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Abstract

In this paper we show how a differentiable, physics-

based renderer suitable for photometric vision tasks can be

implemented as layers in a deep neural network. The lay-

ers include geometric operations for representation trans-

formations, reflectance evaluations with arbitrary numbers

of light sources and statistical bidirectional reflectance dis-

tribution function (BRDF) models. We make an implemen-

tation of these layers available as a neural network library

(PVNN) for Theano. The layers can be incorporated into

any neural network architecture, allowing parts of the pho-

tometric image formation process to be explicitly modelled

in a network that is trained end to end via backpropaga-

tion. As an exemplar application, we show how to train

a network with encoder-decoder architecture that learns to

estimate BRDF parameters from a single image in an unsu-

pervised manner.

1. Introduction

Physics-based vision seeks to solve problems by mod-

elling the underlying physical processes that give rise to an

observed image. Such a mathematical model provides in-

sight into the problem, allowing conclusions to be drawn

about the existence and uniqueness of solutions. These

physical models are then either explicitly inverted or a

solution obtained by energy minimisation in an analysis-

by-synthesis framework. Classical problems in physics-

based vision include shape-from-shading, inverse render-

ing, illumination estimation and reflectance measurement.

An attractive property of physics-based approaches is that

they provide an explanation of appearance in terms of

physically-meaningful parameters that can be edited for re-

rendering or used for tasks such as material classification.

In some ways, deep learning is an entirely orthogonal

approach to physics-based vision. A deep neural network

(DNN) is a black box that has learnt a vector to vector

mapping that transforms images into a useful representa-

tion. DNNs, and specifically convolutional neural networks

(CNNs), have proven remarkably successful at doing this

on a wide range of vision problems. This includes classical

physics-based vision problems. In its simplest form, a black

box CNN can be trained to directly regress the physical pa-

rameter of interest from an image. The challenge in such su-

pervised approaches is the acquisition of training data since

acquiring images with registered depth maps, illumination

estimates and so on is itself an open problem. One way

around this is to use synthetic training data, where the im-

ages are rendered from models. However, the ability of the

CNN to generalise to real world data is limited by the real-

ism of the synthetic training data. Moreover, such a black

box reveals nothing about the underlying physical processes

and the model must be retrained in order to estimate differ-

ent physical quantities or solve different problems.

A promising alternative is to combine model- and

learning-based vision. One way to do this is to incorpo-

rate physical models into a CNN by introducing layers that

explicitly implement physical models. This potentially of-

fers a route to unsupervised learning of physics-based vi-

sion tasks with CNNs. For example, a black box encoder

that transforms images to physically meaningful parameters

can be trained by pairing it with a physically-based decoder

that renders an image from the estimated parameters allow-

ing an unsupervised loss to be computed between the origi-

nal and rendered images. Many other architectures are also

possible that exploit these physics-based layers.

In this paper we present PVNN, a Theano [1] toolbox

that implements operations often used in photometric vision

as part of a neural network. We see this toolbox as a pho-

tometric analog of the geometric functionality provided by

the Geometric Vision with Neural Networks (gvnn) tool-

box [14]. In a forward pass, combinations of our layers

can act as a differentiable, physically-based renderer. In

an encoder-decoder architecture as described above, PVNN

can be used to train CNNs to solve physics-based vision

problems in an unsupervised manner. In Section 3 we de-

scribe the layers that make up PVNN. In Section 4 we show

how these layers can be used for differentiable forward ren-

dering. In Section 5 we demonstrate an exemplar applica-

tion by using unsupervised learning to train a CNN to pre-

dict to BRDF parameters from single images.
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2. Related work

In order to include physics-based models in a CNN, the

key component is a differentiable rendering layer that can

reconstruct input-like images whilst enabling backpropoga-

tion during training. Hence, we begin by reviewing related

work that utilises trainable or fixed, differentiable renderers

for vision tasks as well as previous work on BRDF estima-

tion and modelling.

Differentiable rendering. In energy minimisation ap-

proaches to inverse graphics problems, there is a need for

differentiable renderers that model the physical process of

image intensity formation. This allows minimisation of an

appearance error using gradient descent or other first-order

optimisation algorithms. Loper et al. [22] developed differ-

entiable renderer package called OpenDR as a framework.

OpenDR could reproduce the observed images with latent

variables like appearance, geometry and camera, then the

error between reproduced image intensity map and the ob-

servation can be minimised. Zienkiewicz et al. [39] ap-

plied a similar idea for estimating height maps in a real-

time robotic system. The rendering objective is height map

rather than RGB intensities in their case.

Trainable render layer. Some work has investigated the

idea of a trainable renderer. Dosovitskiy et al. [3] pro-

posed a neural network for image reconstruction from ex-

tracted feature maps resulting from different hand-crafted or

learned descriptors like HOG, SIFT or trained deterministic

CNN. They trained an up-convolutional network against the

loss function comparing original inputs and reconstruction.

Similarly, using differentiable rendering layers inside a net-

work to perform image reconstruction were implemented

by [4, 13, 8, 38, 21]. All trainable rendering networks in-

troduced by these works are generative models simulating

the probabilistic process of RGB image synthesis. In con-

trast, our network models a discriminative process on statis-

tical BRDF parameter estimation problem and uses a fixed

rendering architecture to formulate the loss function. Both

of [12, 28] employed adversarial architectures in their net-

works so that incorporating a recurrent-racing mechanism

between the generative and discriminative models. This

could improve the realism of their rendered images. It is

different from the pure generative models, since both of

them trained a generative model followed by a discrimina-

tive model simultaneously. Jaderberg et al. [18] proposed

a plugin renderer layer to seamlessly work along with ex-

isting CNN architectures, in order to activate the network’s

capability on recognising images with spatial transforma-

tion. The work in [19] presented a sophisticated extension

from its early counterpart [16] from Hinton et al. Nalbach

et al. [26] explored the graphical shading problem by us-

ing rendering layers. Specifically, their Deep Shading net

explicitly takes as input the meaningful scenery attributes

defined in common shaders and use well-trained neural net-

work to act as a self-taught shader as opposite to manually

designed shader.

Render layers in CNNs. Another group of differentiable

rendering layers embedded in CNN are untrainable render-

ing layers that usually make their network attack a spe-

cific problem. Our proposed network fall into this group of

work. The attractive feature of such a fixed rendering layer

is that the decoders well understood physical theory as a

prior that can provide constraint during unsupervised train-

ing. Richardson et al. [30] facilitated such a hand-crafted

rendering layer for face images. Their fixed differentiable

rendering layer works on finetuning results provided from

a former discriminative model, and it plays the role of en-

couraging similarity between rendered images and original

input face images. Tung et al. [5] concentrated on a sim-

ilar idea of inverse graphics and incorporate an adversar-

ial architecture into the network. Through unsupervised

learning, their network can deal with many physics-based

vision problems upon physics-specific rendering layers in

conjunction with GANs architecture [12]. A variety of work

[7, 11, 14, 34, 37] focused on specific physics-based vision

problems, and realised unsupervised learning by utilising

deep learning in conjunction with a problem-oriented ren-

dering layer. Other than using rendering layers as a tool for

learning in an unsupervised setting, Cole et al. [2] achieved

great frontal-face rendering results by using a warping layer

as a rendering subnet combined with landmark and tex-

ture extraction networks. Their loss function consists of

two portions: errors of landmark and texture predictions

and error of rendered frontal-face image and both of them

need ground truth in training. Tang et al. [33] assumed

Lambertian reflectance in their render layer and perform a

multiplicative rendering process on the top of their genera-

tive model. Tulsiani et al. [35] presented an unsupervised

learning scheme on a monocular depth estimation problem

through their special ray tracing loss function, which is sim-

ilar in function to a render layer.

BRDF estimation and modelling. BRDF estimation us-

ing CNNs has recently been considered. Kim et al. [20]

assumed the Ward BRDF model and trained their network

to predict the Ward model parameters of objects. One of

their proposed networks contains a fixed layer to perform

pre-processing on voxel clouds which are inputs for the fol-

lowing CNN architecture. Georgoulis et al. [9] used their

DeLight-Net to estimate Phong model parameters and envi-

ronment maps given a reflectance map of a captured mate-

rial and illumination. Rematas et al. [29] tried to extract the

reflectance map from single RGB image through their deep

network. To achieve a better performance, they proposed

to used fixed sampling layer and domain conversion layer

bridging two subnets that work on surface normal predic-

tion and dense reflectance map prediction respectively.
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Other than CNN-based BRDF estimation, traditional

BRDF estimation and modelling often places much greater

restrictions on data capture. Our main inspiration comes

from one of the non-CNN work [27]. Nielsen et al. [27] in

this work proposed a statistical model of BRDFs, but their

BRDF reconstruction requires images under constrained,

calibrated capture conditions. Just like Nielsen’s work, this

branch of work heavily rely on sampling algorithm and the

reconstruction quality is determined by sampling results.

In early work, White et al. [36] set up a gonioreflectome-

ter gantry to capture the 4D BRDF in a brute force way.

The exhaustive sampling is time consuming and unwieldy,

some other lightweight sampling tricks have been proposed.

Marschner et al. [23] performed sampling on a sphere or

curved object to simplify the gonioreflectometer measure-

ment. Ghosh et al. [10] proposed to sample reflectance upon

spherical zonal basis function. Fuchs et al. [6] applied adap-

tive sampling over their setup to overcome the most com-

mon aliasing problems. Very close to the statistical model

in the heart of our network [27], Matusik et al. [25] derived

similar BRDF model from MERL dataset but with linear

PCA method that is less able to capture the distinctive fea-

tures of a BRDF.

3. Photometric Vision with Neural Networks

(PVNN)

In this section we present the layers that are provided

by PVNN. All layers are implemented by a series of dif-

ferentiable operations provided by Theano, which could be

defined as customised layers in CNN.

3.1. Geometric transformations

Most commonly, photometric vision is concerned with

single viewpoint problems and so usually operates in the

depth or surface normal domains (as opposed to an object-

space mesh representation). We use such a viewer-centred

depth map representation in PVNN. One advantage of this

formulation is that we need not model self-occlusions of

the surface. Occlusion is a binary, and hence discontinuous,

function. This means that it is not differentiable and there-

fore occlusion information cannot be exploited for learning

during backpropagation.

We assume here orthographic projection, though it

would be straightforward to modify our layers to account

for perspective projection (taking into account the intrinsic

parameters of the camera).

3.1.1 Surface height differentiation

This layer transforms a depth map into estimates of the sur-

face gradient in the horizontal and vertical directions. It

takes as input a depth map, z ∈ R
m×n, that is assumed

to be smooth containing the depth values for m × n pix-

els: G =
[

Dx ∗ z Dy ∗ z
]

, where Dx ∈ R
3×3 and

Dy ∈ R
3×3 evaluate the surface gradient in the horizon-

tal and vertical directions respectively using forward finite

differences and convolution:

Dx =
1

12





−1 0 1
−4 0 4
−1 0 1



 , Dy =
1

12





1 4 1
0 0 0
−1 −4 −1





(1)

3.1.2 Gradient to normal vector

This layers applies the function n : R2 7→ R
3 which trans-

forms the gradient vector into a vector whose direction is

normal to the surface: n(g) =
[

−gT 1
]T

. This function

is applied to the gradient estimate at each pixel, yielding u
surface normal vectors, where u is length of flatten vector

from m× n map.

3.1.3 Vector normalisation

It is often convenient to work with surface normal vectors

of unit length. So, this layer applies the function n̄ : R3 7→
R

3 which normalises a vector to have unit length such that

‖n̄‖ = 1. This function is simply: n̄(n) = n/‖n‖.

3.1.4 Unit vector to spherical coordinates

Sometimes, it is useful to transform the surface normal vec-

tor n̄ into spherical coordinates (α, θ) in a viewer-centred

coordinate system. The azimuth angle is computed by the

function α : R3 7→ [0, 2π): α(n̄) = atan2(n̄2, n̄1). And

the zenith angle is from function θ : R3 7→ [0, π]: θ(n̄) =
arccos(n̄3).

3.1.5 Conversion to Rusinkiewicz coordinates

We assume that the BRDFs are isotropic and hence can

be expressed as three dimensional functions. For conve-

nience and compatibility with the statistical BRDF model

used later, we parameterise BRDFs in terms of the three

angles proposed by Rusinkiewicz [31]. Concretely, the

Rusinkiewicz coordinates parameterise the local reflectance

geometry in terms of three angles relative to the halfway

vector:

h(s,v) = n̄(s+ v), (2)

where s and v are unit vectors in the light source and viewer

directions respectively. The angle θh(n, s,v) ∈ [0, π/2] is

the angle between h and n while θd(n, s,v) ∈ [0, π/2] and

φd(n, s,v) ∈ [0, π] are the spherical coordinates of s in a

coordinate system in which h is at the north pole.

Hence, we define a layer that takes as input the per-pixel

surface normals N ∈ R
u×3 for u pixels, light directions
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Figure 1: A reflectance evaluation sub-network. It takes

normals N, light source directions S, light source colours

L and BRDF parameters P as input and outputs radiance

values per-pixel R.

S ∈ R
s×3 for s light sources and per-pixel viewer directions

V ∈ R
u×3 which are all [0 0 1] for an orthographic pro-

jection. The output is a tensor A ∈ R
u×s×3 containing the

three reflectance angles for each pixel/light source combina-

tion, such that Aij1 = θh(ni, sj ,v), Aij2 = θd(ni, sj ,v)
and Aij3 = φd(ni, sj ,v)

3.2. Reflectance evaluation network

A reflectance evaluation network is a sub-network that

computes the radiance reflected towards the viewer, for a

given BRDF, surface normal direction (n), viewer direc-

tion (v) and lighting environment. A BRDF is a func-

tion ρ(θh, θd, φd) that returns the ratio of reflected radi-

ance to the incident irradiance for a pair of incoming and

outgoing directions. We write ρ(n, s,v) as shorthand for

ρ(θh(n, s,v), θd(n, s,v), φd(n, s,v)), where s is the inci-

dent radiance direction.

For a continuous lighting environment, the reflected ra-

diance, Lo, is given by:

Lo =

∫

S2

ρ(n,ωi,v)L(ωi)max(0,n · ωi)dωi, (3)

where L(ωi) is the incident radiance from direction ωi. In

practice, we discretise over s point light sources and evalu-

ate:

r =
s

∑

i=1

ρ(n, si,v)li max(0,n · si) (4)

where r ∈ R
3 is the RGB colour radiance vector, li ∈ R

3

the colour of the ith light source and si ∈ R
3, ‖si‖ = 1 the

direction of the ith light source.

The individual layers that we use to implement a re-

flectance evaluation are shown in Figure 1. We describe

each of these layers in the following sections.

3.2.1 BRDF

The BRDF layer evaluates a parametric BRDF function

ρ(θh, θd, φd,p) for each pixel/light source where p is the

vector of additional parameters required by the BRDF. Any

BRDF function can be used so long as it is differentiable.

Physically valid BRDF models must obey the three proper-

ties of positivity, Helmholtz reciprocity and conservation of

energy. A particularly simple, physically valid BRDF is the

Lambertian model. This models a perfectly diffuse surface,

i.e. where light is scattered equally in all directions, and has

a single parameter kd (the diffuse albedo):

ρLambert(θh, θd, φd, kd) =
kd
π
. (5)

Concretely, the BRDF layer takes as input a tensor con-

taining the reflectance angles for each pixel/light source

A ∈ R
u×s×3 and a matrix P ∈ R

p×u or vector p ∈ R
p

containing the p parameters (per-pixel or per-image respec-

tively). It outputs a BRDF value for each pixel/light source

as B ∈ R
u×s:

Bij = ρ(Aij1,Aij2,Aij3,Pi). (6)

3.2.2 Statistical BRDF network

Parametric BRDF models are popular and widely used in

graphics and vision. However, no single parametric model

is capable of generalising to the wide range of reflectance

properties observed in the real world. For this reason, sta-

tistical [27] or dictionary-based [17] models built from mea-

sured data are becoming increasingly popular.

As an alternative to parametric BRDFs, PVNN also sup-

ports statistical BRDF models; specifically, the model of

Nielsen et al. [27] that is trained on the MERL reflectance

database [24]. This is implemented as a subnetwork (see

Figure 2) that evaluates the statistical model to generate an

empirical BRDF, inverts the log-relative mapping used in

the Nielsen [27] model and finally performs differentiable

interpolation into the empirical BRDF.

Statistical BRDF model The statistical BRDF model

layer evaluates a linear statistical model of empirical

BRDFs. An empirical BRDF X ∈ R
90×90×180 is a rep-

resentation of a discretely measured BRDF at k = 90 ×
90 × 180 samples over (θh, θd, φd) space. We compute a

vectorised representation x = vec(X ) ∈ R
k as:

x = Qp+ µ (7)

where Q ∈ R
k×p contains the p principal component vec-

tors, µ ∈ R
k the mean and p ∈ R

p is a vector of weights,

which by appropriate scaling of the principal components,

has elements that follow the standard normal distribution.
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Figure 2: A statistical BRDF model sub-network. This net-

work can be plugged in place of a parametric BRDF model

in a reflectance evaluation network (i.e. in place of the

“BRDF” node in Figure 1). It takes statistical BRDF param-

eters p and per-pixel Rusinkiewicz coordinates A as input

and outputs BRDF values B.

The layer takes p as input and outputs X . Note that this

layer is exactly equivalent to a fully connected layer in

which Q plays the role of the weights and µ the biases.

Hence, it would be straightforward to make this layer train-

able and, in principle, to learn statistical BRDF models as

part of the network training. We do not do this here though

and keep the model fixed to that of Nielsen et al. [27].

Note that the statistical model of Nielsen et al. [27] con-

tains some missing values. For simplicity, we interpolated

these missing values by their nearest neighbours. We pre-

compute the relative relationship between missing values

and known values, and directly perform mapping through

precomputed mapping look-up table. Although a more so-

phisticated missing data scheme could be used, we notice

no visual artefacts through the use of nearest neighbour.

Log-relative mapping Nielsen et al. [27] proposed a

novel “log-relative” mapping that is applied to empirical

BRDFs prior to statistical modelling. The purpose of this

mapping is to alleviate the high dynamic range which re-

sulted in the specular peak completely dominating the sta-

tistical model and reconstruction. Hence, in our network,

after reconstruction we must invert this mapping to recover

an actual empirical BRDF. In [27] all the samples in the

MERL dataset were mapped by:

ρmap = ln

(

ρ cosweight + ǫ

ρref cosweight +ǫ

)

, (8)

where

cosweight = max [cos(n · s) cos(n · v), ǫ] , (9)

is a weight applied to compensate for extreme grazing-angle

values, ρref is a reference BRDF (set as the median BRDF

value for each sampled angles) and ǫ is the numerical sta-

bilisation term, set equal to 10−3.

In our statistical BRDF network, we reconstruct a dis-

cretely sampled BRDF X and then invert (8) using:

Y =
exp(X )⊙ (Xref ⊙ cosweight + ǫ) − ǫ

cosweight

, (10)

where ⊙ is the Hadamard (element-wise) product and the

division is also applied element-wise.

BRDF value sampling Given an empirical BRDF, Y ,
with the log-relative mapping inverted and per-pixel/light
source Rusinkiewicz 3D coordinates, A, we interpolate an
exact BRDF value by tri-linear interpolation. The purpose
of this step is to find appropriate BRDF values from a dis-
crete BRDF lookup table when the indices (θh, θd, φd) are
continuous. Differentiable tri-linear interpolation can be
performed using:

ρ(θh, θd, φd) =

90∑

i=1

90∑

j=1

180∑

k=1

Yijk max(0, 1− |θh
180

π
− i|)×

max(0, 1− |θd
180

π
− j|)max(0, 1− |φd

180

π
− k|).

We perform such a look up for the Rusinkiewicz coor-

dinates for each pixel/light source and output a matrix of

BRDF values, B.

3.2.3 Cosine weight layer

This layer computes cosine weights, cos(θi) = n · s, for

each pixel:

C = NST , (11)

where N ∈ R
u×3 contains the surface normal vectors for u

pixels and S ∈ R
s×3 contains the lighting direction vectors

for s light sources.

3.2.4 Clamping layer

This layer implements the max operator in (4) which simu-

lates the effect of self-shadows (i.e. incident angle greater

than 90◦). It takes as input the output of the cosine layer

and computes:

D = max(0,C) (12)

Note that this is exactly a Rectified Linear Unit (ReLU)

layer and so can be implemented using a standard ReLU

layer implementation.

3.2.5 Colour scale and sum over light sources

This layer takes as input the clamped-cosine and BRDF val-

ues, element-wise multiplies them, uses these to scale the

light source radiances and finally sums over light sources:

Ri =

s
∑

j=1

BijDijLj . (13)

This provides the final output of the reflectance evaluation

network: per-pixel reflected radiance values.
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4. Forward rendering

We now illustrate how the layers in PVNN can be com-

bined to implement forward rendering. Such a network

takes as input a depth map, one or more light source di-

rections and colours and the BRDF parameters or an em-

pirically measured BRDF and outputs a rendered image.

To demonstrate the rendering capability of this network,

we render spheres with environment map illumination. In

Figure 3 we show results using well reconstructed BRDF

presented by [27]. In Figure 4 we show results using a

single set of statistical BRDF parameters and three differ-

ent illumination environments. We note that our renderings

are comparable to the output from conventional renderers

as well as the statistical reconstructions shown by Nielsen

et al. [27].
To illustrate the simplicity with which PVNN layers can

be combined to achieve physically-based rendering, the fol-
lowing code snippet is all that is required to create images
such as those in Figure 4:

1 # i n i t i a l i s e r e n d e r e r s u b n e t

2 pvnn = pvnn module . pvnn ( s h a p e s v a r , mask var )

3 # c a l c u l a t e s u r f a c e normal map

4 norma l s = pvnn . depthToNormal ( s h a p e s v a r )

5 # c o s i n e w e i g h t s f o r f o r e s h o r t e n i n g

6 cosWeigh t s = pvnn . cosWeight ( normals , l i g h t s v a r )

7 # f i l t e r o u t n e g a t i v e s

8 clampCosWeights = pvnn . c l amping ( cosWeigh t s )

9 # r e c o n s t r u c t BRDF from p r e d i c t e d v e c t o r

10 b r d f F n = pvnn . b r d f F u n c t i o n ( p r e d i c t i o n , ’ . /

p recomputedData ’ )

11 # i n t e r p o l a t e m i s s i n g v a l u e s i n r e c o n s t r u c t i o n

12 b r d f F n = pvnn . b r d f F n I n t e r p ( brdfFn , ’ mapping . npy ’ )

13 # i n d e x i n g BRDF v a l u e s f o r each p i x e l

14 b r d f M a t r i x = pvnn . b r d f V a l u e s ( normals , \
15 l i g h t s v a r , b r d f F n )

16 # i n t e n s i t i e s f o r m a t i o n

17 imgs = pvnn . b r d f I n t e n s i t y ( b r d f M a t r i x , \
18 clampCosWeights , l i g h t C o l o r s v a r , mask var )

19 # t r a n s p o s e o u t p u t t o have same shape wi th i n p u t

20 imgs = imgs . t r a n s p o s e ( 0 , 3 , 1 , 2 )

5. Example application: BRDF estimation

We now present an example of using PVNN in a vi-

sion application. We show how to train a CNN to directly

regress BRDF parameters from a single image. Moreover,

we train the network in an unsupervised fashion in the sense

that BRDF parameters are not provided at training time. In-

stead, we use an encoder-decoder architecture in which the

loss function is the error between a rendering using the pre-

dicted parameters and the input image.

5.1. Architecture

An overview of the network is shown in Figure 5 includ-

ing both training and inference subnets. The inference part

inside the dot-line box is a standard down-scaling ConvNet,

taking input images and producing BRDF vector as output.

(a) Blue book (b) Green cloth (c) Paint metal

(d) Yellow paper (e) Glossy red paper (f) Cardboard

Figure 3: Images are rendered by our differentiable ren-

derer. The inputs for the renderer is the BRDF function of

the known material and environment map and depth map of

the object, the output is the realistic rendered images.

(a) Grace Cathedral (b) Uffizi Gallery (c) Pisa

Figure 4: Three rendered examples from BRDF parameters

under different HDR Environment Maps. All of our results

are using same 5D parameters.

The other parts of the network are untrainable and designed

for unsupervised training. During training procedure, the

weights in the ConvNet will be updated by the Error layer

given output from the Renderer layer. As described in Sec-

tion 3, the Renderer layer takes as input the depth maps,

light sources and BRDF parameters and outputs realistic

RGB images. The Error layer, placed at the end of our net-

work, calculates a loss function by the L2 norm between

the original input image and the rendered intensity map. In

addition to this intensity loss, the network parameter reg-

ularisation term is another part of our loss function. The

coefficient of regularisation is 5× 10−4.

5.2. Convolutional Neural Network

The architecture of our ConvNet is realised by a stack

of bottlenecks and residual shortcuts mechanism introduced

by He et al. [15]. Since our problem is to estimate BRDF

parameters from only one single image, a deep network

with powerful learning ability is required. We construct

our network with 50 layers following a resnet layout. Also,

following the downscale rule proposed by Simonyan et al.
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Figure 5: The overall architecture of our neural network.

The dot-line box highlights the part for used for BRDF pa-

rameter inference during testing.

(a) (b) (c) (d)

Figure 6: Network architecture. (a) Overall architecture;

(b) Bottleneck stack, shown as orange boxes placed in the

middle of (a); (c) Convolutional layers inside bottleneck;

(d) Convolutional layers inside the first bottleneck of each

block, which needs to increase the dimension of feature map

and decrease spatial resolution at same time.

[32] in their VGG net, our network performs pooling opera-

tions followed by dimension increasing on the feature map.

All the convolutional layers are separated by 4 blocks after

which spatial pooling is performed, and dimensional incre-

ments are achieved by the first layer of the next block. To

Dataset PCs Params. Full BRDF

Training 0.01425 1.951

Testing 0.01437 1.958

Table 1: RMSE on training and testing set.

concatenate 48 bottleneck convolutional layers and 1 fully-

connencted layer and 1 actuation convolutional layer, each

convolutional block contains 1 dimension increment bottle-

neck and 3 normal bottlenecks. The actuation layer in our

network is placed next to the input layer, converting RGB

input images to initial feature maps with 64 channels. The

fully-connected layer at the end of the net map output from

convolutional layer to 15-D vectors, which represents three

5 dimensional BRDF statistical model parameters for each

colour channel respectively. The visualisation of our net-

work is shown in Figure 6. Note that the first bottleneck

right after the actuation layer does not increase the dimen-

sion but maintains its spatial size and dimension. Except

for the first bottleneck block, the pooling and dimension

increment operations are proceeded by the first bottleneck

in each block. For simplicity the pooling is done by using

stride of size (2, 2), whose efficiency has been proven by

[15]. The architecture of the bottlenecks can be found in

Figure 6 as well. For each operational box, the numbers

written at the bottom indicate the dimension of the output

feature map. Figures 6d and 6c are examples of the first

bottleneck block.

5.3. Inference

From the results in [27], here we use first 5 projected

principal components in the statistical model, which is suf-

ficient for good BRDF reconstructions. Although it would

be straightforward to estimate more parameters, we use the

same number as the original paper to simplify the problem

and make calibration easy by using [27]. To fully recon-

struct the BRDF look up table using our result vector, as

part of PVNN we port their nonlinear reconstruction algo-

rithm to Theano to output a standard .binary file.

5.4. Training

We employed SGD algorithm with batch size of 20 in

backpropagation and run training 300 epochs. The learning

schedule started by a relatively small value 0.001, which

is good for network convergence as illustrated in [15]. A

larger learning rate 0.01 is then substituted to speed up

training. Since the learning process is unsupervised (via

indirect comparison between prediction and ground truth),

we found the network is slower to stabilise than supervised

training which directly encourage prediction to approach

ground truth. As a result, more epochs used in training are

necessary. So we keep using 0.01 as the learning rate for

200 epochs, which is longer than typical learning schemes.
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Figure 7: BRDF estimation results. The first row in each block is ground truth, and second row is reconstruction. Each

column is the relighting results on the same material. The first two rows show the inputs for the network (row 1) and

relighting using predicted BRDF (row 2). The second two rows of images are renderings under new lighting for both ground

truth (row 3) and predicted (row 4) BRDF.

For training we use 7000 synthetic images and 3000 syn-

thetic images for validation and testing. Every image is ren-

dered by using randomly drawn 5D BRDF parameters, 30

light sources with random direction and colour and spher-

ical depth map. The BRDF parameters are drawn from a

normal distribution with the variance for each dimension

coming from the PCA model.

6. Experiments

The experiments are deployed on synthetic data de-

scribed in last section. We quantitatively evaluate the accu-

racy of the BRDF parameter estimates made by our infer-

ence network in two ways. First we compute the RMSE be-

tween the predicted and actual 5D BRDF parameters (Table

1, first column). Second we compute the RMSE between

the BRDF reconstructed by our parameter estimate the ac-

tual BRDF (Table 1, second column). This second error can

be compared directly to the values in [27], showing that we

are achieving comparable accuracy without knowledge of

the lighting conditions and using only a single image. We

show qualitative results in Figure 7. The first two rows show

actual input images (first row) and relightings using the es-

timated BRDF and ground truth lighting (second row). In

the bottom two rows we show reilluminations of the ground

truth (third row) and estimated (fourth row) BRDFs under

environment lighting. In both cases the estimated BRDF

gives very close visual appearance to ground truth and cap-

tures the key features of the reflectance properties.

7. Conclusions

In this paper we have presented a set of novel layers that

can be incorporated into a neural network to incorporate ex-

plicit models of photometric image formation. We release

these layers as the PVNN toolbox for Theano1. We have

illustrated how these layers can be used in a simple photo-

metric vision application, though the setup was quite simple

(the images are always of spheres so the inference network

essentially “knows” the shape of the object even though this

is not explicit). However, there are a wide range of much

more ambitious applications where PVNN could be used.

For example, the same encoder-decoder architecture could

be used to train a network that predicts all of depth, lighting

and reflectance parameters. We plan to train such a network

using photometric stereo datasets where Siamese training

can be used to ensure the same depth and reflectance param-

eters are estimated from pairs of images where only lighting

varies. In terms of limitations, the most obvious extensions

for PVNN would be to add support for perspective projec-

tion and alternate lighting models, such as spherical har-

monics, to improve efficiency.
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