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1. A1. Typical structure of a system matrix for
implicit function differentiation

In the following appendix, we derive formulas for the
required derivatives of the likelihood function for the Gaus-
sian Mixture models with diagonal covariance matrices, and
show that very often the second derivative matrices become
sparse during meta-learning, which accelerates the process
significantly.

The log-likelihood function l(θ|D) is a sum of one-
observation likelihood functions as given in the main text,
eq. (1).

Theorem. If log-likelihood function log h(θ|d) corre-
sponding to a mixture model can be represented as a log-
arithm of a sum of multiplied coordinate-wise likelihood
functions with non-intersecting parameter sets:

log h(θ|d) = log{
k∑
i=1

vi

n∏
j=1

g(θi,j |d)}, (1)

where vi are mixture weights, vi ≥ 0,
∑k
i=1 vi = 1,

θ = [θT1 , θ
T
2 , . . . , θ

T
k , v1, v2, . . . , vk]

T is the vector of
the model parameters, θi = [θTi,1, θ

T
i,2, . . . , θ

T
i,q]

T is the
vector of one mixture component’s parameters, θij =
[θi,j,1, θi,j,2, . . . , θi,j,nc ]

T is the vector of the coordinate-
wise likelihood function parameters of length nc, g(θi,j |d)
is a coordinate-wise likelihood function for the coordinate
j, then the second derivatives of log h(θd) w.r.t. the param-
eters of the model (except the weights) are

∂2 log h(θ|d)
∂θi,j,k∂θu,s,t

=


(ri − r2i )

g′k(θi,j |d(j))g
′
t(θi,s|d(s))

g(θi,j |d(j))g(θi,s|d(s))
, i = u, j 6= s,

ri
g′′kt(θi,j |d(j))
g(θi,j |d(j))

− r2i
g′k(θi,j |d(j))g

′
t(θi,j |d(j))

(g(θi,j |d(j)))2
, i = u, j = s,

− 1
h2(θ|d)riru

g′k(θi,j |d(j))
g(θi,j |d(j))

g′t(θu,s|d(s))
g(θu,s|d(s))

, i 6= u,

(2)
where responsibility of the i-th component is defined as

a fraction ri =
vi

∏q
j=1 g(θi,j |d(j))
h(θ|d) .

Proof.
The first derivative is:

∂

∂θi,j,k
log h(θ|d) = 1

h(θ|d)
vi

q∏
m=1

g(θi,m|d(m))
g′k(θi,j |dj)
g(θi,j |d(j))

.

(3)
In case when both differentiation variables are the parame-
ters of the same mixture component, the second derivative
is:

∂2

∂θi,j,k∂θi,s,t
log h(θ|d) = 1

h(θ|d)
vi

q∏
m=1

g(θi,m|d(m))

g′k(θi,j |d(j))g′t(µi,s|d(s))
g(θi,j |d(j))g(θi,s|d(s))

− (4)

− 1

h2(θ|d)
v2i

(
q∏

m=1

g(θi,m|d(m))

)2
g′k(θi,j |d(j))g′t(θi,s|d(s))
g(θi,j |d(j))g(θi,s|d(s))

=

(5)

= (ri(d)− r2i (d))
g′k(θi,j |d(j))g′t(θi,s|d(s))
g(θi,j |dj)g(θi,s|d(s))

. (6)

In case when both differentiation variables are the parame-
ters of the same coordinate likelihood function for the same
mixture component, the second derivative is:

∂2

∂θi,j,k∂θi,j,t
log h(θ|d) = ri(d)

g′′kt(θi,j |dj)
g(θi,j |dj)

− (7)

1



g(θi,j |d) (
√
2πσi,j)

−1e
−

(d(j)−µi,j)
2

2σ2
i,j

g′µ(θi,j |d(j))
d(j)−µi,j
σ2
i,j

g(θi,j |d(j))

g′σ(θi,j |d(j)) σ−1i,j (
(d(j)−µi,j)2

σ2
i,j

− 1)g(θi,j |d(j))

g′′µµ(θi,j |d(j)) (− 1
σ2
i,j

+
(d(j)−µi,j)2

σ4
i,j

)g(θi,j |d(j))

g′′σσ(θi,j |d(j)) σ−2i,j (2− 5
(d(j)−µi,j)2

σ2
i,j

+
(d(j)−µi,j)4

σ4
i,j

)g(θi,j |d(j))

g′′σµ(θi,j |d(j)) (−3d(j)−µi,j
σ3
i,j

+
(d(j)−µi,j)3

σ5
i,j

)g(θi,j |d(j))
Table 1. Coordinate-wise likelihood function and its derivatives for
the Gaussian mixture models.

−ri(d)2
g′k(θi,j |dj)g′t(θi,j |dj)

(g(θi,j |dj))2
.

In case when the differentiation variables are the parameters
of different mixture components, the second derivative is:

∂2

∂θi,j,k∂θu,s,t
log h(θ|d) = − 1

h2(θ|d)
vi

q∏
m=1

g(θi,m|d(m))

(8)
g′k(θi,j |dj)
g(θi,j |d(j))

vu

q∏
m=1

g(θu,m|d(m))
g′t(θu,s|d(s))
g(θu,s|d(s))

= (9)

= − 1

h2(θ|d)
ri(d)ru(d)

g′k(θi,j |d(j))
g(θi,j |d(j))

g′t(θu,s|d(s))
g(θu,s|d(s))

. (10)

Corollary. In conditions of the Theorem, if for an obser-
vation responsibility of some mixture component i is equal
to 1, then among the second derivatives, only the ones cor-
responding to the same mixture component and coordinate
can differ from zero.

Proof. Those derivatives which contain a term ri − r2i
become zero, and the fact ri = 1 leads to ru = 0 for u 6=
i, so only the second case (i = u, j = s) of the theorem
formulation can lead to a non-zero second order derivative.

The responsibility of an observation is equal to 1 (up to
numerical precision) in some 95% of cases in our experi-
ments. Therefore second derivative matrices are very of-
ten sparse, having block-diagonal structure, which follows
from the Corollary. It makes the meta-learning process for
the Gaussian mixture models faster.

For the Gaussian mixture model with diagonal covari-
ance matrices, the coordinate-wise function g(θi,j |d) and
its derivatives w.r.t. the parameters θi,j = [µi,j , σi,j ]

T is
given in the table 1.


