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Abstract

Data-driven generative 3D face models are used to com-

pactly encode facial shape data into meaningful paramet-

ric representations. A desirable property of these models is

their ability to effectively decouple natural sources of varia-

tion, in particular identity and expression. While factorized

representations have been proposed for that purpose, they

are still limited in the variability they can capture and may

present modeling artifacts when applied to tasks such as

expression transfer. In this work, we explore a new direc-

tion with Generative Adversarial Networks and show that

they contribute to better face modeling performances, es-

pecially in decoupling natural factors, while also achiev-

ing more diverse samples. To train the model we introduce

a novel architecture that combines a 3D generator with a

2D discriminator that leverages conventional CNNs, where

the two components are bridged by a geometry mapping

layer. We further present a training scheme, based on auxil-

iary classifiers, to explicitly disentangle identity and expres-

sion attributes. Through quantitative and qualitative results

on standard face datasets, we illustrate the benefits of our

model and demonstrate that it outperforms competing state

of the art methods in terms of decoupling and diversity.

1. Introduction

Generative models of 3D shapes are widely used for their

ability to provide compact representations that allow to syn-

thesize realistic shapes and their variations according to nat-

ural factors. This is particularly true with faces whose 3D

shape spans a low dimensional space, and for which gen-

erative models often serve as strong priors to solve under-

constrained problems such as reconstruction from partial

data. Given that the facial shape presents natural factors

of variation (e.g. identity and expression), modeling these

in a decoupled manner is an important aspect, as it allows

to incorporate semantic control when performing inference

or synthesis tasks. Having interpretable representations in

terms of pre-defined factors of variation opens the door to

several applications, such as 3D face animation [41, 21],

accurate expression transfer [22, 38], recognition [1] and

artifical data synthesis [33].

Since the seminal work of Blanz and Vetter [4], numer-

ous approaches have been proposed to build data-driven

generative models of the 3D face. Most commonly, varia-

tions among different identities are modeled by linear shape

statistics such as PCA [4, 5]. When expressions need to be

considered the identity and expression subpaces are typi-

cally modeled as two independent linear factors which are

additively combined [1]. In practice this can produce ar-

tifacts when transferring expressions among very different

facial shapes, an issue that has to be explicitly accounted

for, e.g. [38]. Multilinear models [40, 8, 13] present rela-

tive improvements by considering a tensor decomposition

combining the two spaces, but training requires a complete

labeled data tensor which is very hard to get in practice,

and transferring expressions by simply switching the latent

coefficients can still present artifacts [17].

With the aim to relax the linear assumption in modeling

3D faces, deep generative models with autoencoder archi-

tectures have recently been proposed. They demonstrate

benefits in modeling geometric details [3], non-linear de-

formations present in facial expressions [29], and increas-

ing robustness to different types of capture noise [13]. Yet,

none of these approaches decouple the factors of variation

with the exception of [13], where an initialization with fully

labeled data is required whose size increases exponentially

in the number of considered factors.

In this work we investigate the use of Generative Adver-

sarial Networks (GANs) [16] for 3D face modeling and pro-

vide insights on their ability to learn decoupled representa-

tions. In particular, our comparisons with recent approaches

based on autoencoder architectures [13, 29] demonstrate

that our proposed approach can better decouple identity and

expression, and exhibit more variability in the generated

data.

While current deep learning techniques have shown im-
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pressive results in the image domain, extending these to 3D

data is not straightforward. We propose a novel 3D-2D ar-

chitecture in which a multilayer perceptron generates a 3D

face shape given a latent code, while a regular convolutional

network is used as a 2D discriminator. This is allowed by

an intermediate geometry mapping layer that transforms a

3D surface mesh into a geometry image encoding the mesh

vertex locations. To effectively decouple the factors of vari-

ation we build on auxiliary classifiers [27] that aim to cor-

rectly guess the label associated with each factor, e.g. iden-

tity and expression, and introduce a loss on the classifier

features for unlabeled samples.

To summarize, our contributions are:

1. A generative 3D face model that captures non-linear

deformations due to expression, as well as the relation-

ship between identity and expression subspaces.

2. A novel 3D-2D architecture that allows to generate 3D

meshes while leveraging the discriminative power of

CNNs, by introducing a geometry mapping layer that

acts as bridge between the two domains.

3. A training scheme that enables to effectively decouple

the factors of variation, leading to significant improve-

ments with respect to the state of the art.

2. Related Work

Due to the importance of 3D face modeling for numerous

applications, many works have been proposed to learn gen-

erative models. We focus here on data-driven approaches,

often called 3D Morphable Models (3DMM) in the litera-

ture. Blanz and Vetter [4] use principal component analy-

sis (PCA) to learn the distribution of the facial shape and

appearance across different identities scanned in a neutral

expression. To handle other expressions, subsequent works

model them by either adding linear factors [1] or by extend-

ing PCA to a multilinear model [40]. Thanks to their sim-

ple structure these models are still heavily used, and have

recently been extended by training from large datasets [5],

modeling geometric details [26, 6, 7], and including other

variations such as skeletal rotations [25].

Autoencoders for 3D Faces Recent works leverage deep

learning methods to overcome the limitations of (multi-

)linear models. Ranjan et al. [29] proposed an autoencoder

architecture that learns a single global model of the 3D face,

and as such the different factors cannot be decoupled di-

rectly. However, an extension called DeepFLAME is pro-

posed that combines a linear model of identity [25] with the

autoencoder trained on expression displacements. While

expressions are modeled non-linearly, the relationship be-

tween identity and expression is not addressed explicitly.

Fernández Abrevaya et al. [13] developed a multilinear au-

toencoder (MAE) in which the decoder is a multilinear ten-

sor structure. While the relationship between the two spaces

is accounted for, transferring expressions still presents arti-

facts. Furthermore, to achieve convergence the tensor needs

to be initialized properly, which implies that the size of la-

beled training data needed for initialization increases expo-

nentially in the number of factors considered. We compare

our proposed approach to DeepFLAME and MAE, as they

achieve state-of-the-art results on decoupling identity and

expression variations.

Bagautdinov et al. [3] propose a multiscale model of 3D

faces at different levels of geometric detail. Two recent

works [39, 37] use autoencoders to learn a global or cor-

rective morphable model of 3D faces and their appearance

based on 2D training data. However, none of these methods

allow to disentangle factors of variation in the latent space.

Unlike the aforementioned works, we investigate the use of

GANs to learn a decoupled model of 3D faces.

GANs for 3D faces Some recent works have proposed

to combine a 3DMM with an appearance model obtained

by adversarial learning. Slossberg et al. [35] train a GAN

on aligned facial textures and combine this with a linear

3DMM to generate realistic synthetic data. Gecer et al. [15]

train a similar model and show that GANs can be used as

a texture prior for accurate fitting to 2D images. Deng et

al. [10] fit a 3DMM to images and use a GAN to complete

the missing parts of the resulting UV map. All of these

methods rely on linear 3DMMs, and hence to shape spaces

limited in expressiveness. While the focus is on improving

the appearance, we follow a different objective with a gener-

ative shape model that decouples identities and expressions.

To the best of our knowledge, the only work that learns

3D facial shape variations using a GAN is [33], which is

an extension of [35]. The authors propose to learn identity

variations by training a GAN on geometry images, but un-

like our work they do not model the non-linear variations

due to expression nor the correlation between identity and

expression, since the main focus is on the appearance.

Two other methods learn to enhance an input 3D face ge-

ometry with photometric information using a GAN. Given

a texture map and a coarse mesh, Huynh et al. [20] augment

the latter with fine scale details, and given an input image

and a base mesh, Yamaguchi et al. [42] infer detailed ge-

ometry and high quality reflectance. Both works require the

conditioning of an input, and unlike us they do not build a

generative 3D face model.

3. Background

Generative Adversarial Networks [16] are based on a

minimax game, in which a discriminator D and a genera-

tor G are optimized for competing goals. The discriminator

is tasked with learning the difference between real and fake

samples, while the generator is trained to maximize the mis-
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Figure 1: Our proposed architecture. A MLP generates the 3D coordinates of the mesh, while the discrimination occurs in

2D space thanks to the geometry mapping layer. Identity and expression codes zid, zexp are used to control the generator, and

classification losses are added to decouple between the two. A feature loss is introduced to ensure consistency over features

with fixed identities or expressions.

takes of the discriminator. At convergence, G approximates

the real data distribution. Training involves the optimization

of the following:

min
G

max
D

LGAN = Ex∼pdata
[logD(x)]

+ Ez∼pz
[log(1−D(G(z)))], (1)

where pdata denotes the distribution of the training set, and

pz denotes the prior distribution for G, typically N (0, I).

GANs have been shown to be very challenging to train

with the original formulation and prone to low diversity in

the generated samples. To address this, Arjovsky et al. [2]

propose to minimize instead an approximation of the Earth

Mover’s distance between generated and real data distribu-

tions, which is the strategy we adopt in this work:

LGAN = Ex∼pdata
[D(x)]− Ez∼pz

[D(G(z))]. (2)

In particular we use the extension in [19] which uses a gra-

dient penalty in order to enforce that D is 1-Lipschitz.

When labels are available, using them has proven to be

beneficial for GAN performance. Odena et al. [27] pro-

posed Auxiliary Classifier GANs (AC-GAN), in which D
is augmented so that it outputs the probability of an image

belonging to a pre-defined class label c ∼ pc. In this case,

the loss function for G and D is extended with:

Lreal
C = Ex∼pdata,c∼pc

[logP (C = c|x)], (3)

Lfake
C = Ez∼pz,c∼pc

[logP (C = c|G(z, c))]. (4)

In order to evaluate if a model is correctly decoupling,

we need to be able to distinguish whether two identites or

expressions sharing the same latent code are perceptually

similar. Thus, our work builds on the idea of auxiliary clas-

sifiers in order to learn a decoupling of the shape variations

into factors, as will be explained in the next section.

4. Method

We consider as input a dataset of registered and rigidly

aligned 3D facial meshes, where each mesh is defined by

(V,F), the set of 3D vertices V ∈ R
3×nv and the set of

triangular faces F ∈ N
3×nf that connect the vertices. Our

goal is to build an expressive model that can decouple the

representation based on known factors of variation. In con-

trast to classical approaches in which a reconstruction error

is optimized, we rely instead on the adversarial loss enabled

by a convolutional discriminator. To this end, we introduce

an architecture in which a geometry mapping layer serves

as bridge between the generated 3D mesh and the 2D do-

main, for which convolutional layers can be applied (Sec-

tion 4.1). To learn a decoupled parameterization, we build

on the idea of Auxiliary Classifiers and introduce a feature

loss to further improve the results (Section 4.3). We will

consider here a model that decouples between identity and

expression, however the principle can be easily extended to

more factors.

(a) Geometry image (b) Original and reconstructed meshes

Figure 2: While a GAN could be used to generate geometry

images, recovering the mesh from them is prone to artifacts,

e.g. erroneous boundary interpolations (red) and precision

loss (blue) in 2b. In this work we generate instead the 3D

mesh, while geometry images are used only for discrimina-

tion.
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4.1. Geometry Mapping Layer

While deep learning can be efficiently used on regularly

sampled signals, such as 2D pixel grids, applying it to 3D

surfaces is more challenging due to their irregular structure.

In this work we propose to generate the 3D coordinates of

the mesh using a multilayer perceptron, while the discrim-

inative aspects are handled in the 2D image domain. This

allows to benefit from efficient and well established archi-

tectures that have been proven to behave adequately under

adversarial training, while still generating the 3D shape in

its natural domain.

In particular, a 2D representation of a mesh can be

achieved through a UV parameterization φ : V → D that

associates each vertex vk ∈ V with a coordinate (u, v)k in

the unit square domain D. Continuous images can be ob-

tained by interpolating the (x, y, z) vertex values according

to the 2D barycentric coordinates, and storing them in the

image channels. Borrowing the term from [18], we call this

a geometry image (see Figure 2a).

Note that although our method could generate geome-

try images instead of 3D meshes, this would introduce an

unnecessary additional reconstruction step that is likely to

cause information loss and artifacts in the final meshes, as

illustrated in Figure 2b. This is due to the fact that a single

planar unfolding of a mesh may create distortions such as

triangle flipping [34], and a many-to-one mapping may be

obtained even with a bijective parameterization due to the fi-

nite size of images. In addition, as elaborated in [18], unless

border vertices are preassigned to distinct pixels which can

be challenging for large meshes, sampling these locations

results in erroneous interpolations. Generating 3D point co-

ordinates instead allows to avoid reconstruction artifacts,

and to apply common mesh regularization techniques that

simplify and improve the learning process. We use geome-

try images only as the representation for the discriminative

component that evaluates the 3D generator through CNNs.

The mapping layer operates as follows. Given a mesh

made of vertices V = {vk/k = 1..nv}, a target image size

n×n, and a pre-computed UV parameterization φ, we build

two images IU , IV of dimension n × n, and three images

Iv1 , Iv2 and Iv3 of dimension n×n×3 each. For each pixel

(i, j), we consider the φ-projected mesh triangle (v̂1, v̂2, v̂3)
containing it. The barycentric abscissa and ordinate of pixel

(i, j) in triangle (v̂1, v̂2, v̂3) are then stored in images IU

and IV respectively, and the original face vertex coordinates

v1, v2 and v3 are stored in images Iv1 , Iv2 and Iv3 . The

mapping layer computes the output geometry image I as:

I = IU ∗ Iv1 + IV ∗ Iv2 + (1− IU − IV) ∗ Iv3 , (5)

where ∗ denotes element-wise multiplication and 1 ∈ R
n×n

is the matrix of ones. Since this layer simply performs in-

dexing and linear combinations on the elements of V us-

ing the predefined parameters in IU and IV , all operations

are differentiable and the gradients can be back-propagated

from the discriminated image to the generated mesh.

4.2. Architecture

Figure 1 depicts our proposed architecture. The genera-

tor consists of two fully connected layers that map the latent

code z to a vector of size 3nv containing the stacked 3D

coordinates of displacements from a reference face mesh.

The output vertex positions are passed through the mapping

layer to generate a geometry image of size n × n, which

is then processed by the discriminator in order to classify

whether the generated mesh is real or fake. We also con-

sider auxiliary classifiers for the discriminator, denoted as

Cid and Cexp. The design of D shows two main differences

with respect to the original AC-GAN. First, instead of clas-

sifying only one type of labels, we use here classifiers for

both identity and expression. This favors decoupling, since

the classification of one factor is independent of the choice

of the labels for the other factors. Second, we provide dis-

tinct convolutional layers for the real/fake, identity and ex-

pression blocks. This is motivated by the observation that

the features required to classify identities and expressions

are not necessarily the same.

4.3. Decoupled Model Learning

We rely on the discriminator not only to generate realis-

tic faces, but also to decouple the factors of variation. For

this, we optimize D such that it maximizes

LD = LGAN + λC(LID + LEXP ). (6)

Here, LGAN denotes the standard adversarial loss (see

Equation 2), and LID,LEXP the classification losses mea-

sured against the labels provided with the dataset and

weighted by scalar λC . These losses are defined similarly

to Equation 3 as:

LID = Ex∼pdata,c∼pid
c
[logP (C = c|x)],

LEXP = Ex∼pdata,c∼p
exp
c

[logP (C = c|x)], (7)

where pidc and pexpc denote the distribution of identity and

expression labels, respectively. We ignore the sample con-

tribution in the classification loss if it is not labeled.

The generator G takes as input a random vector z =
{zid, zexp, znoise}, which is the concatenation of the iden-

tity code zid ∼ pid, the expression code zexp ∼ pexp and

a random noise znoise ∼ pnoise. It produces the location

of nv displacement vectors from a reference mesh, and is

trained by minimizing:

LG = λ1LGAN − λ2

(

Lid
CL + Lexp

CL

)

+λ3

(

Lid
FEAT + Lexp

FEAT

)

+ λ4Lreg,
(8)
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where LGAN is the standard GAN loss (Equation 2); Lid
CL

and Lexp
CL are classification losses; Lid

FEAT and Lexp
FEAT are

feature losses that aim to further increase the decoupling

of the factors; Lreg is a regularizer; and λ1, λ2, λ3, λ4 are

weights for the different loss terms. We explain each of

these in the following.

Classification Loss In addition to the adversarial loss, the

generator is trained to classify its samples with the correct

labels by maximizing:

Lid
CL = Ez∼pz,c∼pid

c
[logP (C = c|G(z))]

Lexp
CL = Ez∼pz,c∼p

exp
c

[logP (C = c|G(z))]. (9)

In order to generate data belonging to a specific class, we

sample one identity/expression code zid, zexpr for each la-

bel and fix it throughout the training; this becomes the input

for G each time the classification loss must be evaluated.

We denote the set of fixed codes for identity and expression

as T id and T exp respectively.

Feature Loss The classification loss is limited to codes in

T id/T exp, which have associated labels. We found that bet-

ter decoupling results can be obtained if we include a loss

on the classifier features. We measure this by generating

samples in pairs which share the same identity or expres-

sion vector, and measuring the error as:

Lid
FEAT =

2

N

∑

zid

(1− cos(f1,zid , f2,zid)) , (10)

Lexp
FEAT =

2

N

∑

zexp

(

1− cos(f1,zexp
, f2,zexp

)
)

. (11)

Here, N is the batch size, and fi,zid =
f (G(zid, zexp,i, znoise,i)) are feature vectors obtained

by inputting the sample G(zid, zexp,i, znoise,i) through the

classifier Cid and extracting the features from the second to

last layer. That is, given two inputs which were generated

with the same identity vector, Lid
FEAT enforces that their

feature vectors in the identity classifier are also aligned.

The definition is analogous for fi,zexp
with Cexp.

To enable training with both classification and feature

loss, for each batch iteration we alternate between the sam-

pling of labeled identity codes zid ∈ T id with unlabeled

expression codes zexp ∼ pexp, and the sampling of un-

labeled identity codes zid ∼ pid with labeled expression

codes zexp ∈ T exp. The classification is evaluated for the

labeled factor only, while the feature loss is used for unla-

beled codes, and the alternation allows to better cover the

identity and expression sub-spaces during training.

Regularization Generating a 3D mesh allows us to rea-

son explicitly at the surface level and define high order

loss functions using the mesh connectivity. In particular,

we enforce spatial consistency over the generated faces by

minimizing the following term on the output displacements

v = G(z):
Lreg = ||Lv||2

2
, (12)

where L is the cotangent discretization of the Laplace-

Beltrami operator.

5. Results

We provide in this section results obtained with the pro-

posed framework, which demonstrate its benefits particu-

larly in decoupling. We first clarify our set-up with imple-

mentation details in Section 5.1 and the datasets used in 5.2.

We explain in Section 5.3 the proposed metrics for the eval-

uation of a 3D face model, and introduce a new measure for

analyzing the diversity of the generated samples. In Sec-

tion 5.4 we perform ablation studies to verify that all the

components are necessary to effectively train an expressive

model. Finally, in Section 5.5 we compare our results to

state-of-the-art 3D face models that can decouple the latent

space, and show that our approach outperforms with respect

to decoupling and diversity. Additional results can be found

in the supplemental material.

5.1. Implementation Details

We set the weights to λC = 0.1 (Equation 6), λ1 =
λ2 = 1, λ3 = 0.5 and λ4 = 100 (Equation 8). The classifi-

cation losses are further weighted to account for unbalanced

labels [23]. For the generator, we use two fully connected

layers with an intermediate representation of size 512 and

ReLU non-linearity. For the discriminator we use a variant

of DC-GAN [28], with the first two convolutional blocks

shared between Creal, Cid and Cexpr, while the remain-

ing are duplicated for each module (more details can be

found in supplemental). The models were trained for 200
epochs using ADAM optimizer [24] with β1 = 0.9 and

β2 = 0.999, a learning rate of 0.0002 and a batch size of 64.

During training we add instance noise [36] with σ = 0.1 to

the input of D. The discriminator is trained for 3 iterations

each time we train the generator. The models take around 2
hours to train on a NVidia GeForce GTX 1080 GPU.

The template mesh contains 22129 vertices. We pre-

compute the UV map φ using harmonic parameteriza-

tion [12], setting the outer boundary face vertices to a unit

square to ensure full usage of the image domain. We

generate geometry images of size 64 × 64; we experi-

mented with other image sizes but the best decoupling re-

sults were obtained with this resolution. The dimensions for

(zid, zexp, znoise) are set to (65, 15, 5) to facilitate compar-

ison with [13], and the feature vectors used in Equations 10

and 11 are of size 2048.
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5.2. Datasets

All models were trained using a combination of four

publicly available 3D face datasets. In particular, we use

two datasets containing static 3D scans of multiple sub-

jects: BU-3DFE [44] and Bosphorus [31], and combine

these with two datasets of 3D motion sequences of multi-

ple subjects: BP4D-Spontaneous [45] and BU-4DFE [43].

The static datasets provide variability of identities, while

the motion datasets provide variability of expressions and a

larger number of training samples. We registered BU-3DFE

and Bosphorus with a template fitting approach [30], and

the motion datasets with a spatiotemporal approach [14].

The final dataset contains 30559 registered 3D faces and

was obtained by subsampling the motion sequences. We

provide identity labels for all meshes, while the expression

labels are limited to the seven basic emotional expressions,

which appear in both static datasets. For BU-4DFE, expres-

sion labels are assigned to three frames per sequence: the

neutral expression to the first and last frame, and the labeled

expression of the sequence to the peak frame. For BP4D,

one neutral frame is manually labeled per subject (this is a

requirement for comparison to [29]). Overall, due to the use

of motion data, only 7% of it is assigned expression labels.

5.3. Evaluation Metrics

We evaluate the models in terms of diversity of the gener-

ated samples, decoupling of identity and expression spaces,

and specificity to the 3D facial shape. We believe it is nec-

essary to simultaneously consider all the metrics, as they

provide complementary information on the model. For in-

stance, a good decoupling value can be obtained when the

diversity is poor, since small variations facilitate the classi-

fication of samples as “same”. Conversely, a large diversity

value can be obtained when decoupling is poor, since the

identities/expressions sharing the same code can yield very

different shapes. We detail these in the following.

Diversity We consider it important to measure the diver-

sity of the 3D face shapes generated by a model, particu-

larly with GANs that are known to be prone to mode col-

lapse. To the best of our knowledge, this has not yet been

considered in the context of 3D face models and we pro-

pose therefore to evaluate as follows. We sample p pairs

of randomly generated meshes and compute the mean ver-

tex distance among the pairs; diversity is then defined as

the mean of the distances over the p pairs. We expect here

to see higher values for more diverse models. We evalu-

ate on three sets of sampled pairs: (1) among pairs chosen

randomly (global diversity), (2) among pairs that share the

same identity code (identity diversity) and (3) among pairs

that share the same expression code (expression diversity).

For all cases we evaluate on 10000 pairs. For comparison,

the training set is also evaluated on these three metrics by

leveraging the labels.

Decoupling To evaluate decoupling in both identity and

expression spaces we follow the protocol proposed in [11].

In particular, we first train two networks, one for identity

and one for expression, that transform an image represen-

tation of the mesh to an n-dimensional vector using triplet

loss [32], where n = 128 in our experiments. The trained

networks allow to measure whether two meshes share the

same identity or expression by checking whether the dis-

tance between their embeddings is below a threshold τ .

To measure identity decoupling, we generate n random

faces xi = G(ziid, z
i
exp, z

i
noise), and for each random face

we fix the identity code and sample m faces Y(xi) =
{G(ziid, z

j
exp, z

j
noise), j = 1..m}. We then use the em-

bedding networks to evaluate whether the original faces xi

and their corresponding samples in Y(xi) correspond to the

same identity, and report the percentage of times the pairs

were classified as “same”. We proceed analogously for ex-

pression decoupling. We set n = 100, m = 100, τ = 0.14
for identity and τ = 0.226 for expression; more implemen-

tation details are given in the supplemental material.

Specificity Specificity is a metric commonly used for the

evaluation of statistical shape models [9] and whose goal is

to quantify whether all the generated samples belong to the

original shape class, faces in our case. For this, n samples

are randomly drawn from the model and for each the mean

vertex distance to each member of the training set is mea-

sured, keeping the minimum value. The metric then reports

the mean of the n values. We use here n = 1000.

5.4. Ablation Tests

We start by demonstrating that each of the proposed

components is necessary to obtain state-of-the-art results in

the proposed metrics. To this end, we compare our approach

against the following alternatives: (1) without mesh regular-

ization (Equation 12); (2) with identity classification only;

(3) with expression classification only; and (4) without fea-

ture loss (Equations 10 and 11).

Table 1 gives the evaluation metrics for each of these op-

tions, and Figure 3 provides qualitative examples. From the

results we observe that: (1) The mesh regularization is cru-

cial to generate samples that are realistic facial shapes. This

is reflected by a very large value in specificity as well as low

diversity, due to the fact that the model never converged to

realistic faces (see Figure 3a). (2) Considering classification

in only one factor significantly reduces the capacity of the

model to preserve semantic properties in the other factor, as

indicated by the very low decoupling values obtained in the

corresponding rows. This justifies the use of classifiers for

each of the factors. (3) Without the feature loss the model

can still achieve good results, but both expression decou-
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(a) Without mesh regularization

(b) Without expression classification

(c) Without feature loss

(d) Proposed

Figure 3: Qualitative results for alternative approaches. From left to right: randomly generated samples (dark gray), random

samples with a same expression code (light gray), random samples with a same identity code (purple).

Dec-Id Dec-Exp Div Div-Id Div-Exp Sp.

Training data − − 4.89 3.30 5.04 −
w/o mesh reg. 99.6 99.1 1.41 0.65 1.25 3.61
w/o exp. class. 100.0 42.8 4.81 0.11 4.87 2.01
w/o id. class. 7.8 98.9 5.28 4.87 2.05 2.22
w/o feat. loss 96.0 80.3 4.47 1.75 4.01 2.00
3DMM [1] 99.6 65.6 3.53 1.95 2.89 2.30
MAE [13] 99.5 53.3 3.89 0.92 3.76 2.00
CoMA [29] 97.5 65.5 3.38 1.71 2.90 2.47
Ours 98.6 89.7 4.74 1.94 4.22 2.01

Table 1: Quantitative evaluation with respect to decou-

pling of identity and expression (Dec-, percentage), diver-

sity (Div-, in mm) and specificity (Sp., in mm.). Higher is

better, except for specificity.

pling and diversity are lower than with the full model and

the inclusion of the feature loss improves expression clas-

sification by almost 10%. Note that decoupling the expres-

sion space is significantly more challenging than identity, as

the provided labels are very sparse. This effect is illustrated

on Figure 3c, where models with the same expression code

can lead to faces with slightly different expressions. Our

approach provides more coherent faces, as shown in Fig-

ure 3d.

Source Target CoMA MAE Ours

(a) Transferring expression to a target face

(b) Sampling novel identities from the transferred expression.

Figure 4: Comparison in terms of expression transfer. Top:

expression code zexpr transferred to a target identity. Bot-

tom: using zexpr from the source in the top row, we sample

novel identities (left to right: CoMA, MAE, ours).

5.5. Comparisons

We compare the proposed approach against state-of-the-

art generative 3D face models. Our goal is to build a de-
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coupled latent space, and thus we focus the comparison to

works that either enforce this explicitly [13], or combine a

model trained on expressions with a linear space of identi-

ties [29, 1]. We train all models using the same dimensions

(65 for identity and 20 for expression).

The model proposed in [13], called MAE in the follow-

ing, was trained with the same dataset and the same label

information (Section 5.2) for 200 epochs, with the default

parameters given in the paper. We initialize the encoder and

the decoder from the publicly available models.

The model proposed in [29], called CoMA in the fol-

lowing, does not explicitly favor decoupling and thus we

use the DeepFLAME alternative [25], which we also train

with the same dataset. This results in a PCA model built

from 299 identities and an autoencoder trained on 30330
displacements from the corresponding neutral face. For the

identity space we manually selected one neutral frame for

each sequence in BP4D-Spontaneous, as this dataset does

not provide labels. The model was trained using the pub-

licly available code for 200 epochs.

We also trained an additive linear model as described

in [1] using our dataset, and the same neutral/expression

separation selected for CoMA (see above). We refer to this

model as 3DMM.

Model quality We show quantitative results with respect

to decoupling, diversity and specificity in the bottom of Ta-

ble 1. Note that the proposed approach significantly outper-

forms the others in terms of expression decoupling, which

is more challenging than identity due to the sparse labeling.

This is shown qualitatively in Figure 4, where we trans-

ferred expressions by simply exchanging the latent code

zexp. We can see here that the expression is well preserved

by our model.

With respect to identity decoupling the four methods

perform similarly well, with 3DMM achieving the highest

value. Note that, in the case of MAE, the large decoupling

value is combined with the lowest diversity in identity (Div-

Id), which suggests limited generative capabilities (see sup-

plemental for a qualitative example).

We also outperform all methods in terms of diversity.

Combined with a specificity value that is among the best,

this implies that our model has learned to generate signifi-

cant variations that remain valid facial shapes.

Reconstruction of Sparse Data We also tested the gen-

eralization of the model with the reconstruction of partial

face data given very sparse constraints. To this purpose, we

use the dataset provided by [29], which contains 12 subjects

performing 12 extreme expressions. We take the middle

frame of each sequence and manually label 85 landmarks

(see supplemental), resulting in a testing set of 144 subjects.

Method λ = 0 λ = 0.01 λ = 10
3DMM [1] 6.62 4.64 2.46
MAE [13] 4.46 4.06 2.78
CoMA [29] 3.05 3.02 2.83
Ours 2.62 2.55 2.42

Table 2: Reconstruction of sparse data under different reg-

ularization weights (RMSE, in mm).

The face model is fitted by minimizing:

argmin
z

p
∑

i=1

||ṽi(z)− vi||
2

2
+ λ||z||2

2
, (13)

where vi are the 3D locations of the p key-points in the

testing set, ṽi(z) are the corresponding key-points in the

face model generated with code z, and λ the regularization

weight. We optimize using a gradient descent approach [24]

starting from a randomly sampled code z. Note that this is a

challenging scenario since the training set does not contain

such expressions, and the correspondences are very sparse.

We compare our results with those obtained with

3DMM, MAE and CoMA, using the same optimization for

all methods. We measure the reconstruction error against

the ground-truth surface and report the RMSE. Quantitative

results can be found in Table 2 for different regularization

weights λ. Our method outperforms in all cases, including

without regularization (λ = 0). We found that our model

can produce reasonable faces in most cases, while MAE

and CoMA easily produce un-realistic faces when the regu-

larization is not strong enough (qualitative examples can be

found in the supplemental material).

5.6. Extension to other factors

The proposed framework can easily be extended to other

factors of variation, such as identity/expression/viseme. We

refer to the supplemental material for an example of such a

model.

6. Conclusion

We explored in this work the use of adversarial train-

ing for learning decoupled 3D facial models and showed

that we can achieve state-of-the-art performance in terms

of decoupling and diversity of the generated samples. This

was obtained through a novel 3D-2D architecture, as well

as a training scheme that explicitly encourages decoupling

through the use of classifiers. Although the expressiveness

of the model remains limited by the diversity of the training

data and the accuracy of its labels, we show that adversarial

learning has the potential to make better use of the available

data in building performant 3D facial models.
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