
Noise Flow: Noise Modeling with Conditional Normalizing Flows

Abdelrahman Abdelhamed1,2

1York University

Marcus A. Brubaker2

2Borealis AI

Michael S. Brown1,3

3Samsung AI Center, Toronto

{kamel,mbrown}@eecs.yorku.ca, marcus.brubaker@borealisai.com

Abstract

Modeling and synthesizing image noise is an impor-

tant aspect in many computer vision applications. The

long-standing additive white Gaussian and heteroscedas-

tic (signal-dependent) noise models widely used in the lit-

erature provide only a coarse approximation of real sen-

sor noise. This paper introduces Noise Flow, a powerful

and accurate noise model based on recent normalizing flow

architectures. Noise Flow combines well-established basic

parametric noise models (e.g., signal-dependent noise) with

the flexibility and expressiveness of normalizing flow net-

works. The result is a single, comprehensive, compact noise

model containing fewer than 2500 parameters yet able to

represent multiple cameras and gain factors. Noise Flow

dramatically outperforms existing noise models, with 0.42

nats/pixel improvement over the camera-calibrated noise

level functions, which translates to 52% improvement in the

likelihood of sampled noise. Noise Flow represents the first

serious attempt to go beyond simple parametric models to

one that leverages the power of deep learning and data-

driven noise distributions.

1. Introduction

Image noise modeling, estimation, and reduction is an

important and active research area (e.g., [7, 14, 28, 29]) with

a long-standing history in computer vision (e.g., [12, 18, 19,

24]). A primary goal of such efforts is to remove or correct

for noise in an image, either for aesthetic purposes, or to

help improve other downstream tasks. Towards this end,

accurately modeling noise distributions is a critical step.

Existing noise models are not sufficient to represent the

complexity of real noise [1, 26]. For example, a uni-

variate homoscedastic Gaussian model does not represent

the fact that photon noise is signal-dependent—that is, the

variance of the noise is proportional to the magnitude of

the signal. In turn, the signal-dependent heteroscedastic

model [7, 8, 22], often referred to as the noise level func-

tion (NLF), does not represent the spatial non-uniformity of

noise power (e.g., fixed-pattern noise) or other sources of

;aͿ GaussiaŶ ;ďͿ Caŵera NLF ;ĐͿ Noise Flow ;dͿ Real Noise ;eͿ CleaŶ

Figure 1: Synthetic noisy images generated by (a) a Gaus-

sian model, (b) a heteroscedastic signal-dependent model

represented by camera noise level functions (NLF), and (c)

our Noise Flow model. Synthetic noise generated from

Noise Flow is consistently the most similar to the real noise

in (d), qualitatively and quantitatively (in terms of KL di-

vergence relative to the real noise, shown on each image).

(e) Reference clean image. Images are from the SIDD [1].

noise and non-linearities, such as amplification noise and

quantization [13]. See Figure 2. In spite of their well-

known limitations, these models are still the most com-

monly used. More complex models, such as a Poisson mix-

ture [15, 32], exist, but still do not capture the complex noise

sources mentioned earlier.

Contribution We introduce Noise Flow, a new noise

model that combines the insights of parametric noise mod-

els and the expressiveness of powerful generative models.

Specifically, we leverage recent normalizing flow architec-

13165

tures [17] to accurately model noise distributions observed

from large datasets of real noisy images. In particular, based

on the recent Glow architecture [17], we construct a nor-

malizing flow model which is conditioned on critical vari-

ables, such as intensity, camera type, and gain settings (i.e.,

ISO). The model can be shown to be a strict generalization

of the camera NLF but with the ability to capture signifi-

cantly more complex behaviour. The result is a single model

that is compact (fewer then 2500 parameters) and consider-

ably more accurate than existing models. See Figure 1. We

explore different aspects of the model through a set of ab-

lation studies. To demonstrate the effectiveness of Noise

Flow, we consider the application of denoising and use

Noise Flow to synthesize training data for a denoising CNN

resulting in significant improvements in PSNR. Code and

pre-trained models for Noise Flow are available at https:

//github.com/BorealisAI/noise_flow.

2. Background and Related Work

Image noise is an undesirable by-product of any imag-

ing system. Image noise can be described as deviations of

the measurements from the actual signal and results from a

number of causes, including physical phenomena, such as

photon noise, or the electronic characteristics of the imag-

ing sensors, such as fixed pattern noise.

Given an observed image Ĩ and its underlying noise-free

image I, their relationship can be written as

Ĩ = I+ n, (1)

where n is the noise corrupting I. Our focus in this work is

to model n.

Several noise models have been proposed in the litera-

ture. The simplest and most common noise model is the ho-

moscedastic Gaussian assumption, also known as the addi-

tive white Gaussian noise (AWGN). Under this assumption,

the distribution of noise in an image is a Gaussian distribu-

tion with independent and identically distributed values:

ni ∼ N (0, σ2), (2)

where ni is the noise value at pixel i and follows a normal

distribution with zero mean and σ2 variance.

Despite its prevalence, the Gaussian model does not rep-

resent the fact that photon noise is signal-dependent. To ac-

count for signal dependency of noise, a Poisson distribution

P is used instead:

ni ∼ αP(Ii)− Ii, (3)

where Ii, the underlying noise-free signal at pixel i, is both

the mean and variance of the noise, and α is a sensor-

specific scaling factor of the signal.

Neither the Gaussian nor the Poisson models alone can

accurately describe image noise. That is because im-

age noise consists of both signal-dependent and signal-

independent components. To address such limitation, a

Poisson-Gaussian model has been adapted [7, 8, 22], where

the noise is a combination of a signal-dependent Poisson

distribution and a signal-independent Gaussian distribution:

ni ∼ α P(Ii)− Ii +N (0, δ2). (4)

A more widely accepted alternative to the Poisson-

Gaussian model is to replace the Poisson component

by a Gaussian distribution whose variance is signal-

dependent [20, 23], which is referred to as the heteroscedas-

tic Gaussian model:

ni ∼ N (0, α2
Ii + δ2). (5)

The heteroscedastic Gaussian model is more commonly re-

ferred to as the noise level function (NLF) and describes the

relationship between image intensity and noise variance:

var(ni) = β1 Ii + β2, β1 = α2, β2 = δ2. (6)

Signal-dependent models may accurately describe noise

components, such as photon noise. However, in real im-

ages there are still other noise sources that may not be ac-

curately represented by such models [1, 7, 26]. Examples

of such sources include fixed-pattern noise, defective pix-

els, clipped intensities, spatially correlated noise (i.e., cross-

talk), amplification, and quantization noise. Some attempts

have been made to close the gap between the prior mod-

els and the realistic cases of noise—for example, using a

clipped heteroscedastic distribution to account for clipped

image intensities [7] or using a Poisson mixture model to

account for the tail behaviour of real sensor noise [32]. Re-

cently, a GAN was trained for synthesizing noise [3]; how-

ever, it was not clear how to quantitatively assess the quality

of the generated samples. To this end, there is still a lack of

noise models that capture the characteristics of real noise.

In this paper, we propose a data-driven normalizing flow

model that can estimate the density of a real noise distri-

bution. Unlike prior attempts, our model can capture the

complex characteristics of noise that cannot be explicitly

parameterized by existing models.

2.1. Normalizing Flows

Normalizing flows were first introduced to machine

learning in the context of variational inference [27] and

density estimation [5] and are seeing increased interest for

generative modeling [17]. A normalizing flow is a trans-

formation of a random variable with a known distribution

(typically Normal) through a sequence of differentiable,

invertible mappings. Formally, let x0 ∈ R
D be a ran-

dom variable with a known and tractable probability den-

sity function pX0
: RD → R and let x1, . . . ,xN be a se-

quence of random variables such that xi = fi(xi−1) where

3166

fi : R
D → R

D is a differentiable, bijective function. Then

if n = f(x0) = fN ◦ fN−1 ◦ · · · ◦ f1(x0), the change of

variables formula says that the probability density function

for n is

p(n) = pX0
(g(n))

N
∏

j=1

∣

∣detJj(g(n))
∣

∣

−1
(7)

where g = g1 ◦ · · · ◦ gN−1 ◦ gN is the inverse of f , and

Jj = ∂fj/∂xj−1 is the Jacobian of the jth transformation

fj with respect to its input xj−1 (i.e., the output of fj−1).

Density Estimation A normalizing flow can be directly

used for density estimation by finding parameters which

maximize the log likelihood of a set of samples. Given the

observed data, D = {ni}
M
i=1, and assuming the transforma-

tions f1, . . . , fN are parameterized by Θ = (θ1, . . . , θN)
respectively, the log likelihood of the data log p(D|Θ) is

M
∑

i=1

log pX0
(g(ni|Θ))−

N
∑

j=1

log
∣

∣detJj(g(ni|Θ), θj)
∣

∣ (8)

where the first term is the log likelihood of the sample un-

der the base measure and the second term, sometimes called

the log-determinant or volume correction, accounts for the

change of volume induced by the transformation by the nor-

malizing flows.

Bijective Transformations To construct an efficient nor-

malizing flow we need to define differentiable and bijective

transformations f . Beyond being able to define and com-

pute f , we also need to be able to efficiently compute its

inverse, g, and the log determinant log |detJ|, which are

necessary to evaluate the data log likelihood in Equation 8.

First consider the case of a linear transformations [17]

f(x) = Ax+ b (9)

where A ∈ R
D×D and b ∈ R

D are parameters. For f to

be invertible A must have full rank; its inverse is given by

g(x) = A
−1(x− b) and the determinant of the Jacobian is

simply detJ = detA.

Affine Coupling To enable more expressive transforma-

tions, we can use the concept of coupling [5]. Let x =
(xA,xB) be a disjoint partition of the dimensions of x and

let f̂(xA|θ) be a bijection on xA which is parameterized by

θ. Then a coupling flow is

f(x) = (f̂(xA; θ(xB)),xB) (10)

where θ(xB) is any arbitrary function which uses only xB

as input. The power of a coupling flow resides, largely, in

the ability of θ(xB) to be arbitrarily complex. For instance,

shallow ResNets [11] were used for this function in [17].

Inverting a coupling flow can be done by using the in-

verse of f̂ . Further, the Jacobian of f is a block triangu-

lar matrix where the diagonal blocks are Ĵ and the identity.

Hence the determinant of the Jacobian is simply the deter-

minant of Ĵ. A common form of a coupling layer is the

affine coupling layer [6, 17]

f̂(x;a,b) = Dx+ b (11)

where D = diag(a) is a diagonal matrix. To ensure that D

is invertible and has non-zero diagonals it is common to use

D = diag(exp(a)).
With the above formulation of normalizing flows, it be-

comes clear that we can utilize their expressive power for

modeling real image noise distributions and mapping them

to easily tractable simpler distributions. As a by-product,

such models can directly be used for realistic noise synthe-

sis. Since the introduction of normalizing flows to machine

learning, they have been focused towards image generation

tasks (e.g., [17]). However, in this work, we adapt normal-

izing flows to the task of noise modeling and synthesis by

introducing two new conditional bijections, which we de-

scribe next.

3. Noise Flow

In this section, we define a new architecture of normal-

izing flows for modeling noise which we call Noise Flow.

Noise Flow contains novel bijective transformations which

capture the well-established and fundamental aspects of

parametric noise models (e.g., signal-dependent noise and

gain) which are mixed with more expressive and general

affine coupling transformations.

3.1. Noise Modeling using Normalizing Flows

Starting from Equations 1 and 8, we can directly use nor-

malizing flows to estimate the probability density of a com-

plex noise distribution. Let D = {ni}
M
i=1 denote a dataset

of observed camera noise where ni is the noise layer cor-

rupting a raw-RGB image. Noise layers can be obtained by

subtracting a clean image from its corresponding noisy one.

As is common, we choose an isotropic Normal distribution

with zero mean and identity covariance as the base measure.

Next, we choose a set of bijective transformations, with a set

of parameters Θ, that define the normalizing flows model.

Lastly, we train the model by minimizing the negative log

likelihood of the transformed distribution, as indicated in

Equation 8.

We choose the Glow model [17] as our starting point.

We use two types of bijective transformations (i.e., layers)

from the Glow model: (1) the affine coupling layer as de-

fined in Equation 11 that can capture arbitrary correlations

between image dimensions (i.e., pixels); and (2) the 1 × 1
convolutional layers that are used to capture cross-channel

correlations in the input images.

3167

Scene

radiance

Amplifier

(gain)

Sensor
(photosites,

microlens, etc.)

Sensor

read-out

Analog-to-

digital

conversion

Photon noise

Sensor

irradiance

Electronic noise (fixed pattern, dark

current, cross-talk, defective pixels, etc.)
Gained noise

Read-out

noise

Quantization

noise

Raw-RGB

image (digital)

Gained signal

and noise

Read-out

signal (analog)

N
o
is
e

S
ig
n
a
l

Figure 2: A simplified model of an imaging pipeline showing imaging processes (in the bottom row) and the associated noise

processes (in the top row). Model adapted from [9, 10, 12, 19].

Affine

coupling

layer

1 × 1

convolutional

layer

One flow step × �
Signal-

dependent

layer

Gain layer

One flow step × �

Noise Flow

� (Raw clean image)

� (sensor gain)� (camera identifier,

optional)

Forward (sampling) →

Inverse: � (real noise)

Forward: �� (sampled noise)

RGGB

channels

� (Raw clean image)�̃ (Raw noisy image)

Raw-to-sRGB

pipeline

Raw-to-sRGB

pipeline

�̃sRGB (sRGB noisy image)

RGGB

channels

�sRGB (sRGB clean image)

Affine

coupling

layer

1 × 1

convolutional

layer

Inverse (Loss): ���(��)
Forward: ��~�(�,�)

← Inverse (density estimation)

Figure 3: The architecture of our Noise Flow model. The affine coupling and 1×1 convolutional layers are ported from [17].

The signal-dependent and gain layers are newly proposed. The Raw-to-sRGB pipeline is ported from [1].

3.2. Noise Modeling using Conditional Normalizing
Flows

Existing normalizing flows are generally trained in an

unsupervised manner using only data samples and with-

out additional information about the data. In our case, we

have some knowledge regarding the noise processes, such

as the signal-dependency of noise and the scaling of the

noise based on sensor gain. Some of these noise processes

are shown in Figure 2 along with their associated imaging

processes. Thus, we propose new normalizing flow layers

that are conditional on such information. However, many

noise processes, such as fixed-pattern noise, cannot be eas-

ily specified directly. To capture these other phenomena we

use a combination of affine coupling layers (Equations 10

and 11) and 1 × 1 convolutional layers (a form of Equa-

tion 9) which were introduced by the Glow model [17].

Figure 3 shows the proposed architecture of our noise

model (Noise Flow). Noise Flow is a sequence of a signal-

dependent layer; K unconditional flow steps; a gain layer;

and another set of K unconditional flow steps. Each un-

conditional flow step is a block of an affine coupling layer

followed by a 1× 1 convolutional layer. The term K is the

number of flow steps to be used in the model. In our ex-

periments, we use K = 4, unless otherwise specified. The

model is fully bijective—that is, it can operate in both di-

rections, meaning that it can be used for both simulating

noise (by sampling from the base measure x0 and applying

the sequence of transformations) or likelihood evaluation

(by using the inverse transformation given a noise sample Ĩ

to evaluation of Equation 7). The Raw-to-sRGB rendering

pipeline is imported from [1]. Next, we discuss the pro-

posed signal-dependent and gain layers in details.

3.2.1 Signal-Dependent Layer

We construct a bijective transformation that mimics the

signal-dependent noise process defined in Equation 5. This

layer is defined as

f(x) = s⊙ x, s = (β1I+ β2)
1

2 . (12)

The inverse of this layer is given by g(x) = s
−1⊙x, where

I is the latent clean image, and ⊙ is point-wise multiplica-

tion. To account for volume change induced by this trans-

formation, we compute the log determinant as

log |detJ| =
D
∑

i=1

log(si) (13)

where si is the ith element of s and D is the dimensional-

ity (i.e., number of pixels and channels) of x. The signal-

dependent noise parameters β1 and β2 should be strictly

positive as the standard deviation of noise should be pos-

itive and an increasing function of intensity. Thus, we pa-

rameterize them as β1 = exp(b1) and β2 = exp(b2). We

initialize the signal-dependent layer to resemble an identity

transformation by setting b1 = −5.0 and b2 = 0. This way,

β1 ≈ 0 and β2 = 1.0, and hence the initial scale s ≈ 1.0.

3168

3.2.2 Gain Layer

Sensor gain amplifies not only the signal, but also the

noise. With common use of higher gain factors in low-

light imaging, it becomes essential to explicitly factor the

effect of gain in any noise model. Hence, we propose a

gain-dependent bijective transformation as a layer of Noise

Flow. The gain layer is modeled as a scale factor γ of the

corresponding ISO level of the image, and hence the trans-

formation is

f(x) = γ(ISO)⊙ x, γ(ISO) = u(ISO)× ISO, (14)

where u(ISO) > 0 allows the gain factors to vary some-

what from the strict scaling dictated by the ISO value. The

inverse transformation is g(x) = γ−1(ISO) ⊙ x, where

u is parameterized to be strictly positive and is initialized

to u ≈ 1/200 to account for the typical scale of the ISO

values. Finally, the log determinant of this layer is

log |detJ| = D log(γ(ISO)), (15)

whereD is the number of dimensions (i.e., pixels and chan-

nels) in x. There are many ways to represent u(ISO). How-

ever, since the available dataset contained only a small set

of discrete ISO levels, we chose to simply use a discrete set

of values. Formally u(ISO) = exp(vISO) where the expo-

nential is used to ensure that u(ISO) is positive. We use

a single parameter for each ISO level in the dataset (e.g.,

{v100, . . . , v1600}). The values of vISO are initialized so

that exp(vISO) ≈ 1/200 to account for the scale of the ISO

value and ensure the initial transformation remains close to

an identity transformation.

Different cameras may have different gain factors cor-

responding to their ISO levels. These camera-specific gain

factors are usually proprietary and hard to access but may

have a significant impact on the noise distribution of an im-

age. To handle this, we use an additional set of parame-

ters to adjust the gain layer for each camera. In this case,

the above gain layer is adjusted by introducing a camera-

specific scaling factor. That is,

γ(ISO,m) = ψm × u(ISO)× ISO, (16)

where ψm ∈ R
+ is the scaling factor for camera m. This

is a simple model but was found to be effective to capture

differences in gain factors between cameras.

4. Experiments

To assess the performance of Noise Flow, we train it

to model the realistic noise distribution of the Smartphone

Image Denoising Dataset (SIDD) [1] and also evaluate the

sampling accuracy of the trained model.

4.1. Experimental Setup

Dataset We choose the SIDD for training our Noise Flow

model. The SIDD consists of thousands of noisy and cor-

responding ground truth images, from ten different scenes,

captured repeatedly with five different smartphone cameras

under different lighting conditions and ISO levels. The ISO

levels ranged from 50 to 10,000. The images are provided

in both Raw-RGB and sRGB color spaces. We believe this

dataset is the best fit to our task for noise modeling, mainly

due to the great extent of variety in cameras, ISO levels, and

lighting conditions.

Data preparation We start by collecting a large number

of realistic noise samples from the SIDD. We obtain the

noise layers by subtracting the ground truth images from

the noisy ones. In this work, we use only raw-RGB im-

ages as they directly represent the noise distribution of the

underlying cameras. We avoid using sRGB images as ren-

dering image into sRGB space tends to significantly change

the noise distribution [25]. We arrange the data as approxi-

mately 500, 000 image patches of size 64 × 64 pixels. We

split the data into a training set Dr of approximately 70% of

the data and a testing set Ds of approximately 30% of the

data. We ensure that the same set of cameras and ISO levels

is represented in both the training and testing sets. For visu-

alization only, we render raw-RGB images through a color

processing pipeline into sRGB color space.

The SIDD provides only the gain amplified clean image

Iγ and not the true latent clean image I. To handle this, we

use the learned gain parameter γ to correct for this and esti-

mate the latent clean image as I = Iγ/γ when it is needed

in the signal-dependant layer.

Loss function and evaluation metrics We train Noise

Flow as a density estimator of the noise distribution of the

dataset which can be also used to generate noise samples

from this distribution. For density estimation training, we

use the negative log likelihood (NLL) of the training set

(see Equation 8) as the loss function which is optimized us-

ing Adam [16]. For evaluation, we consider the same NLL

evaluated on the test set.

To provide further insight in the differences between the

approaches, we also consider the Kullback-Leibler (KL) di-

vergence of the pixel-wise marginal distributions between

generated samples and test set samples. Such a measure

ignores the ability of a model to capture correlations but

focuses on a model’s ability to capture the most basic char-

acteristics of the distribution. Specifically, given an image

from the test set, we generate a noise sample from the model

and compute histograms of the noise values from the test

image and the generated noise and report the discrete KL

divergence between the histograms.

Baselines We compare the Noise Flow models against

two well-established baseline models. The first is the ho-

3169

0 50 100 150 200
Epoch

3.5

3.0

2.5

2.0

N
LL

 (p
er

 d
im

en
sio

n)

Gaussian - Test
Camera NLF - Test
Noise Flow - Train
Noise Flow - Test

(a)

0 50 100 150 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

M
ar

gi
na

l D
KL

Gaussian
Camera NLF
Noise Flow
Real noise

(b)

Figure 4: (a) NLL per dimension on the training and

testing sets of Noise Flow compared to (1) the Gaussian

model and (2) the signal-dependent model as represented

by the camera-estimated NLFs. (b) Marginal KL divergence

(DKL) between the generated and the real noise samples.

Gaussian Cam. NLF Noise Flow

NLL −2.831 (99.4%) −3.105 (51.6%) −3.521

DKL 0.394 (97.9%) 0.052 (84.1%) 0.008

Table 1: Best achieved testing NLL and marginal DKL for

Noise Flow compared to the Gaussian and Camera NLF

baselines. Relative improvements of Noise Flow on other

baselines, in terms of likelihood, are in parentheses.

moscedastic Gaussian noise model (i.e., AWGN) defined in

Equation 2. We prepare this baseline model by estimating

the maximum likelihood estimate (MLE) of the noise vari-

ance of the training set, assuming a univariate Gaussian dis-

tribution. The second baseline model is the heteroscedastic

Gaussian noise model (i.e., NLF), described in Equations 5

and 6, as provided by the camera devices. The SIDD pro-

vides the camera-calibrated NLF for each image. We use

these NLFs as the parameters of the heteroscedastic Gaus-

sian model for each image. During testing, we compute the

NLL of the testing set against both baseline models.

4.2. Results and Ablation Studies

Noise Density Estimation Figure 4a shows the training

and testing NLL on the SIDD of Noise Flow compared to

(1) the Gaussian noise model and (2) the signal-dependent

noise model as represented by the camera-estimated noise

level functions (NLFs). It is clear that Noise Flow can

model the realistic noise distribution better than Gaussian

and signal-dependent models. As shown in Table 1, Noise

Flow achieves the best NLL, with 0.69 and 0.42 nats/pixel

improvement over the Gaussian and camera NLF models,

respectively. This translates to 99.4% and 51.6% improve-

ment in likelihood, respectively. We calculate the improve-

ment in likelihood by calculating the corresponding im-

provement in exp(−NLL).

Noise Synthesis Figure 4b shows the average marginal

KL divergence between the generated noise samples and

the corresponding noise samples from the testing set for

the three models: Gaussian, camera NLF, and Noise Flow.

ϭϬ
Ϭ‐
L

ϭϬ
Ϭ‐
N

4Ϭ
Ϭ‐
L

4Ϭ
Ϭ‐
N

8Ϭ
Ϭ‐
L

8Ϭ
Ϭ‐
N

ϭ6
ϬϬ
‐L

ϭ6
ϬϬ
‐N

;aͿ GaussiaŶ ;ďͿ Caŵera NLF ;ĐͿ Noise Flow ;dͿ Real Noise ;eͿ CleaŶ

Figure 5: Generated noise samples from (c) Noise Flow are

much closer, in terms of marginal KL divergence, to (d)

the real samples; compared to (a) Gaussian and (b) camera

NLF models. (e) Clean image. Corresponding ISO levels

and lighting conditions are on the left.

Noise Flow achieves the best KL divergence, with 97.9%
and 84.1% improvement over the Gaussian and camera

NLF models, respectively, as shown in Table 1.

Figure 5 shows generated noise samples from Noise

Flow compared to samples from Gaussian and camera

NLF models. We show samples from various ISO levels

{100, . . . , 1600} and lighting conditions (N: normal light,

L: low light). Noise Flow samples are the closest to the real

noise distribution in terms of the marginal KL divergence.

Also, there are more noticeable visual similarities between

Noise Flow samples and the real samples compared to the

Gaussian and camera NLF models.

Learning signal-dependent noise parameters Figure 6a

shows the learning of the signal-dependent noise parameters

β1 and β2 as defined in Equation 6 while training a Noise

Flow model. The parameters are converging towards values

that are consistent with the signal-dependent noise model

3170

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.5

1.0

1.5

2.0

Si
gn

al
-d

ep
en

de
nt

 p
ar

am
et

er
s

exp(1)
exp(2)

(a) Signal-dependent parameters

0 500 1000 1500 2000 2500 3000
Epoch

16

14

12

10

Ga
in

 p
ar

am
et

er
s (

lo
g

sc
al

e)

g100
g400

g800
g1600

(b) Gain parameters

Figure 6: (a) Signal-dependent noise parameters β1 and β2
are consistent with the signal-dependent noise model where

β1 is dominant and β2 is much smaller. (b) The gain pa-

rameters, in log scale, are consistent with the corresponding

ISO levels shown in the legend.

0 1000 2000 3000
Epoch

2.0

2.5

3.0

3.5

4.0

Ga
in

 w
ei

gh
ts

iPhone 7
Pixel
Nexus 6

Galaxy S6
G4

(a) Camera gain weights

100 400 800 1600 3200
Camera ISO

0.0

0.5

1.0

1.5

2.0

Ca
m

er
a

1

×10 2

iPhone 7
Pixel
Nexus 6

Galaxy S6
G4

(b) Camera β1 values

Figure 7: (a) Learned camera-specific weights for the

shared gain layer indicates differences in the gain of differ-

ent cameras. These gains are correlated with the cameras’

different values for NLF parameter β1 shown in (b). The

iPhone and G4 cameras have smaller ranges of ISO values

and hence their correlation with the gains is not clear.

where β1 is the dominant factor that represents the Poisson

component of the noise and β2 is the smaller factor repre-

senting the additive Gaussian component of the noise. In

our experiments, these parameters are run through an expo-

nential function to force their values to be strictly positive.

Learning gain factors Figure 6b shows the learning of

the gain factors as defined in Equation 14 while training a

Noise Flow model. The gain factors {γ100, . . . , γ1600} are

consistent with the corresponding ISO levels indicated by

their subscripts. This shows the ability of the Noise Flow

model to properly factor the sensor gain in the noise mod-

eling and synthesis process. Note that we omitted ISO level

200 from the training and testing sets because there are not

enough images from this ISO level in the SIDD.

Learning camera-specific parameters In our Noise Flow

model, the camera-specific parameters consist of a set of

gain scale factors {ψm}, one for each of the five cameras in

the SIDD. Figure 7 shows these gain scales for each camera

in the dataset during the course of training. It is clear that

there are differences between cameras in the learned gain

behaviours. These differences are consistent with the dif-

ferences in the noise level function parameter β1 of the cor-

Model NLL DKL

S-G −3.431 (9.42%) 0.067 (88.1%)

S-G-CAM −3.511 (1.01%) 0.010 (20.0%)

S-Ax1-G-Ax1-CAM −3.518 (0.30%) 0.009 (11.1%)

S-Ax4-G-Ax4-CAM −3.521 0.008

(Noise Flow)

Table 2: Best achieved testing NLL and marginal DKL for

different layer architectures. The symbols S, G, CAM, Ax1,

and Ax4 indicate a signal layer, gain layer, camera-specific

parameters, one unconditional flow step, and four uncon-

ditional flow steps, respectively. Relative improvements of

Noise Flow, in terms of likelihood, are in parentheses.

responding cameras shown in Figure 7b and capture funda-

mental differences in the noise behaviour between devices.

This demonstrates the importance of the camera-specific pa-

rameters to capture camera-specific noise profiles. Training

Noise Flow for a new camera can be done by fine-tuning the

camera-specific parameters within the gain layers; all other

layers (i.e., the signal-dependent and affine coupling layers)

can be considered non-camera-specific.

Effect of individual layers Table 2 compares different ar-

chitecture choices for our Noise Flow model. We denote

the different layers as follows: G: gain layer; S: signal-

dependent layer; CAM: a layer using camera-specific pa-

rameters; Ax1: one unconditional flow step (an affine cou-

pling layer and a 1 × 1 convolutional layer); Ax4: four

unconditional flow steps. The results show a significant

improvement in noise modeling (in terms of NLL and

DKL) resulting from the additional camera-specific param-

eters (i.e., the S-G-CAM model), confirming the differences

in noise distributions between cameras and the need for

camera-specific noise parameters. Then, we show the ef-

fect of using affine coupling layers and 1× 1 convolutional

layers in our Noise Flow model. Adding the Ax1 blocks im-

proves the modeling performance in terms of NLL. Also,

increasing the number of unconditional flow steps from one

to four introduces a slight improvement as well. This indi-

cates the importance of affine coupling layers in capturing

additional pixel-correlations that cannot be directly mod-

eled by the signal-dependency or the gain layers. The S-

Ax4-G-Ax4-CAM is the final Noise Flow model.

5. Application to Real Image Denoising

Preparation To further investigate the accuracy of the

Noise Flow model, we use it as a noise generator to train an

image denoiser. We use the DnCNN image denoiser [33].

We use the clean images from the SIDD-Medium [1] as

training ground truth and the SIDD-Validation as our test-

ing set. The SIDD-Validation contains both real noisy im-

ages and the corresponding ground truth. We compare

three different cases for training DnCNN using syntheti-

3171

cally generated noise: (1) DnCNN-Gauss: homoscedas-

tic Gaussian noise (i.e., AWGN); (2) DnCNN-CamNLF:

signal-dependent noise from the camera-calibrated NLFs;

and (3) DnCNN-NF: noise generated from our Noise Flow

model. For the Gaussian noise, we randomly sample stan-

dard deviations from the range σ ∈ [0.24, 11.51]. For the

signal-dependent noise, we randomly select from a set of

camera NLFs. For the noise generated with Noise Flow,

we feed the model with random camera identifiers and ISO

levels. The σ range, camera NLFs, ISO levels, and cam-

era identifiers are all reported in the SIDD. Furthermore,

in addition to training with synthetic noise, we also train

the DnCNN model with real noisy/clean image pairs from

the SIDD-Medium and no noise augmentation (indicated as

DnCNN-Real).

Results and discussion Table 3 shows the best achieved

testing peak signal-to-noise ratio (PSNR) and structural

similarity (SSIM) [30] of DnCNN using the aforemen-

tioned three noise synthesis strategies and the discrimina-

tive model trained on real noise. The model trained on

noise generated from Noise Flow yields the highest PSNR

and SSIM values, even slightly higher than DnCNN-Real

due to the relatively limited number of samples in the train-

ing dataset. We also report, in parentheses, the relative im-

provement introduced by DnCNN-NF over the other two

models in terms of root-mean-square-error (RMSE) and

structural dissimilarity (DSIMM) [21, 31], for PSNR and

SSIM, respectively. We preferred to report relative im-

provement in this way because PSNR and SSIM tend to sat-

urate as errors get smaller; conversely, RMSE and DSSIM

do not saturate. For visual inspection, in Figure 8, we show

some denoised images from the best trained model from the

three cases, along with the corresponding noisy and clean

images. DnCNN-Gauss tends to over-smooth noise, as in

rows 3 and 5, while DnCNN-CamNLF frequently causes

artifacts and pixel saturation, as in rows 1 and 5. Although

DnCNN-NF does not consistently yield the highest PSNR,

it is the most stable across all six images. Noise Flow can

be used beyond image denoising in assisting computer vi-

sion tasks that require noise synthesis (e.g., robust image

classification [4] and burst image deblurring [2]. In addi-

tion, Noise Flow would give us virtually unlimited noise

samples compared to the limited numbers in the datasets.

6. Conclusion

In this paper, we have presented a conditional normal-

izing flow model for image noise modeling and synthesis

that combines well-established noise models and the ex-

pressiveness of normalizing flows. As an outcome, we

provide a compact noise model with fewer than 2500 pa-

rameters that can accurately model and generate realistic

noise distributions with 0.42 nats/pixel improvement (i.e.,

Model PSNR SSIM

DnCNN-Gauss 43.63 (43.0%) 0.968 (75.6%)

DnCNN-CamNLF 44.99 (33.4%) 0.982 (56.0%)

DnCNN-NF 48.52 0.992

DnCNN-Real 47.08 (15.3%) 0.989 (27.5%)

Table 3: DnCNN denoiser [33] trained on synthetic noise

generated with Noise Flow (DnCNN-NF) achieves higher

PSNR and SSIM values compared to training on synthetic

noise, from a Gaussian model or camera NLFs, and real

noise. Relative improvements of DnCNN-NF over other

models, in terms of RMSE and DSSIM, are in parentheses.

(a) Real noisy (b) Gaussian (c) Camera NLF (d) Noise Flow (e) DnCNN-Real (f) Ground truth

PSNR = 44.19 PSNR = 25.18 PSNR = 47.05 PSNR = 46.47

PSNR = 39.08 PSNR = 34.82 PSNR = 44.09 PSNR = 42.56

PSNR = 52.60 PSNR = 55.42 PSNR = 54.12 PSNR = 54.66

PSNR = 49.85 PSNR = 53.75 PSNR = 53.36 PSNR = 51.30

PSNR = 56.52 PSNR = 56.42 PSNR = 58.41 PSNR = 58.84

PSNR = 44.81 PSNR = 49.78 PSNR = 50.20 PSNR = 47.29

Figure 8: Sample denoising results from DnCNN trained

on three different noise synthesis methods: (b) Gaussian;

(c) camera NLF; and (d) Noise Flow. (e) DnCNN trained

on real noise. (a) Real noisy image. (f) Ground truth.

52% higher likelihood) over camera-calibrated noise level

functions. We believe the proposed method and the pro-

vided model will be very useful for advancing many com-

puter vision and image processing tasks. The code and

pre-trained models are publicly available at https://

github.com/BorealisAI/noise_flow.

Acknowledgments This work was supported by the Mitacs Ac-

celerate Program as part of an internship at Borealis AI and funded

in part by the Canada First Research Excellence Fund (CFREF) for

the Vision: Science to Applications (VISTA) programme and an

NSERC Discovery Grant. Dr. Brown contributed to this article in

his personal capacity as a professor at York University. The views

expressed are his own and do not necessarily represent the views

of Samsung Research. Abdelrahman is partially supported by an

AdeptMind scholarship.

3172

References

[1] Abdelrahman Abdelhamed, Stephen Lin, and Michael S

Brown. A High-Quality Denoising Dataset for Smartphone

Cameras. In CVPR, 2018. 1, 2, 4, 5, 7

[2] Miika Aittala and Frédo Durand. Burst Image Deblur-

ring Using Permutation Invariant Convolutional Neural Net-

works. In ECCV, 2018. 8

[3] Jingwen Chen, Jiawei Chen, Hongyang Chao, and Ming

Yang. Image Blind Denoising with Generative Adversarial

Network Based Noise Modeling. In CVPR, 2018. 2

[4] Steven Diamond, Vincent Sitzmann, Stephen Boyd, Gordon

Wetzstein, and Felix Heide. Dirty Pixels: Optimizing Im-

age Classification Architectures for Raw Sensor Data. arXiv

preprint arXiv:1701.06487, 2017. 8

[5] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE:

Non-linear Independent Components Estimation. In ICLR

Workshop, 2015. 2, 3

[6] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.

Density Estimation using Real NVP. In ICLR, 2017. 3

[7] Alessandro Foi. Clipped Noisy Images: Heteroskedas-

tic Modeling and Practical Denoising. Signal Processing,

89(12):2609–2629, 2009. 1, 2

[8] Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and

Karen Egiazarian. Practical Poissonian-Gaussian Noise

Modeling and Fitting for Single-Image Raw-Data. TIP,

17(10):1737–1754, 2015. 1, 2

[9] Ryan D. Gow, David Renshaw, Keith Findlater, Lindsay

Grant, Stuart J. McLeod, John Hart, and Robert L. Nicol.

A Comprehensive Tool for Modeling CMOS Image-Sensor-

Noise Performance. IEEE Transactions on Electron Devices,

54(6):1321–1329, 2007. 4

[10] Samuel W Hasinoff, Frédo Durand, and William T Freeman.

Noise-Optimal Capture for High Dynamic Range Photogra-

phy. In CVPR, 2010. 4

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep Residual Learning for Image Recognition. In CVPR,

2016. 3

[12] Glenn E. Healey and Raghava Kondepudy. Radiometric

CCD Camera Calibration and Noise Estimation. TPAMI,

16(3):267–276, 1994. 1, 4

[13] Gerald C Holst. CCD Arrays, Cameras, and Displays. SPIE

Optical Engineering Press, USA, second edition, 1998. 1

[14] Youngbae Hwang, Jun Sik Kim, and In So Kweon.

Difference-based Image Noise Modeling Using Skellam Dis-

tribution. TPAMI, 34(7):1329–1341, 2012. 1

[15] Xiaodan Jin and Keigo Hirakawa. Approximations to Cam-

era Sensor Noise. In Image Processing: Algorithms and Sys-

tems XI, 2013. 1

[16] Diederik P. Kingma and Jimmy Ba. Adam: A Method for

Stochastic Optimization. In ICLR, 2015. 5

[17] Diederik P. Kingma and Prafulla Dhariwal. Glow: Gener-

ative Flow with Invertible 1x1 Convolutions. In NeurIPS,

2018. 2, 3, 4

[18] Darwin T Kuan, Alexander A Sawchuk, Timothy C Strand,

and Pierre Chavel. Adaptive Noise Smoothing Filter for Im-

ages with Signal-Dependent Noise. TPAMI, 7(2):165–177,

1985. 1

[19] Ce Liu, Richard Szeliski, Sing Bing Kang, C. Lawrence Zit-

nick, and William T. Freeman. Automatic Estimation and

Removal of Noise from a Single Image. TPAMI, 30(2):299–

314, 2008. 1, 4

[20] Xinhao Liu, Masayuki Tanaka, and Masatoshi Okutomi.

Practical Signal-Dependent Noise Parameter Estimation

from a Single Noisy Image. TIP, 23(10):4361–4371, 2014.

2

[21] Artur Łoza, Lyudmila Mihaylova, David Bull, and Nishan

Canagarajah. Structural Similarity-based Object Tracking in

Multimodality Surveillance Videos. Machine Vision and Ap-

plications, 20(2):71–83, 2009. 8

[22] Markku Mäkitalo and Alessandro Foi. Optimal Inversion

of the Generalized Anscombe Transformation for Poisson-

Gaussian Noise. TIP, 22(1):91–103, 2013. 1, 2

[23] Amr M. Mohsen, Michael F. Tompsett, and Carlo H. Sèquin.

Noise Measurements in Charge-Coupled Devices. IEEE

Transactions on Electron Devices, 22(5):209–218, 1975. 2

[24] Firouz Naderi and Alexander A Sawchuk. Estimation of

Images Degraded by Film-Grain Noise. Applied Optics,

17(8):1228–1237, 1978. 1

[25] Seonghyeon Nam, Youngbae Hwang, Keti Yasuyuki Mat-

sushita, and Seon Joo Kim. A Holistic Approach to Cross-

Channel Image Noise Modeling and its Application to Image

Denoising. In CVPR, 2016. 5

[26] Tobias Plötz and Stefan Roth. Benchmarking Denoising Al-

gorithms with Real Photographs. In CVPR, 2017. 1, 2

[27] Danilo Jimenez Rezende and Shakir Mohamed. Variational

Inference with Normalizing Flows. In ICML, 2015. 2

[28] Tamara Seybold, Christian Keimel, Marion Knopp, and Wal-

ter Stechele. Towards an Evaluation of Denoising Algo-

rithms with Respect to Realistic Camera Noise. In IEEE

International Symposium on Multimedia, 2013. 1

[29] H Joel Trussell and R Zhang. The Dominance of Poisson

Noise in Color Digital Cameras. In ICIP, 2012. 1

[30] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-

moncelli. Image Quality Assessment: From Error Visibility

to Structural Similarity. Technical Report 4, 2004. 8

[31] Andrew R Webb. Statistical Pattern Recognition. John Wiley

& Sons, 2003. 8

[32] Jiachao Zhang and Keigo Hirakawa. Improved Denoising

via Poisson Mixture Modeling of Image Sensor Noise. TIP,

26(4):1565–1578, 2017. 1, 2

[33] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a Gaussian Denoiser: Residual Learning

of Deep CNN for Image Denoising. TIP, 26(7):3142–3155,

2017. 7, 8

3173

