Explicit Shape Encoding for Real-Time Instance Segmentation

Wenqiang Xu, Haiyang Wang, Fubo Qi, Cewu Lu; The IEEE International Conference on Computer Vision (ICCV), 2019, pp. 5168-5177

Abstract


In this paper, we propose a novel top-down instance segmentation framework based on explicit shape encoding, named ESE-Seg. It largely reduces the computational consumption of the instance segmentation by explicitly decoding the multiple object shapes with tensor operations, thus performs the instance segmentation at almost the same speed as the object detection. ESE-Seg is based on a novel shape signature Inner-center Radius (IR), Chebyshev polynomial fitting and the strong modern object detectors. ESE-Seg with YOLOv3 outperforms the Mask R-CNN on Pascal VOC 2012 at mAP^r@0.5 while 7 times faster.

Related Material


[pdf]
[bibtex]
@InProceedings{Xu_2019_ICCV,
author = {Xu, Wenqiang and Wang, Haiyang and Qi, Fubo and Lu, Cewu},
title = {Explicit Shape Encoding for Real-Time Instance Segmentation},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}