversion. From top to bottom: interpolation, HSCNN, residuals

learned by HSCNN (properly scaled for better visualization), and groundtruth. From left to right: 430nm, 500nm, 570nm, 600nm, 630nm.

Table 2. NRMSE results of RGB to hyperspectral conversion.

Data Set Interpolation Sparse coding HSCNN

Complete set 0.2085 0.0756 0.0388

Park subset 0.1843 0.0590 0.0371

Indoor subset 0.1632 0.0510 0.0638

Urban subset 0.2150 0.0620 0.0388

Rural subset 0.2551 0.0350 0.0331

Plant-life subset 0.2074 0.0470 0.0445

Subset average 0.2105 0.0572 0.0398

pled projections. Two representative tasks, RGB to hyper-

spectral conversion and CASSI enhancement, are investi-

gated and encouraging results are reported. We believe the

proposed method will greatly facilitate hyperspectral im-
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Figure 4. Signature of two selected spatial points in Figure 3.

age acquisition, either by using ubiquitous RGB cameras,

or by improving computational reconstruction for snapshot

hyperspectral imagers.
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Figure 5. Visual results of five selected bands for CASSI enhancement. From top to bottom: TwIST, HSCNN, residuals learned by HSCNN

(properly scaled for better visualization), and groundtruth. From left to right: 430nm, 500nm, 570nm, 600nm, 630nm.

Table 3. NRMSE results of CASSI enhancement.

Data Set TwIST 3DNSR HSCNN

Park subset 0.1601 0.1421 0.0873

Indoor subset 0.0941 0.0734 0.0580

Urban subset 0.1220 0.1061 0.0688

Rural subset 0.1381 0.1257 0.0733

Plant-life subset 0.1688 0.1468 0.0994

Subset average 0.1317 0.1150 0.0740

Time average (s) 142 2896 2.56
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Figure 6. Signature of two selected spatial points in Figure 5.
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Figure 7. Close-up results (256 × 256 central region) of one selected band (570nm) for CASSI enhancement. From left to right: TwIST,

3DNSR, HSCNN, and groundtruth.
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