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1. Concepts from Differential Geometry

In this section, we will define some terms from differ-
ential geometry that are necessary for the rest of the paper.
For a more comprehensive treatment of matrix manifolds
considered here, refer Absil et al.[1] and Edelman et al.[2].

Manifold: A manifold is a topological space that is lo-
cally Euclidean i.e., at every point on the manifold p ∈ M,
there exists an open neighborhood H around p, and a map-
ping φ such that φ(H) is an open subset of Rn where φ
is a diffeomorphism. A differentiable manifold is a mani-
fold that has a differentiable structure associated with it. A
smooth manifold can be defined similarly.

Tangent and tangent space: At every point on a dif-
ferentiable manifold, a linear/vector space, called the tan-
gent space, of the same dimension as the manifold can be
constructed. Consider a point p ∈ M. Consider a curve
α(t) on the manifold passing through p such that α(0) = p.
The derivative of this curve at p, α′(0), is the velocity vec-
tor, also called the tangent. If one considers all possible
curves through this point {αi(t)}, i = 1, 2, . . . , then the set
of all velocity vectors {α′i(0)} is the tangent space TpM, at
this point. The point at which the tangents are computed is
called the pole of the tangent space.

Riemannian metric: A Riemannian metric is function
that smoothly associates, to each point p ∈ M, an inner
product on the tangent space TpM. A smooth manifold
equipped with a Riemannian metric is called a Riemannian
manifold.

Geodesic: Consider a curve on the manifold γ : [a, b]→
M such that γ(a) = x and γ(b) = y. The curve that
minimizes the functional E =

∫ b

a
||γ′(t)||2 dt is called the

geodesic and locally minimizes the path length between two
points on the manifold. The norm ||.|| is induced by the Rie-
mannian metric at γ(t).

Exponential Map: Given that a unique geodesic γ(t)
exists locally at p ∈ M and γ(0) = p and γ′(0) = v ∈
TpM, the exponential map at p is the function expp :
TpM → M given by expp(v) = γ(1). For a neighbor-
hood, U ⊂ TpM containing 0, it can be shown that expp is

a diffeomorphism, i.e., it has an inverse which is also con-
tinuous. The algorithm for computing the exponential map
depends both on the manifold of interest and the pole of the
tangent space.

Logarithm Map: At least in the neighborhood U ⊂
TpM containing 0, the exponential map has an inverse
called the logarithm map exp−1p : M → TpM. This also
points to the fact that the pole is an important design choice.
The algorithm for computing the logarithm map depends
both on the manifold of interest and the pole of the tangent
space.

2. Additional Information on Face→ Illumina-
tion Subspace

2.1. Illumination Directions Used for Network In-
puts

The 33 illumination directions used for creating inputs
for both the training and test sets are shown in the left col-
umn of Table 1 and are a subset of the illumination direc-
tions used in the Extended Yale Face Database B [3].

2.2. Visualizing output of GrassmannNet-TS

Due to the invariance provided by the Grassmann man-
ifold, the exponential map of the tangent need not return
the same point U whose columns are the principal compo-
nents (PCs) of the illumination subspace, it is only guar-
anteed to return a point R whose columns spans the same
subspace as the columns of U. This means that we can-
not use the columns of R immediately for visual compar-
ison with the ground-truth PCs of the subspace. There-
fore we first find an orthogonal matrix Q∗ such that Q∗ =
argmin

Q
||Uavg − RQ||F and then use R̂ = RQ∗ as the

new point that can be used for visualization. Q∗ has a sim-
ple closed form expression given by Q∗ = WYT , where
RTUavg = WΣYT is the singular value decomposition
(SVD) of RTPavg [4]. See Figure 1 for visual illustration.



Azimuth Elevation Azimuth Elevation
0 0 0 90
0 -20 -35 65
0 20 35 65
0 -35 -50 -40
0 45 50 -40
-5 -5 -60 -20
-5 5 60 -20
5 -5 -70 -35
5 5 -70 0

-10 0 -70 45
-10 -20 70 -35
10 0 70 0
10 20 70 45
15 20 -85 -20
-15 20 -85 20
-20 -10 85 -20
-20 10 85 20
-20 -40 -95 0
20 -10 95 0
20 10 -110 -20
20 -40 -110 15
25 0 -110 40
-25 0 -110 65
-35 -20 110 -20
-35 15 110 15
-35 40 110 40
35 -20 110 65
35 15 -120 0
35 40 120 0
-50 0 -130 20
50 0 130 20
-60 20
60 20

Table 1: Illumination directions (azimuth and elevation in
degrees) used to generate illumination subspaces. As net-
work inputs for both training and test sets, we only use the
33 illumination conditions shown in the left column of the
table.

2.3. More results on F2IS

In this section, we provide additional results for the F2IS
application. Tables 2, 3, 4 shows additional visual results
for subspace dimensions p = 3, 4, 5 respectively and us-
ing Fréchet mean Ud

Fr as the pole for GrassmannNet-TS.
Similar results are observed with Ud

Tr as the pole. Table
5 shows the histograms of the subspace distances obtained
on the test set using the two proposed frameworks. These
results demonstrate that GrassmannNet-TS is undoubtedly
the better and the right way to solve the problem.

(a)

(b)

(c)Figure 1: Images illustrating F2IS for d = 4 (a) Top 4 PCs
of the training set i.e., U4

Tr. (b) Output of exponential map
for GrassmannNet-TS. (c) Output of GrassmannNet-TS af-
ter rotation by Q∗.
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Input Ground truth PC’s Output of baseline n/w Output of GrassmannNet-TS

DG = 0.5766 DG = 0.4854

DG = 0.7095 DG = 0.4787

DG = 0.4429 DG = 0.4009

DG = 1.0904 DG = 0.3042

DG = 0.9012 DG = 0.3118

DG = 0.9244 DG = 0.3294

Table 2: Test results for six input images using d = 3. From the figures, we can clearly observe that the GrassmannNet-TS
(with the Fréchet mean of the training set as the pole) framework performs much better than the baseline that attempts to
regress directly to the PC’s. The numbers below the output images indicate the subspace distance from the ground truth
(lower the better).

.



Input Ground truth PC’s Output of baseline n/w Output of GrassmannNet-TS

DG = 0.6750 DG = 1.1580

DG = 1.2047 DG = 0.6674

DG = 0.6225 DG = 0.3653

DG = 1.5900 DG = 0.9339

Table 3: Additional test results for six input images using d = 4. From the figures, we can clearly observe that the
GrassmannNet-TS (with the Fréchet mean of the training set as the pole) framework performs much better than the baseline
that attempts to regress directly to the PC’s. The numbers below the output images indicate the subspace distance from the
ground truth (lower the better).

Input Ground truth PC’s Output of baseline n/w Output of GrassmannNet-TS

DG = 0.7797 DG = 0.5966

DG = 1.5355 DG = 0.6170

DG = 1.6760 DG = 0.4420

DG = 1.6703 DG = 0.4939

Table 4: Additional test results for d = 5. From the figures, we can clearly observe that the GrassmannNet-TS (with the
Fréchet mean of the training set as the pole) framework performs much better than the baseline that attempts to regress
directly to the PC’s. The numbers below the output images indicate the subspace distance from the ground truth (lower the
better).



Subspace
Dimension Baseline GrassmannNet-TS

All pairs of training
and test subspaces

3

4

5

Table 5: Histograms of test results. From the plots, we can clearly observe that the GrassmannNet-TS (with the Fréchet mean
of the training set as the pole) framework performs much better than the baseline that attempts to regress directly to the PC’s.
The last column shows the histograms of subspace distances between training and test subspaces.


