TextDragon: An End-to-End Framework for Arbitrary Shaped Text Spotting

Wei Feng, Wenhao He, Fei Yin, Xu-Yao Zhang, Cheng-Lin Liu; The IEEE International Conference on Computer Vision (ICCV), 2019, pp. 9076-9085


Most existing text spotting methods either focus on horizontal/oriented texts or perform arbitrary shaped text spotting with character-level annotations. In this paper, we propose a novel text spotting framework to detect and recognize text of arbitrary shapes in an end-to-end manner, using only word/line-level annotations for training. Motivated from the name of TextSnake, which is only a detection model, we call the proposed text spotting framework TextDragon. In TextDragon, a text detector is designed to describe the shape of text with a series of quadrangles, which can handle text of arbitrary shapes. To extract arbitrary text regions from feature maps, we propose a new differentiable operator named RoISlide, which is the key to connect arbitrary shaped text detection and recognition. Based on the extracted features through RoISlide, a CNN and CTC based text recognizer is introduced to make the framework free from labeling the location of characters. The proposed method achieves state-of-the-art performance on two curved text benchmarks CTW1500 and Total-Text, and competitive results on the ICDAR 2015 Dataset.

Related Material

author = {Feng, Wei and He, Wenhao and Yin, Fei and Zhang, Xu-Yao and Liu, Cheng-Lin},
title = {TextDragon: An End-to-End Framework for Arbitrary Shaped Text Spotting},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}