Face-to-Parameter Translation for Game Character Auto-Creation

Tianyang Shi, Yi Yuan, Changjie Fan, Zhengxia Zou, Zhenwei Shi, Yong Liu; The IEEE International Conference on Computer Vision (ICCV), 2019, pp. 161-170

Abstract


Character customization system is an important component in Role-Playing Games (RPGs), where players are allowed to edit the facial appearance of their in-game characters with their own preferences rather than using default templates. This paper proposes a method for automatically creating in-game characters of players according to an input face photo. We formulate the above "artistic creation" process under a facial similarity measurement and parameter searching paradigm by solving an optimization problem over a large set of physically meaningful facial parameters. To effectively minimize the distance between the created face and the real one, two loss functions, i.e. a "discriminative loss" and a "facial content loss", are specifically designed. As the rendering process of a game engine is not differentiable, a generative network is further introduced as an "imitator" to imitate the physical behavior of the game engine so that the proposed method can be implemented under a neural style transfer framework and the parameters can be optimized by gradient descent. Experimental results demonstrate that our method achieves a high degree of generation similarity between the input face photo and the created in-game character in terms of both global appearance and local details. Our method has been deployed in a new game last year and has now been used by players over 1 million times.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Shi_2019_ICCV,
author = {Shi, Tianyang and Yuan, Yi and Fan, Changjie and Zou, Zhengxia and Shi, Zhenwei and Liu, Yong},
title = {Face-to-Parameter Translation for Game Character Auto-Creation},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}