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Abstract

We consider general discrete Markov Random

Fields (MRFs) with additional bottleneck potentials which

penalize the maximum (instead of the sum) over local

potential value taken by the MRF-assignment. Bottleneck po-

tentials or analogous constructions have been considered in

(i) combinatorial optimization (e.g. bottleneck shortest path

problem, the minimum bottleneck spanning tree problem,

bottleneck function minimization in greedoids), (ii) inverse

problems with L∞-norm regularization, and (iii) valued

constraint satisfaction on the (min,max)-pre-semirings.

Bottleneck potentials for general discrete MRFs are a

natural generalization of the above direction of modeling

work to Maximum-A-Posteriori (MAP) inference in MRFs.

To this end, we propose MRFs whose objective consists of

two parts: terms that factorize according to (i) (min,+),
i.e. potentials as in plain MRFs, and (ii) (min,max),
i.e. bottleneck potentials. To solve the ensuing inference

problem, we propose high-quality relaxations and efficient

algorithms for solving them. We empirically show efficacy

of our approach on large scale seismic horizon tracking

problems.

1. Introduction

In the field of computer vision MRFs have found many

applications such as image segmentation, denoising, opti-

cal flow, 3D reconstruction and many more, see [16] for a

non-exhaustive overview of problems and algorithms. The

above application scenarios are modelled well as a sum

of unary/pairwise/ternary/. . . potentials on the underlying

graphical structure. More generally, whenever the error of fit-

ting a model to data is captured by local terms, the objective

can factorize into a sum of local error terms. However, such

objectives are not always appropriate. In some computer vi-

sion applications, a single error can entail subsequent errors,

rendering the solution useless and local terms are unable

to properly penalize this. Prominent examples are tracking

problems [44, 13, 28, 10], where making a single error and

following a wrong track results in low accuracy nonetheless.

In inverse problems, L∞-norm regularization penalizes the

maximum deviation from the fitted model and is appropriate

e.g. for some types of group sparsity [27, 23, 24]. In all

of the above scenarios global potentials, which penalize the

maximum value assignment w.r.t. a given set of local costs

are the appropriate choice. We call this maximum value a

bottleneck and the aim is to find a configuration such that

its bottleneck has minimum cost. Formally, optimizing a

bottleneck objective can be written as

min
x∈X

(

max
i
{ψi · xi}

)

(1)

where X ⊂ R
n is the space of feasible elements of the

optimization problem and ψ ∈ R
n is a real valued vector.

Additionally, the bottleneck objective can be written as the

infinity norm ‖ψ ⊙ x‖∞, where ⊙ is the Hadamard product.

2. Related work

Bottleneck-type objectives occur throughout many sub-

fields of mathematical programming. The optimization prob-

lems are also often called min-max problems.

Bottleneck potentials in MRFs. The case of pairwise bi-

nary MRFs with bottleneck potentials has been addressed

in [32] and has been applied to image segmentation. As

noted by the authors of [32], incorporating a bottleneck term

gives better segment boundaries and resolves ‘small cuts’

(or shrinking bias) of graph cut [6]. In [8] the authors inter-

pret Lp-norm regularization for discrete labeling problems

and for p ∈ [1,∞) as MAP-inference in MRFs and pro-

pose approximating the bottleneck potential corresponding

to L∞ via a high value of p. In [18] a more general class of

MAP-inference with higher order costs were proposed which

include the bottleneck potentials we investigate. In [25] the

authors propose a model that can be specialized to bottleneck

costs with linear distances and give a primal heuristic for

solving it.

Furthermore, labeling problems containing only bot-

tleneck objectives were considered in [37, 33, 11, 29],

where [11, 29] devised algorithms for special cases of the

pure min-max labeling problem, and [37, 33] devised mes-

sage passing schemes with application in parallel machine

scheduling.

In contrast to previous works [8, 32, 37, 33, 11, 29] we

investigate the mixed problem where ordinary and bottleneck
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potentials are both present in the same inference problem.

Unlike [32] we allow arbitrary MRFs. Also unlike the al-

gorithm in [8, 25], our algorithms are based on a linear pro-

gramming relaxation resulting in a more rigorous approach.

Lastly, in comparison to [18] we propose a stronger relax-

ation (theirs corresponds to 1) and an algorithm that scales

to large problem sizes.

Combinatorial bottleneck optimization problems. Many

classical optimization problems have bottleneck counter-

parts, e.g. bottleneck shortest paths [15], bottleneck span-

ning trees [12] and bottleneck function optimization in gree-

doids [22]. The above works consider the case of bottleneck

potential only. More similar to our work is the mixed case of

linear and bottleneck costs, as investigated for the shortest

and bottleneck path problem in [31].

L∞-norm regularization in inverse problems. For in-

verse problems minx∈Rn‖Ax− b‖p with uniform noise, the

appropriate choice of norm is p = ∞ [5][Chapter 7.1.1].

Extensions of this basic L∞-norm are used in [27] for multi-

task learning and in [23] for the multi-task lasso. More gen-

erally, mixed norms with L∞-norms are useful for problems

where group sparsity is desirable. Proximal [27], block coor-

dinate descent [23] as well as network flow techniques [24]

have been proposed for numerical optimization of such prob-

lems.

Semiring-based constraint satisfaction. In semiring-

based constraint satisfaction problems the goal is to com-

pute
⊕

xV ∈X

⊙

A∈E fA(xA), where X is a space of la-

bellings on a node set V , E is collection of subsets of

V , and fA are functions that depend only on nodes in

the subset A [41, 42, 17, 3, 2]. Popular choices for the

pair (
⊕
,
⊙

) is the (min,+)-semiring which corresponds to

MAP-inference and the (+,×)-semiring which corresponds

to computing the partition function. In contrast to the above

semirings, the algebra corresponding to bottleneck potentials

(min,max) is only a pre-semiring (the distributive law does

not hold) and hence classical arc consistency algorithms as

discussed in [41, 42] are not applicable and specialized meth-

ods are needed. For an in-depth study of the (min,max)-
pre-semiring we refer to [9]. Our case however does not

completely fit into (pre-)semiring based constraint satisfac-

tion setting, since we are concerned with the mixed case in

which both the (min,+)-semiring and the (min,max)-pre-

semiring occur together in a single optimization problem.

Applications in horizon tracking. The seismic horizon

tracking problem, i.e. identifying borders between layers of

various types of rock beds, has been addressed in [44, 13, 43,

39] from the computational perspective. The authors in [44]

use a greedy method inspired by the minimum spanning tree

problem to that end. In [13] the authors propose to solve a

shortest path problem to track seismic horizons along a 2-D

sections of the original 3-D volume. In [43, 39] the authors

set up linear equations to solve the horizon tracking problem.

Most similar to our work is the minimum spanning tree

inspired approach of [44]. In contrast to [44], we consider

a rigorously defined optimization problem for which we

develop a principled LP-based approach instead of greed-

ily selecting solutions. Conceptually, the 2-D shortest path

method [13] is also similar to ours, however it cannot be ex-

tended to the 3-D setting we are interested in. Moreover, we

allow for a more sophisticated objective function than [13].

Methods of [43, 39] do not use optimization at all but solve

linear systems and require more user intervention.

Contribution & organization. Section 3 introduces bot-

tleneck potentials and their non-linear generalizations for

general discrete MRFs. We also consider the mixed problem

of MAP-inference for a combination of ordinary MRF-costs

w.r.t. the (min,+)-semiring and bottleneck potentials. In

Section 4 we derive special algorithms to solve the prob-

lem for chain graphs via a dynamic shortest path method,

and for graphs without pairwise interactions via an efficient

enumerative procedure. Combining these two special cases,

we derive a high-quality relaxation for the case of general

graphs. To solve this relaxation, we propose an efficient dual

decomposition algorithm. In Section 5 we show empirically

that our approach results in a scalable algorithm that gives

improved accuracy on seismic horizon tracking as compared

to MAP-inference in ordinary MRFs and a state-of-the-art

heuristic.

Code and datasets are available at https://github.

com/LPMP/LPMP.

3. MRFs with bottleneck potentials

First, we will review the classical problem of Maximum-

A-Posteriori (MAP) inference in Markov Random Fields

(MRF). Second, we will introduce the bottleneck labeling

problem which extends MAP-MRF by additional bottleneck

term that penalize the maximum value of potentials taken in

an assignment (as opposed to the sum for MRFs).

3.1. Markov Random Fields:

A graph will be a tupleG = (V,E) with undirected edges

E ⊂

(
V
2

)

. To each node i ∈ V a label set Xi is associated.

To each node i ∈ V a unary potential θi : Xi → R is

associated, and to each edge ij ∈ E a pairwise potential

θij : Xi × Xj → R. We will call XV =
∏

i∈V Xi the label

space and x ∈ X a labeling. For subsets U ⊂ V we define

XU =
∏

i∈U Xi, analogously we refer to labels xU ∈ XU .

In particular, xi refers to a node labeling and xij = (xi, xj)
to an edge labeling. A tuple (G,X ,θ) consisting of a graph,

corresponding label space and potentials is called a Markov

Random Field (MRFs). The problem

min
x∈X

θ(x), θ(x) :=
∑

i∈V

θi(xi) +
∑

ij∈E

θij(xij) (2)
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is called the Maximum-A-Posteriori (MAP) inference prob-

lem in MRFs.

Local Polytope Relaxation: We use the over-complete

representation to obtain a linear programming relaxation

of the optimization problem (2). For i ∈ V we asso-

ciate the k-th label from Xi with one-hot encoding ek =
(0, . . . , 0, 1

︸︷︷︸

k

, 0, . . . 0) which is a unit vector of length |Xi|

with a 1 at the k-th location. In other words, we can write

Xi = {e1, e2, . . . e|Xi|} ∀i ∈ V . Analogously, we can write

Xij = {e1, . . . , e|Xij |} ∀ij ∈ E. To obtain a convex relax-

ation, we define unary marginals as µi ∈ convXi, i ∈ V ,

and pairwise marginals as µij ∈ convXij , ij ∈ E. We

couple unary and pairwise marginals together to obtain the

local polytope relaxation [40].

Λ =

{

µ

∣
∣
∣
∣
∣

µi(xi) =
∑

xj∈Xj

µij(xij), ∀ij ∈ E, xi ∈ Xi

µf ∈ convXf , ∀f ∈ V ∪ E

}

(3)

With the local polytope we can relax the problem of MAP-

inference in MRFs (2) as:

min
µ∈Λ

∑

i∈V

〈 θi, µi 〉+
∑

ij∈E

〈 θij , µij 〉 (4)

Note that the relaxation (4) subject to constraint (3) is tight

for some graphs such as trees and for special families of cost

functions including different forms of submodularity [20].

3.2. Bottleneck labeling problem:

Given an MRF, we associate to it a second set of poten-

tials, which we call bottleneck potentials. As opposed to

MRF, however, the corresponding assignment cost is not

given by the sum of individual potential values but by their

maximum. The goal of inference in a pure bottleneck label-

ing problems (i.e. with all zero MRF potentials) is thus to

find a labeling such that the maximum bottleneck potential

value taken by the labeling is minimal.

Definition 1 (Bottleneck labeling problem). Let an MRF

be given. Additionally, let unary bottleneck potentials φi :
Xi → R ∀i ∈ V and pairwise bottleneck potentials φij :
Xi ×Xj → R ∀ij ∈ E are also given. We call the set of all

possible values taken by bottleneck potentials as bottleneck

values, i.e.

B = {φf (xf ) : f ∈ V ∪ E, xf ∈ Xf} . (5)

Let bottleneck costs ζ : B → R be given. The bottleneck

labeling problem is defined as

min
x∈X ,b∈B

θ(x) + ζ(b) (6a)

s.t. φf (xf ) ≤ b ∀f ∈ V ∪ E (6b)

and θ(x) is defined in (2).

It is straightforward to adapt our work to the case of mul-

tiple bottlenecks and triplet/quadrupelt/. . . potentials. How-

ever we focus on models with only a single bottleneck and

pairwise potentials for simplicity.

A special case of the problem (6) was considered by [32]

where the authors only allow binary labels, special form

of MRF costs and ζ(b) = b. Additionally, heuristics for

extending to the multi-label case were given in [8]. Below

we propose exact algorithms for multi-label chain graphs

and an LP-relaxation for general graphs.

Example. In the special case when ζ(b) = b and MRF

costs are zero i.e. θ = 0 then the problem reduces to a pure

bottleneck labeling problem as:

min
x∈X

max
f∈V ∪E

(φf (xf )) (7)

Note that if we are know the optimal bottleneck value b∗

in B, then the bottleneck labeling problem can be reduced to

the MAP-inference problem in MRFs. This reduction can be

done by setting the unary and pairwise MRF costs to∞ for

the labelings which have bottleneck potentials greater than

the optimal value b∗. i.e.

θe(xe) :=∞ ∀e, xe : φe(xe) > b∗ (8)

Then, the constraints (6b) will be automatically satisfied by

a feasible solution of the MAP-inference problem.

4. Algorithms:

In this section, algorithms for solving the bottleneck label-

ing problem are proposed. We first present efficient and exact

algorithms for edge-free graphs and chain graphs. Later, we

will use these two algorithms for solving the problem on

general graphs using dual-decomposition. The algorithms

for edge-free graphs and chains are designed with the end

goal of using them inside dual decomposition for general

graphs and therefore contain extra steps.

4.1. Bottleneck labeling with unary potentials:

Assume that the graphical model does not contain any

edges i.e.E = ∅, so only unary potentials need to be consid-

ered. The problem (6) in this case can be efficiently solved

with Algorithm unary bottleneck.

Algorithm unary bottleneck enumerates all bottleneck val-

ues in ascending order. For every bottleneck value b, an

optimal node labeling can be found by choosing for each

node i the best label w.r.t. potentials θi that is feasible to

bottleneck constraints (6b). The costs of such labelings are

stored in M . Updating the best node labeling between con-

secutive bottleneck values can be done by only checking the

nodes for which (6b) has changed the feasible set. Finally,

the optimum bottleneck value can be computed by

(b∗, c∗) = argmin
(b,c)∈M

[c+ ζ(b)] (9)
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unary bottleneck: bottleneck labeling on unary graph

Data:

MRF without edges: (G = (V,∅),X , {θi}i∈V ),
Bottleneck potentials: {φi}i∈V .

Result: Costs of labelings:

M =

{

(b, c) :
c = minx

∑

i∈V θi(xi),
φi(xi) ≤ b ∀i ∈ V

}

.

// Merge labels of all nodes in Θ:

1 Θ = {(i, xi) : i ∈ V, xi ∈ Xi};
2 Sort Θ according to φi(xi) ;

3 c = 0, l =∞ ∈ R
|V |, S = ∅, M = ∅;

4 for (i, xi) ∈ Θ in ascending order do

5 if i /∈ S then

6 S = S ∪ {i};
7 c = c+ θi(xi);
8 li = θi(xi);

9 end

10 if θi(xi) < li then

11 c = c− li + θi(xi);
12 li = θi(xi);

13 end

14 if S = V then

15 M =M ∪ {(φi(xi), c)};
16 end

17 end

Once the optimal bottleneck value b∗ is computed, the prob-

lem can be reduced to inference in MRF by disallowing the

configurations which have bottleneck potentials greater than

b∗ as mentioned in (8).

Proposition 1. The runtime of Algorithm unary bottleneck

is O(L logL+ L) where L =
∑

i∈V |Xi|

The most expensive operation in Algo-

rithm unary bottleneck is sorting. However, the

sorting can be reused when the algorithm is run multiple

times with varying linear potentials θ, which is the case in

our dual decomposition approach for general graphs.

4.2. Bottleneck labeling problem on chains:

Assume V = [n] andE = {(1, 2), (2, 3), . . . , (n−1, n)}
is a chain. Even though the relaxation over the local poly-

tope for inference in chains is tight for pairwise MRFs, in-

troducing the bottleneck potential (as also done in [18]) de-

stroys this property which is demonstrated in the Appendix

in Lemma 1. Therefore, we propose an efficient algorithm to

solve the bottleneck labeling problem (6) exactly on chains.

First, we note that the MAP-MRF problem (2) can be mod-

eled through a shortest path problem in a directed acyclic

graph. Figure 1 illustrates the construction for the case of

n = 3. We treat each label xi of a variable i in V in the

chain as a pair of nodes xi, and xi in the shortest path di-

graph D = (W,A). Each unary cost θi(xi) becomes an arc

cost for (xi, xi). Each pairwise cost θij(xi, xj) becomes an

arc cost (xi, xj). The source and sink nodes s, t are con-

nected with the labels of first and last node of the graphical

model resp. with zero costs for modeling the shortest path

problem. Algorithm chain to dag in the Appendix gives the

general construction.

The shortest s, t-path P in graph D having cost σ(P ) cor-

responds to an optimum labeling for θ(x) from (6) in the

chain graphical model G.

u

θu

v

θv

w

θw

s t

θuv θvw

Figure 1. Shortest path network for a chain MRF with nodes

{u, v, w} and 3 labels for each node. The state xi of each node

i ∈ V represented by has been duplicated to xi represented by

to introduce unary potentials as arc costs. Text below the arcs

represent their costs. Missing arcs have cost ∞.

Algorithm chain bottleneck uses the constructed di-

rected acyclic graph to solve the bottleneck labeling prob-

lem (6) on chain MRF by an iterative procedure. For each

bottleneck thresholds b in B, the shortest path is found such

that only those edges are used whose bottleneck potentials

are within the threshold. This way a matrix M of all pos-

sible pairs of bottleneck values b and shortest path costs c
is computed. The optimal bottleneck value b∗ can be then

found by (9).

Naively implementing Algorithm chain bottleneck by com-

puting a shortest path from scratch in each iteration of the

loop will result in high complexity. Note that when iterating

over bottleneck threshold values in ascending order, exactly

one edge is added per iteration. Therefore, dynamic shortest

path algorithms can be used for recomputing shortest paths

more efficiently. Additionally, since the graph D is directed

and acyclic, the shortest path in each iteration can be found

in linear time by breadth-first traversal [7]. These improve-

ments are detailed in Algorithm dsp chain in the Appendix.

Proposition 2. The worst case run-time of Algo-

rithm chain bottleneck is O(|A|2) where, A is the arc-set

in underlying graph D = (W,A).

While the worst-case runtime of chain bottleneck is

quadratic in the number of edges of the underlying shortest

path graph, the average case runtime is better, since not for

every edge a new shortest path needs to be computed and

often a shortest path computation can reuse previous results

for speedup. Moreover, the sorting operation on line 3 can

be re-used similar to Algorithm unary bottleneck.
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chain bottleneck: bottleneck labeling on chain graphs

Data: Chain MRF: R = ((V,E),X , {θf}f∈V ∪E),
Bottleneck potentials: {φf (xf )}f∈V ∪E ,

Result:

M =

{

(b, c) :
c = minx

∑

f∈F θf (xf ),

φf (xf ) ≤ b ∀f ∈ V ∪ E

}

// Represent chain as DAG:

1 (D = (W,A),σ,ω, s, t)← chain to dag(R,φ) ;

// Shortest path distances:

2 d(s) := 0, d(w) :=∞, ∀w ∈W \ {s};
3 Sort A according to values ω ;

4 for (ni, nj) ∈ A in ascending order do

5 A′ = (ni, nj) ∪A
′ ;

// Update d w.r.t arc-costs σ:

6 d = dsp chain((W,A′), d,σ, (ni, nj)) ;

// Check for s-t path:

7 if d(t) <∞ then
// Store path costs:

8 M =M ∪ {(ω(ni, nj), d(t))};

9 end

10 end

Remark 1. If we have a pure bottleneck labeling problem

without the MRF potentials (7) then the problem can be

solved in linear-time by sorting the bottleneck weights and

halving the number of edges by the median edge as men-

tioned in [15]. The problem we consider is more general

and needs to account for the MRF potentials.

Remark 2. The chain bottleneck labeling problem can also

be solved for linear bottleneck cost ζ(x) = x by the method

from [31]. However, the method from [31] is not polynomial

w.r.t. bottleneck values B but requires them to be small inte-

gers to be efficient, making it unsuitable for our purposes.

Remark 3 (Bottleneck labeling on trees). The dynamic

shortest path algorithm can be modified to work on trees as

well, where we replace shortest path computations by belief

propagation. For clarity of presentation we have chosen to

restrict ourselves to chains.

4.3. Relaxation for the bottleneck labeling problem
on arbitrary graphs:

Since MAP-MRF is NP-hard and the bottleneck labeling

problem generalizes it, we cannot hope to obtain an efficient

exact algorithm for the general case. As was done for MAP-

MRF [40, 21, 34], we approach the general case with a La-

grangian decomposition into tractable subproblems. To this

end, we decompose the underlying MRF problem into trees,

which can be solved via dynamic programming. The bottle-

neck subproblem is decomposed into a number of bottleneck

chain labeling problems. To account for the global bottle-

neck term, these bottleneck chain problems are connected

through a unary bottleneck labeling problem defined on a

higher level graph. We use Algorithms chain bottleneck

and unary bottleneck as subroutines to solve the bottleneck

decomposition. An example of our decomposition can be

seen in Figure 2.

To account for the MRF-inference problem, we cover the

graph G by trees G1 = (V1, E1), . . . , (Vh, Eh). For the bot-

tleneck labeling problem we cover the graph G by chains

(trees) G1 = (V1,E1), . . . ,Gk = (Vk,Ek). For the decom-

position we introduce variables xt to specify the labeling of

the MRF subproblem for graph Gt, and variables yl for the

chain bottleneck labeling subproblems defined for graph Gl.

We propose the following overall decomposition:

min
x,{xt},{yl},

b∈B

θ(x) + ζ(b) (10a)

s.t. xtf = xf ∀f ∈ Vt ∪ Et, t ∈ [h] (10b)

ylf = xf ∀f ∈ Vl ∪ El, l ∈ [k] (10c)

xt ∈ XVt
∀t ∈ [h] (10d)

yl ∈ XVl
∀l ∈ [k] (10e)

φf (y
l
f ) ≤ b ∀f ∈ Vl ∪ El, l ∈ [k] (10f)

We constrain the variables for MRF tree subproblems and

chain bottleneck subproblems to be consistent via (10b)

and (10c). The labelings on chains (y) are required to be

feasible with respect to the bottleneck value b via (10f).

To obtain a tractable optimization problem, we dualize the

constraints (10b) and (10c) using dual variables λte and ηle
respectively. We keep rest of the constraints and denote the

feasible variables yl for chain l w.r.t constraints (10e), (10f)

by the set Y l(b) as:

Y l(b) =
{
yl ∈ XVl

∣
∣φf (y

l
f ) ≤ b, ∀f ∈ Vl ∪ El

}
(11)

The dual problem is:

max
λ,η




∑

t∈[h]

Et(λt) + J(η)



 (12a)

s.t.
∑

t∈[h]:
f∈Vt∪Et

λtf +
∑

l∈[k]:
f∈Vl∪El

ηlf = θf ∀f ∈ V ∪ E (12b)

Where Et(λt) and J(η) are defined as:

Et(λt) := min
xt∈XVt

〈λt,xt 〉 (13a)

J(η) := min
b∈B



ζ(b) +
∑

l∈[k]

min
yl∈Y l(b)

〈ηl,yl 〉



 (13b)

Evaluating Et(·) amounts to solving a MAP-MRF problem

on a tree. Evaluating J(·) corresponds to computing for each
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x2 x3

x1 x4

x2 x3

x1 x4

y2 y3

y1 y4

x1

2 x1

3

x1

1

x2

3

x2

4x2

1

y1

3

y1

4

y2

2

y2

1

y3

1 y3

4

y4

2 y4

3

Figure 2. Illustration of the decomposition (10) for the bottleneck labeling problem. Black squares represent MRF-potentials θij . Orange

diamonds stand for bottleneck potentials φij . The blue star stands for bottleneck costs ζ. The problem is decomposed into a MRF

part (upper layer) and a bottleneck part (lower layer). In turn, the MRF-layer is decomposed into trees and the bottleneck part into chains.

Bottleneck chains are connected by a global bottleneck term .

bottleneck value b the corresponding minimal assignment

from the set Y l(b) for all chains l in [k], and then choosing

a bottleneck value such that the sum over all chain subprob-

lems is minimal.

The dual problem (12a) is a non-smooth concave maximiza-

tion problem. Evaluating Et(·) and J(·) gives supergradi-

ents of (12a) which can be used in subgradient based solvers

(e.g. subgradient descent, bundle methods).

Finding Et(λt): Each MRF tree subproblem Et(λt) can

be solved independently using dynamic programming to get

the optimal labeling x̄t.

Finding J(η): J(η) is solved by Algo-

rithm chain decomp. It proceeds as follows:

1. Build a higher level graph H = ([k],∅) and represent

each chain in [k] as a node in H . Populate the potentials

Ml for all nodes l ∈ [k] by going through all b ∈ B using

Algorithm chain bottleneck (lines 1-8).

2. Use Algorithm unary bottleneck to find an optimal

bottleneck value b∗ of b ∈ B in graph H (lines 9-10).

3. Find optimal labelings y for each chain subproblem

by disallowing the configurations having bottleneck values

more than b∗. (lines 11- 18).

We optimize the Lagrange multipliers in the dual prob-

lem (12a) subject to constraints 12b with the proximal bundle

method [35]. After solving the dual problem we have found a

valid reparameterization of the MRF potentials (12b) which

maximizes the lower bound. This lower bound can be used

as a measure of the quality of the primal solution and helps

in rounding a primal solution.

4.4. Primal rounding

For recovering the primal solution through rounding on

MRF subproblems, we use the approach of [19] by treating

the dual optimal values of λ as MRF potentials. Additional

details on how to best choose λ and more details are given

in Section 6.2 in the Appendix.

We also considered using message passing instead of sub-

gradient ascent by computing the min-marginals through the

chain decomp: bottleneck labeling on chain decompo-

sition of general graph

Data: Chain MRFs: {Rl = (Gl,Xl,η
l)}l∈[k],

Bottleneck potentials on chains: {φl}l∈[k]

Result: Optimal solution {yl}l∈[k] and b∗ for J(η)
1 H ← ([k],∅) // higher level graph

2 for l ∈ [k] do
// Populate potentials for node l:

3 Ml ← chain bottleneck(Rl,φ
l);

4 for ∀(b, c) ∈Ml do

5 (Φl(b), Θl(b)) = (b, c) // Bott., MRF pots.

6 Yl = Yl ∪ b // Add b as a label for l

7 end

8 end

// Solve graph H:

9 M ← unary bottleneck((H,Y,Θ),Φ);
10 (b∗, c∗) = argmin(b,c)∈M ζ(b) + c;

// Optimal labeling of chains:

11 for l ∈ [k] do

12 (Dl = (Wl,Al),σ
l,ωl)← chain to dag(Rl,φ

l)
for (ni, nj) ∈ Al do

13 if ωl(ni, nj) > b∗ then

14 σl(ni, nj)←∞ // mark as infeasible

15 end

16 end

17 yl = shortest s, t-path in (Wl, Al,σ
l) ;

18 end

procedure used in primal rounding. However, our strong

relaxation does not easily allow an efficient way for min-

marginal computation. Specifically, for the subproblem J(η)
in (13b) it is hard to reuse computations to recalculate min-

marginals efficiently for different variables, making any mes-

sage passing approach slow. Rounding is only executed once

at the end, hence very efficient min-marginal computation is

of lesser concern.
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5. Experiments

Figure 3. Exemplary failure case for conventional MRF (- in

dotted orange) in seismic horizon tracking problem as compared

to MRF with an additional bottleneck potential (- in solid green).

(+) indicates the seed. The MRF solution makes one local error

with high cost and starts tracking another smoother layer leading to

an overall lower cost solution. A bottleneck term penalizes such

high cost errors and results in the correct track.

We apply our proposed technique for tracking layers (hori-

zons) in open source sub-surface volumetric data (a.k.a. seis-

mic volumes). Accurate tracking of horizons is one of the

most important problems in seismic interpretation for geo-

physical applications. See Fig. 3 for an illustration of a

cross-section of a typical seismic volume.

Popular greedy approaches such as [44] rely on tracking

horizons by establishing correspondences between nearby

points that lie on the same horizon with high probability. As

such they are prone to fall into local optima.

On the other hand a natural option to track horizons is to

state the problem as MAP-inference in MRFs for which high-

quality solvers exist that are less sensitive to local optimal.

(a) Ground-truth (b) MST (MAD=1.6212)

(c) MRF (MAD=7.1435) (d) B-MRF (MAD=0.8881)

Figure 4. Comparison of results for horizon surface

F3-Netherlands-I, colors indicate depth of the sur-

face. Mean absolute deviation (MAD) scores are used as error

metric. The MRF solution is piece-wise smooth but tracks wrong

layers, MST is incorrect in the top-right and lower-left region, while

our approach of B-MRF has least errors. Best viewed in color.

However, the cost structure of MRFs is not adequate for our

problem. Specifically, the MRF energy is composed of a sum

of local terms defined over nodes and edges of the graphical

model that account for similarity between seed and adjacent

nodes respectively. For the cost function it may be more ad-

vantageous to track a wrong horizon if it is more self-similar

and pay a higher dissimilarity cost at a few locations rather

than follow the correct horizon if it is harder to follow. This

problem is exacerbated by the typically rather weak unary

costs (see below). For an illustration of this behaviour we

refer to Figure 3.

We argue that the bottleneck potential remedies this short-

coming of MAP-MRF, while preserving its advantages. In

contrast to unary and pairwise potentials of MRFs, the bot-

tleneck potential penalizes a single large discontinuity in the

tracking that comes from jumping between layers more than

multiple small discontinuities stemming from a hard to track

horizon. As such it prefers to follow a rugged horizon with

no big jump over a single large jump followed by an easy to

track horizon.

Further computational challenges in horizon tracking are:

• Nearby rock layers look very similar to the layer in

consideration, due to which tracking algorithms can easily

jump to a wrong layer.

• Due to structural deformations in the subsurface envi-

ronment, rock layers can have discontinuities.

• The appearance of a horizon can vary at different loca-

tions. Nearby horizon layers can bifurcate or disappear. This

makes estimation of reliable cost terms for our model (6)

difficult.

• The size of a seismic survey can be huge. Some open-

source seismic volumes cover a 3000km2 survey area. The

corresponding input data has a size of 100GB.

• Lack of established open-source ground truth makes

the evaluation procedure and learning of parameters difficult.

Seismic horizon tracking formulation: Our input are 3-D

seismic volumes of sizeN1×N2×D, whereD corresponds

to the depth axis and N1, N2 to x,y-axes resp. For each loca-

tion (x, y) ∈ [N1] × [N2] in the volume we seek to assign

a depth value z ∈ [D]. We formalize this as searching for a

labeling function z : [N1]× [N2]→ [D].
For computational experiments we used publicly available

seismic volumes [36]. Due to lack of available ground

truth, we have selected three volumes (F3 Netherlands,

Opunake-3D, Waka-3D) and tracked 11 horizons by

hand with the commercial seismic interpretation soft-

ware [14]. Annotation took two days of work of an ex-

perienced seismic interpreter.

Matching costs: In order to track horizons, established

state-of-the-art tracking algorithms [44, 43, 13] rely on com-

puting similarity scores between patches that might or might

not lie on the same horizon. This is traditionally done using

hand-crafted features that rely on cross-correlation or opti-
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F3-Netherlands Opunake-3D Waka-3D

I II* III* IV V* VI I* II I II* III* IV

Instance sizes

|V | 263K 153K 362K 153K 231K 101K 443K 2965K 614K 366K 601K 614K∑

i∈V

|Xi| 3271K 1768K 4394K 1422K 1896K 944K 406K 2630K 3524K 2020K 3110K 3646K

Mean absolute deviation from ground truth

MST 1.6212 1.1245 1.6542 0.1283 0.1088 1.5319 0.4930 0.4596 2.0060 0.2759 0.9457 1.6108

MRF 7.1435 6.2105 3.2169 0.1540 0.0896 2.4498 0.4786 0.9002 1.4073 0.0221 0.4245 1.2388

B-MRF 0.8881 0.2644 0.0889 0.0463 0.0894 1.6049 0.4887 0.4209 1.1855 0.0116 0.4135 1.0377

Runtimes (seconds)

MST 14 7 19 3 6 7 8 8 8 5 7 8

MRF 673 139 931 62 65 33 114 522 740 22 687 781

B-MRF 1820 1374 3108 1609 1554 1322 2979 2554 6548 2402 7738 8158

Table 1. Top: Instance sizes of horizon surfaces. |V | represents total number of nodes and
∑

i∈V

|Xi| the total number of labels in each instance.

Middle: Mean absolute deviation from the ground-truth. Bottom: Runtimes using MST [44], TRWS [19] solver for MRF, and our method

B-MRF. * marks the horizon surfaces used to train the CNN for computing patch similarity (14).

cal flow. We opt for a learning-based approach following

the great success of CNN-based architectures for computing

patch similarity [45, 38]. Specifically, we extend the archi-

tecture of the 2-D patch similarity CNN [45] to efficiently

deal with the 3-D structure. CNN architecture and the pro-

cedure for training is mentioned in Figure 6 and Section 6.1

in Appendix. We train two CNNs to compute matching

probabilities between depth labels zij = zi, zj of nodes

i = (xi, yi), j = (xj , yj). The two neural networks CNNn

and CNNf compute matching probabilities between adjacent

and non-adjacent nodes respectively:

pij(zij) = CNNn|f (Ii(zi), Ij(zj)) ∈ [0, 1] (14)

In (14) Ik(zk), is a two channel image of size 63× 63 cen-

tered around (xk, yk, zk).
Graph construction: We rephrase computing a depth la-

beling as labeling nodes in a graph. Consider the grid graph

G = (V,E) with nodes V = [N1] × [N2] corresponding

to points on x and y axes of the seismic volume. Edges E
are given by a 4−neighborhood induced by the (x, y)-grid.

For each node v ∈ V the label space is Xv = [D]. A depth

labeling thus corresponds to a node labeling of V . We com-

pute unary θv : [D] → R, v ∈ V and pairwise potentials

θuv : [D] × [D] → R, uv ∈ E based on the patch match-

ing costs computed in (14). Further details about unary and

pairwise potentials can be found in Section 6.1 in Appendix.

Algorithms: We compare our method with a plain MRF,

and a state-of-the-art heuristic for horizon tracking based on

a variation of minimum spanning tree (MST) problem.

• MST: The horizon tracking approach of [44] is

a greedy approach inspired by Borůvka’s algorithm for

MST [4]. It starts by marking the nodes where the seed

labels are given and iteratively marks assigns label to the

adjacent node that contributes minimal cost w.r.t. unary and

pairwise potentials.

• MRF: We solve MAP-MRF onG = (V,E) with unary

and pairwise potentials θ from above with TRWS [19].

• B-MRF: We additionally include a bottleneck term on

pairwise bottleneck potentials (19). We solve the problem

with the algorithm from Section 4.3, and round a primal

solution with the procedure from Section 4.4.

Results: Table 1 lists the mean absolute deviation (MAD)
of different methods for tracking horizon surfaces. MAD is

computed as
‖d−d̃‖1

N1·N2

i.e., the L1 norm of the difference in

tracked surface d̃ and the ground-truth d, normalized by the
dimensions N1, N2 of the surface.
From table 1 we see that our method B-MRF outperforms
MRF and MST by a wide margin on most problems. The
resulting depth surfaces can be seen in Figure 4, and the
rest in the Appendix. Inspecting the results we see that MRF
finds piece-wise continuous assignments not necessarily cor-
responding to the correct surface but preferring easy to track
ones. On the other hand, MST often follows the horizon quite
well but as soon as it marks a pixel wrongly, it often can-
not recover due to its greedy nature. Our method addresses
these shortcomings to a large degree. The resulting surfaces
are smooth and track the correct surface to a larger extent
than both MST and MRF by favoring piece-wise smooth re-
gions due to the ordinary unary and pairwise MRF costs, yet
following tracks that do not make incorrect jumps due to
the additional bottleneck costs. Since we optimize a global
energy by a convex relaxation method, we suffer less from
poor local optimal than MST. On the other hand, the more
expressive optimization model and advanced algorithms that
allow B-MRF to obtain higher accuracy also lead to higher
runtimes.
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Iñesta, Adnan Amin, and Pavel Pudil, editors, Advances

in Pattern Recognition, pages 462–471, Berlin, Heidelberg,

2000. Springer Berlin Heidelberg. 1

[12] Harold N Gabow and Robert E Tarjan. Algorithms for two

bottleneck optimization problems. Journal of Algorithms,

9(3):411 – 417, 1988. 2

[13] Eliana L. Goldner, Cristina N. Vasconcelos, Pedro Mario

Silva, and Marcelo Gattass. A shortest path algorithm for 2D

seismic horizon tracking. In Proceedings of the 30th Annual

ACM Symposium on Applied Computing, SAC ’15, pages

80–85, New York, NY, USA, 2015. ACM. 1, 2, 7, 12

[14] GVERSE Geophysics 2017.3. Lmkr. http://www.lmkr.

com/gverse/gverse-geophysics/. 7

[15] Volker Kaibel and Matthias A. F. Peinhardt. On the bottleneck

shortest path problem, 2006. 2, 5

[16] Jörg H. Kappes, Björn Andres, Fred A. Hamprecht, Christoph
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