
A Proofs of Theorems 1 and 2

A.1 ML-IALM

In the subsection we give the missing proof of theorem 1. First let us remind
a few definitions. At each iteration of IALM algorithm we solve the following
subproblem

min
L∈Rm×n

{‖L‖? +
1

2τ
‖M− L‖2F }. (1)

The minimiser of (1) is given in closed form via the singular value thresh-
olding operator as

L̂ = Dτ [M], (2)

where Dτ [M] is defined for the SVD of M = UΣV> as

Dτ [M] = USτ [Σ]V>, (3)

where Sτ [·] is the soft thresholding operator defined element-wise:

Sτ [x] = (|x| − τ)+sgn(x). (4)

Then for a full rank restriction operator R ∈ Rn×nH we define the multilevel
SVT (ML-SVT) operator

DHτ [M] = UHSτ [ΣH ]V>HR>, (5)

where MR = UHΣHV>H is the SVD of the coarse MH = MR. Then Theorem
1 shows that DHτ gives an approximate solution to the problem (1).

Theorem 1. For any R, such that ‖R‖2 ≤ 1 and 0 < τ ≤ σH,1, the ML-
SVT operator DHτ [M] gives a

(σH,1

τ2 (σ1 +σH,1− τ)
)
-approximate solution to the

problem (1), where σH,1 is the largest singular value of MR.

Proof. The proof follows the steps of the proof of Theorem 2.1 of [1]. First note
that (1) is a convex problem with optimality criteria

M− L̂ ∈ τ∂‖L̂‖?, (6)

where ∂‖ · ‖? is the set of subgradients of the nuclear norm. Let L ∈ Rm×n be
an arbitrary matrix and UΣV> be its SVD. It is known [2] that

∂‖L‖? = {UV> + W : W ∈ Rm×n,U>W = 0,WV = 0, ‖W‖2 ≤ 1}. (7)

Next we set LH = DHτ [M] and find an upper bound for the distance from
M − LH to the set τ∂‖LH‖?. Then we decompose the SVDs of M and MR
as M = U0Σ0V

>
0 + U1Σ1V

>
1 and MR = UH,0ΣH,0V

>
H,0 + UH,1ΣH,1V

>
H,1,

where U0, UH,0, V0 and VH,0 (respectively, U1, UH,1, V1 and VH,1) are the
corresponding singular vectors associated with the singular values greater than
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τ (respectively, smaller than or equal to τ). Then we have LH = UH,0(ΣH,0 −
τI)V>H,0R

>, and therefore using U0U
>
0 + U1U

>
1 = I and U>0 U0 = I we get

M− LH

= U0Σ0V
>
0 + U1Σ1V

>
1 −UH,0(ΣH,0 − τI)V>H,0R

>

= U0Σ0V
>
0 + U1Σ1V

>
1 − (U0U

>
0 + U1U

>
1 )UH,0(ΣH,0 − τI)V>H,0R

>

= τ [τ−1U1(Σ1V
>
1 −U>1 UH,0(ΣH,0 − τI)V>H,0R

>)

+ τ−1U0(Σ0V
>
0 −U>0 UH,0(ΣH,0 − τI)V>H,0R

>)]

:= τ [W + UV>],

(8)

where
W := τ−1U1(Σ1V

>
1 −U>1 UH,0(ΣH,0 − τI)V>H,0R

>), (9)

V> := τ−1(Σ0V
>
0 −U>0 UH,0(ΣH,0 − τI)V>H,0R

>) (10)

and U := U0. Then U>W = 0 and since ‖Σ1‖2 ≤ τ and σH,1 ≥ τ we also
have

‖W‖2
= τ−1‖Σ1V

>
1 −U>1 UH,0(ΣH,0 − τI)V>H,0R

>‖2
≤ τ−1(‖Σ1‖2 + ‖ΣH,0 − τI‖2‖R>‖2)

≤ τ−1(τ + σH,1 − τ)

=
σH,1
τ

(11)

Furthermore,

‖WV‖2
= τ−2‖U1(Σ1V

>
1 −U>1 UH,0(ΣH,0 − τI)V>H,0R

>)

(Σ0V
>
0 −U>0 UH,0(ΣH,0 − τI)V>H,0R

>)>‖2
≤ τ−2(‖Σ1‖2 + ‖ΣH,0 − τI‖2)(‖Σ0‖2 + ‖ΣH,0 − τI‖2)

≤ τ−2(τ + σH,1 − τ)(σ1 + σH,1 − τ)

=
σH,1
τ2

(σ1 + σH,1 − τ),

(12)

where σH,1 = ‖ΣH,0‖2 is the largest singular value of MR and for the last
inequality we used the assumptions that σH,1 ≥ τ and ‖R‖2 ≤ 1. Therefore,
since

σH,1

τ2 (σ1 + σH,1 − τ) ≥ σH,1

τ then DHτ [M] is at most
σH,1

τ2 (σ1 + σH,1 − τ)
away from a zero subdifferential of (1).
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A.2 ML-AltProj

In this section we give the proof of Theorem 2. Here the optimisation problem
in question is given as

min
L∈Rm×n

‖D− L− S‖2 s.t. rank(L) ≤ l. (13)

Then we solve (13) using the multilevel hard thresholding operator defined
as

LH = UHHk[ΣH ]V>HR>, (14)

where MR = MH = UHΣHV>H is a SVD of the coarse model, H is the hard
thresholding operator and R is the restirction operator.

Theorem 2. The multilevel low rank approximation procedure given in (14)
gives a (σ1 + σH,1)-approximate solution to the problem (13), where σH,1 is the
largest singular value of MH = MR.

Proof. First note that for any B = XY> (X,Y ∈ Rm×k) we can find a vector

ω =
∑k+1
i=1 γivi so that ω>X = 0 and ‖ω‖2 =

∑k+1
i=1 γ

2
i = 1, where vi are the

columns of V. Then

‖M−B‖22 ≥ ‖ω>(M−B)‖22 = ‖ω>M‖22 =

k+1∑
i=1

γ2i σ
2
i ≥ σ2

k+1. (15)

On the other hand

‖M− LH‖2
= ‖U0Σ0V

>
0 + U1Σ1V

>
1 −UH,0ΣH,0V

>
H,0R

>‖2
≤ σ1 + σk+1 + σH,1,

(16)

where U0, V0, UH,0 and VH,0 (respectively, U1, V1, UH,1 and VH,1) are
correspondingly the singular vectors associated with the largest k (respectively,
smallest n − k and nH − k) singular values of M and MR. From these two
inequalities we have that for any B

‖M− LH‖2 − ‖M−B‖2 ≤ σ1 + σH,1. (17)
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