A Proofs of Theorems 1 and 2
A.1 ML-IALM

In the subsection we give the missing proof of theorem 1. First let us remind
a few definitions. At each iteration of IALM algorithm we solve the following
subproblem

. 1 9
_min, {IL]. + 5-[M - L3}, (1)

The minimiser of (1) is given in closed form via the singular value thresh-
olding operator as .
i, = D,[M], )

where D, [M] is defined for the SVD of M = UXV " as
D- [M} =US; [Z}VT7 (3)
where S;[] is the soft thresholding operator defined element-wise:

Srla] = (|2 = 7)4sgn(z). (4)

Then for a full rank restriction operator R € R™*"™H we define the multilevel
SVT (ML-SVT) operator

DY M] = UpS,[En]ViR ', (5)

where MR = Uy EHVIE is the SVD of the coarse Mg = MR. Then Theorem
1 shows that DX gives an approximate solution to the problem (1).

Theorem 1. For any R, such that |R|2 < 1 and 0 < 7 < og1, the ML-
SVT operator DE[M)] gives a (Jfg'l (c1+0m1— T))—approximate solution to the
problem (1), where og 1 is the largest singular value of MR.

Proof. The proof follows the steps of the proof of Theorem 2.1 of [1]. First note
that (1) is a convex problem with optimality criteria

M — L e 79| L., (6)

where || - ||+ is the set of subgradients of the nuclear norm. Let L € R™*™ be
an arbitrary matrix and UXV " be its SVD. It is known [2] that

L, ={UVT + W . W cR™" U'W =0,WV =0,|W|, <1}. (7)

Next we set L = DF[M] and find an upper bound for the distance from
M — L¥ to the set 79||L¥||,. Then we decompose the SVDs of M and MR
as M = Up%oV] + U121 V] and MR = Up oZp0Vo + UniZua Vi,
where Uy, Up, Vo and Vo (respectively, Uy, Ug1, V1 and V1) are the
corresponding singular vectors associated with the singular values greater than



7 (respectively, smaller than or equal to 7). Then we have L7 = Uno(Xmo —
TI)VI—';,,ORT7 and therefore using UgUJ + U;U{ =1 and U] Uy =1 we get

M - LA
=UoSVy + UiZ1 V] — Uy o(Spo— 7DV RT
=UoSVy + UiZ1 V] — (UUj] +U1U{ ) Upo(Zho — Vi RT
=7[r U1 V] = U{ Uy o(Suo— DV RT)
+77'U00(20Vy — Ug Uno(Buo — DV R

=7[W+UV'],
where
W =770 (21 V] = U{ Upo(Suo— 7DV RT), (9)
V' i=71(Z¢Vy —UjUpo(Buo— DV RT) (10)

and U := Uy. Then U'W = 0 and since |Z1|]z < 7 and o1 > T we also
have

W2
=7 S V] = U/ Upo(Smo— DV R |2
<7 IZ 0l + 1B a0 — 7I2lIRT2) (11)
< T_l(T +op1—T)
_ OH,1
-
Furthermore,
WVl

=7 2UL(Z1 V] = U{Upo(Spo— D)V RT)
(ZoVy —Ug Upo(Ba0 — DV R T2

_ 12
< 2|12 + [Sar0 — 7 (ISolla + B0 — 71le) 12
< 7'72(7 +op1—T1)(01+0H1—T)
o
= H2’1 (0‘1 —‘y—O’HJ — 7)7
T
where op1 = || Zmoll2 is the largest singular value of MR and for the last

inequality we used the assumptions that og1 > 7 and ||R||2 < 1. Therefore,

since 252 (01 4+ oy — 7) = T2 then DH[M] is at most 75 (01 + op,1 — 7)

away from a zero subdifferential of (1). O




A.2 ML-AltProj

In this section we give the proof of Theorem 2. Here the optimisation problem
in question is given as

min ||[D—-L -S|z s.t. rank(L) <I. (13)
LGR’VTLX’VL

Then we solve (13) using the multilevel hard thresholding operator defined
as
L7 = UpHi[Zu]VLRT, (14)

where MR = My = UHEHVII is a SVD of the coarse model, H is the hard
thresholding operator and R is the restirction operator.

Theorem 2. The multilevel low rank approximation procedure given in (14)
gives a (01 + o 1)-approzimate solution to the problem (13), where oy 1 is the
largest singular value of My = MR.

Proof. First note that for any B = XY " (X,Y € R™**) we can find a vector
w= Zfill viv; so that w' X = 0 and |jw|s = Efill 72 = 1, where v; are the
columns of V. Then

k+1
IM=BJ3 > ' M=B)|5 =l ™M|3=> o] >0r,,.  (15)
=1
On the other hand
M — L7
= [UoZoVy + U1 V] — U oZuoVi R |2 (16)

<01+ 0kt1 +0H T,

where Uy, Vo, Ug,o and Vo (respectively, Uy, Vi, Ug; and V1) are
correspondingly the singular vectors associated with the largest k (respectively,
smallest n — k and ny — k) singular values of M and MR. From these two
inequalities we have that for any B

IM — L7y = [M =Bz <01+ 0m,1. (17)
O
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