Learning Shape Templates With Structured Implicit Functions

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T. Freeman, Thomas Funkhouser; The IEEE International Conference on Computer Vision (ICCV), 2019, pp. 7154-7164

Abstract


Template 3D shapes are useful for many tasks in graphics and vision, including fitting observation data, analyzing shape collections, and transferring shape attributes. Because of the variety of geometry and topology of real-world shapes, previous methods generally use a library of hand-made templates. In this paper, we investigate learning a general shape template from data. To allow for widely varying geometry and topology, we choose an implicit surface representation based on composition of local shape elements. While long known to computer graphics, this representation has not yet been explored in the context of machine learning for vision. We show that structured implicit functions are suitable for learning and allow a network to smoothly and simultaneously fit multiple classes of shapes. The learned shape template supports applications such as shape exploration, correspondence, abstraction, interpolation, and semantic segmentation from an RGB image.

Related Material


[pdf]
[bibtex]
@InProceedings{Genova_2019_ICCV,
author = {Genova, Kyle and Cole, Forrester and Vlasic, Daniel and Sarna, Aaron and Freeman, William T. and Funkhouser, Thomas},
title = {Learning Shape Templates With Structured Implicit Functions},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}