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1. A1. Typical structure of a system matrix for
implicit function differentiation

In the following appendix, we derive formulas for the
required derivatives of the likelihood function for the Gaus-
sian Mixture models with diagonal covariance matrices, and
show that very often the second derivative matrices become
sparse during meta-learning, which accelerates the process
significantly.

The log-likelihood function [(8|D) is a sum of one-
observation likelihood functions as given in the main text,
eq. (1).

Theorem. If log-likelihood function log h(6|d) corre-
sponding to a mixture model can be represented as a log-
arithm of a sum of multiplied coordinate-wise likelihood
functions with non-intersecting parameter sets:
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where v; are mixture weights, v; > 0, Zle v; = 1,
0 = [07,03,...,0F vi,va,...,v4]" is the vector of
the model parameters, 0; = [6],,67,,...,0] ]" is the

vector of one mixture component’s parameters, 6;; =
[0i1,6i 2. ,9i_j7nc]T is the vector of the coordinate-
wise likelihood function parameters of length n., g(6; ;|d)
is a coordinate-wise likelihood function for the coordinate
J, then the second derivatives of log h(6;) w.r.t. the param-
eters of the model (except the weights) are
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where responsibility of the ¢-th component is defined as
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Proof.
The first derivative is:
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In case when both differentiation variables are the parame-
ters of the same mixture component, the second derivative
is:
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In case when both differentiation variables are the parame-

ters of the same coordinate likelihood function for the same
mixture component, the second derivative is:
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Table 1. Coordinate-wise likelihood functlon and its denvatlves for
the Gaussian mixture models.
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In case when the differentiation variables are the parameters
of different mixture components, the second derivative is:
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Corollary. In conditions of the Theorem, if for an obser-
vation responsibility of some mixture component 7 is equal
to 1, then among the second derivatives, only the ones cor-
responding to the same mixture component and coordinate
can differ from zero.

Proof. Those derivatives which contain a term r; — r?
become zero, and the fact r; = 1 leads to r,, = 0 for u #
1, so only the second case (i = u,j = s) of the theorem
formulation can lead to a non-zero second order derivative.

The responsibility of an observation is equal to 1 (up to
numerical precision) in some 95% of cases in our experi-
ments. Therefore second derivative matrices are very of-
ten sparse, having block-diagonal structure, which follows
from the Corollary. It makes the meta-learning process for
the Gaussian mixture models faster.

For the Gaussian mixture model with diagonal covari-
ance matrices, the coordinate-wise function g(; ;|d) and
its derivatives w.r.t. the parameters 6; ; = [u; j, 04 ;]7 is
given in the table 1.




