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1. Minimal representation of the normal

The minimal representation of the normal is realized by
the 3-vector of the mean, a random 2-vector N r along the
tangent plane spanned by Jr(N) = null(NT) with JT

r Jr =
I2, at E(N), and subsequent normalization of the first 3-
subvector:

N = Ne(µN + Jr(µN )N r) (1)

see [1, Eq. (10.24)].
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Figure 1: Reduced coordinates for representing an uncertain
point N (N) on the unit sphere S2, which represents the pro-
jective plane IP2. A point with mean µN , which is uncertain
on the unit sphere, is projected into the tangent plane at the
mean. Its uncertainty in the tangent space, which is the null
space of µT

N and spanned by two basis vectors, say s and t,
has only two degrees of freedom and leads to a regular 2× 2
covariance matrix (the ellipse shown in the figure) of the 2-
vector Nr of the reduced coordinates in the tangent plane,
adapted from [1, Fig. 10.10]

The random 2-vectorN r with covariance matrix ΣNrNr

is called the reduced normal vector, from which we can de-
rive the covariance matrix of the homogeneous vector N ,
which is

ΣNN = Jr(µN ) ΣNrNr JT
r (µN ) . (2)

Given a point

N t = µN + Jr(µA)N r (3)

in the tangent plane we have

N r = JT
r (µN )N t ≈ JT

r (µN )N ; (4)

hence
ΣNrNr = JT

r (µN ) ΣNN Jr(µN ) . (5)

2. The ML-solution for a model with con-
straints between the observations and the
parameters

Given are observations, collected in the N -vector y, be-
ing a sample of N (ỹ, σ2

0Σyy), where σ2
0 is an unknown

variance factor for the given covariance matrix Σyy. The
unknown parameters are collected in the U -vector β. They
are related by the constraints g(β̃, ỹ) = 0 between the true
values, which also should hold for the estimated observa-
tions and parameters

g(β̂, ŷ) = [g(β̂, ŷi)] = 0 . (6)

We assume no two constraints contain the same group yi of
observations. The maximum likelihood solution minimizes
the weighted sum

Ω = v̂TΣ−1yy v̂ (7)

of the residuals,
v̂ = ŷ − y , (8)

under the constraints (6).
Then the estimation can be summarized as follows (see

[1, Sect. 4.8 ]): We start from approximate values β̂
a

and
ŷai for the observations and parameters. With the residuals
of the constraints

cgi = −gi(β̂
a
, ŷai ) + ZT

i (ŷai − yi) (9)

the normal equation system is

N =
∑
i

BiX i and n =
∑
i

Bicgi (10)

where
Bi = XT

i (ZT
i ΣiiZ i)

−1 (11)



and the covariance matrices – in our case – are

Σii := Diag([ΣAriAri
,ΣA′

riA
′
ri

]) . (12)

We used the Jacobians

XT
i := ∂gi/∂β|β=β̂,y=ŷ (13)

and
ZT
i := ∂gi/∂y|β=β̂,y=ŷ (14)

to be evaluated at the estimated observations and the esti-
mated parameters. The updates of the parameters usually
are β̂ = β̂

a
+ ∆̂β; in our case we use

M̂
(ν+1)

=

[
R(∆̂r) ∆̂t
0T 1

]
M̂

(ν)
. (15)

The observations are corrected to achieve the fitted obser-
vations. The corrections are

∆̂yi = ΣiiZ (ZT
i ΣiiZ i)

−1(cgi − XT∆̂β) + (yi − ŷ
a
i ) ,

which finally leads to[
Â

(ν+1)
i

B̂
(ν+1)
i

]
=

[
u(Â

(ν)
i , ∆̂Ari)

u(B̂
(ν)
i , ∆̂Bri)

]
(16)

where the update function usually is ŷ(ν+1) = ŷ(ν) + ∆̂y.
Here we have for the plane parameters

Â
(ν+1)
i =

[
N(N (ν) + Jr(N (ν),T)∆N r

S(ν) + ∆S

]
, (17)

and similarly for A′. The covariance matrix of the esti-
mated parameters is

Σξ̂ξ̂ = N−1 =

(∑
i

XT
i (ZT

i ΣiiZ i)
−1X i

)−1
. (18)

It captures the geometric structure of the observational setup
via N−1 – in our case the spatial distribution and accuracy
of the observed planes. It does not depend on the actual
observations, thus can be used for predicting the achievable
precision of the motion, given the geometric setup of the
observed planes and their uncertainty.

The estimated variance factor is

σ̂2
0 =

Ω

3I − 6
. (19)

It can be used for testing, since σ̂0
2|H0 ∼ F (G − U,∞).

If the test is not rejected, we also can provide the empirical
covariance matrix

Σ̂ξ̂ξ̂ = σ̂2
0Σξ̂ξ̂ . (20)

It captures both, the geometric structure of the observational
setup via Σξ̂ξ̂ but also the consistency of the plane pairs with
a spatial motion via the estimated variance factor σ̂2

0 .

3. Testing an empirical covariance matrix

Given an U × U covariance matrix Σ̂ββ estimated from
K samples βk. Under the hypothesis Σ̂ββ = Σββ , the test
statistic X2(CovM)

(K − 1)
[
ln
(

det Σββ/ det Σ̂ββ

)
− U + tr

(
Σ̂ββΣ−1ββ

)]
(21)

given the null-hypothesis, is approximately χ2-distributed
with U(U + 1)/ degrees of freedom, needed for specifying
the U × U covariance matrix Σββ , see [2], Sects. 2.8.7,
4.1.212.
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