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Abstract

We introduce a method to generate vectorial represen-

tations of visual classification tasks which can be used to

reason about the nature of those tasks and their relations.

Given a dataset with ground-truth labels and a loss func-

tion, we process images through a “probe network” and

compute an embedding based on estimates of the Fisher in-

formation matrix associated with the probe network param-

eters. This provides a fixed-dimensional embedding of the

task that is independent of details such as the number of

classes and requires no understanding of the class label se-

mantics. We demonstrate that this embedding is capable of

predicting task similarities that match our intuition about

semantic and taxonomic relations between different visual

tasks. We demonstrate the practical value of this framework

for the meta-task of selecting a pre-trained feature extractor

for a novel task. We present a simple meta-learning frame-

work for learning a metric on embeddings that is capable

of predicting which feature extractors will perform well on

which task without actually fine-tuning the model. Selecting

a feature extractor with task embedding yields performance

close to the best available feature extractor, with substan-

tially less computational effort than exhaustively training

and evaluating all available models.

1. Introduction

The success of deep learning in computer vision is due

in part to the fact that models trained for one task can often

be used on related tasks. Yet, no general framework exists

to describe and reason about relations between tasks. We

introduce the TASK2VEC embedding, a technique to repre-

sent tasks as elements of a vector space based on the Fisher

Information Matrix. The norm of the embedding correlates

with the complexity of the task, while the distance between

embeddings captures semantic similarities between tasks

(Fig. 1). When other natural distances are available, such as

the taxonomic distance in biological classification, we find

they correlate well with the embedding distance (Fig. 2).

We also introduce an asymmetric distance on the embed-

ding space that correlates with transferability between tasks.

Computation of the embedding leverages a duality be-

tween parameters (weights) and outputs (activations) in a

deep neural network (DNN). Just as the activations of a

DNN trained on a complex visual recognition task are a

rich representation of the input images, we show that the

gradients of the weights relative to a task-specific loss are

a rich representation of the task itself. Given a task defined

by a dataset D = {(xi, yi)}
N
i=1 of labeled samples, we feed

the data through a pre-trained reference convolutional neu-

ral network which we call a “probe network”, and compute

the diagonal Fisher Information Matrix (FIM) of the net-

work filter parameters to capture the structure of the task

(Sect. 3). Since the architecture and weights of the probe

network are fixed, the FIM provides a fixed-dimensional

representation of the task which is independent of, e.g., how

many categories there are. We show that this embedding si-

multaneously encodes the “difficulty” of the task, statistics

of the input domain, and which features extracted by the

probe network are discriminative for the task (Sect. 3.2).

Our task embedding can be used to reason about the

space of tasks and solve meta-tasks. As a motivating exam-

ple, we study the problem of selecting the best pre-trained

feature extractor to solve a new task (Sect. 4). This is par-

ticularly valuable when there is insufficient data to train or

fine-tune a generic model, and transfer of knowledge is es-

sential. To select an appropriate pre-trained model, we de-

sign a joint embedding of models and tasks in the same vec-

tor space, which we call MODEL2VEC. We formulate this

as a meta-learning problem where the objective is to find

an embedding such that that models whose embeddings are

close to a task exhibit good performance on that task.

We present large-scale experiments on a library of 1,460

fine-grained classification tasks constructed from existing

computer vision datasets. These tasks vary in the level of

difficulty and have orders of magnitude variation in train-

ing set size, mimicking the heavy-tailed distribution of real-

world tasks. Our experiments show that using TASK2VEC to

select an expert from a collection of 156 feature extractors

outperforms the standard practice of fine-tuning a generic
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model trained on ImageNet. We find that the selected expert

is close to optimal while being orders of magnitude faster

than brute-force selection.

2. Background and Related Work

What metric should be used on the space of tasks? This

depends critically on the meta-task we are considering. For

the purpose of model selection there are several natural met-

rics that may be considered.

Domain distance. Tasks distinguished by their domain

can be understood simply in terms of image statistics. Due

to the bias of different datasets, sometimes a benchmark

task can be identified just by looking at a few images [34].

The question of determining what summary statistics are

useful (analogous to our choice of probe network) has also

been considered. For example [9] train an autoencoder that

learns to extract fixed dimensional summary statistics that

can reproduce many different datasets accurately. However,

for general vision tasks, the domain is insufficient (detect-

ing pedestrians and reading license plates are different tasks

that share the same domain of street scene images).

Taxonomic distance. Some collections of tasks come

with a natural notion of semantic similarity based on a tax-

onomic hierarchy. We may say that classifying dog breeds

is closer to classification of cats than it is to classification

of plant species. When each task is specified by a set of

categories in a subtree of the hierarchy, the tasks inherit a

distance from the taxonomy. In this setting, we can define

Dtax(ta, tb) = min
i∈Sa,j∈Sb

d(i, j),

where Sa, Sb are the sets of categories in task ta, tb and

d(i, j) is an ultrametric or graph distance on the taxonomy.

However such taxonomies are not available for all tasks and

visual similarity need not be correlated with semantic simi-

larity.

Transfer distance. Another notion that abstracts away

the details of domains and labels is the transfer distance be-

tween task. For a specified DNN architecture, this is de-

fined as the gain in performance from pre-training a model

on task ta and then fine-tuning for task tb relative to the

performance of simply training on task tb using a fixed ini-

tialization (random or generic pre-trained)1. We write

Dft(ta → tb) =
E[ℓa→b]− E[ℓb]

E[ℓb]
,

where the expectations are taken over all training runs with

the selected architecture, training procedure and network

initialization, ℓb is the final test error obtained by training

1We improperly call this a distance but it is not necessarily symmetric

or even positive.

on task b from the chosen initialization, and ℓa→b is the er-

ror obtained instead when starting from a solution to task a
and then fine-tuning (with the selected procedure) on task

tb.

This notion of task transfer is the focus of Taskonomy

[39], which explores knowledge transfer in a curated col-

lection of 26 visual tasks, ranging from classification to 3D

reconstruction, defined on a common domain. They com-

pute transfer distances between pairs of tasks and use the

results to compute a directed hierarchy. Adding novel tasks

to the hierarchy requires computing the transfer distance to

all other tasks in the collection.

In contrast, we show it is possible to directly produce a

task embedding in constant time without computing pair-

wise distances. This makes it feasible to experiment on a

much larger library of 1,460 classification tasks in multiple

domains. The large task collection and cheap cost of em-

bedding allows us to tackle new meta-learning problems.

Fisher Kernels and Fisher Information. Our work takes

inspiration from Jaakkola and Hausler [16]. They propose

the “Fisher Kernel”, which uses the gradients of a genera-

tive model score function as a representation of similarity

between data items

K(x(1), x(2)) = ∇θ logP (x(1)|θ)TF−1∇θ logP (x(2)|θ).

Here, P (x|θ) is a parameterized generative model and F is

the Fisher information matrix. This provides a way to utilize

generative models in the context of discriminative learning.

Variants of the Fisher kernel have found wide use as a repre-

sentation of images [28, 29] and other structured data such

as protein molecules [17] and text [30]. Since the genera-

tive model can be learned on unlabeled data, several works

have investigated the use of Fisher kernel for unsupervised

learning [14, 31]. [35] learns a metric on the Fisher kernel

representation similar to our metric learning approach. Our

approach differs in that we use the FIM as a representation

of a whole dataset (task) rather than using model gradients

as representations of individual data items.

Fisher Information for CNNs. Our approach to task em-

bedding makes use of the Fisher Information matrix of a

neural network as a characterization of the task. Use of

Fisher information for neural networks was popularized

by Amari [6] who advocated optimization using natural

gradient descent which leverages the fact that the FIM is

a parameterization-independent metric on statistical mod-

els. Recent work has focused on approximators of FIM

appropriate in this setting (see e.g., [12, 10, 25]). FIM

has also been proposed for various regularization schemes

[5, 8, 22, 27], to analyze learning dynamics of deep net-

works [4], and to overcome catastrophic forgetting [19].
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Figure 1: Task embedding across a large library of tasks (best seen magnified). (Left) T-SNE visualization of the embed-

ding of tasks extracted from the iNaturalist, CUB-200, iMaterialist datasets. Colors indicate ground-truth grouping of tasks

based on taxonomic or semantic types. Notice that the bird classification tasks extracted from CUB-200 embed near the bird

classification task from iNaturalist, even though the original datasets are different. iMaterialist is well separated from iNat-

uralist, as it entails very different tasks (clothing attributes). Notice that some tasks of similar type (such as color attributes)

cluster together but attributes of different task types may also mix when the underlying visual semantics are correlated. For

example, the tasks of jeans (clothing type), denim (material) and ripped (style) recognition are close in the task embedding.

(Right) T-SNE visualization of the domain embeddings (using mean feature activations) for the same tasks. Domain em-

bedding can distinguish iNaturalist tasks from iMaterialist tasks due to differences in the two problem domains. However,

the fashion attribute tasks on iMaterialist all share the same domain and only differ in their labels. In this case, the domain

embeddings collapse to a region without recovering any sensible structure.

Meta Learning and Model Selection. Meta-learning has

a long history with much recent work dedicated to meta-

tasks such as neural architecture search, hyper-parameter

estimation and robust few-shot learning. The meta-learning

problem of model selection seeks to choose from a library

of classifiers to solve a new task [33, 2, 20]. Unlike our ap-

proach, these previous techniques usually address the ques-

tion via land-marking or active testing, in which a few

different models are evaluated and performance of the re-

mainder estimated by extension. This can be viewed as

a problem of completing unknown entries in a matrix de-

fined by performance of each model on each task. In com-

puter vision, this idea has been explored for selecting a de-

tector for a new category out of a large library of detec-

tors [26, 40, 38].

3. Task Embeddings via Fisher Information

Given an observed input image x and an unknown

task variable y (e.g., a label), a deep network is a family

of functions pw(y|x) parametrized by weights w, trained

to approximate the posterior p(y|x) by minimizing the

(possibly regularized) cross entropy loss Hpw,p̂(y|x) =
Ex,y∼p̂[− log pw(y|x)], where p̂ is the empirical distribu-

tion defined by the training set D = {(xi, yi)}
N
i=1. It is

useful, especially in transfer learning, to think of the net-

work as composed of two parts: a feature extractor which

computes some representation z = φw(x) of the input data,

and a “head,” or classifier, which predicts the distribution

p(y|z) given the representation z.

Not all network weights are equally important in predict-

ing the task variable. The importance, or “informative con-

tent”, of a weight for the task can be quantified by consider-

ing a perturbation w′ = w+δw of the weights, and measur-

ing the average Kullbach-Leibler (KL) divergence between

the original output distribution pw(y|x) and the perturbed

one pw′(y|x). To second-order approximation, this is

Ex∼p̂ KL(pw′(y|x) ‖ pw(y|x)) = δwT · F · δw + o(δw2),

where F is the Fisher information matrix (FIM):

F = Ex,y∼p̂(x)pw(y|x)

[

∇w log pw(y|x)∇w log pw(y|x)
T
]

.

that is, the covariance of the scores (gradients of the log-

likelihood) with respect to the model parameters.

The FIM is a Riemannian metric on the space of proba-

bility distributions [7], and provides a measure of the infor-

mation a particular parameter (weight or feature) contains

about the joint distribution pw(x, y) = pw(y|x)p̂(x). If the

classification performance for a given task does not depend

strongly on a parameter, the corresponding entries in the
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FIM will be small. The FIM is also related to the (Kol-

mogorov) complexity of a task, a property that can be used

to define a computable metric of the learning distance be-

tween tasks [3]. Finally, the FIM can be interpreted as an

easy-to-compute positive semidefinite upper-bound to the

Hessian of the cross-entropy loss and coincides with it at

local minima [24]. In particular, “flat minima” correspond

to weights that have, on average, low Fisher information

[5, 13].

3.1. TASK2VEC embedding using a probe network

While the network activations capture the information in

the input image which are needed to infer the image label,

the FIM indicates the set of feature maps which are more

informative for solving the current task. Following this in-

tuition, we use the FIM to represent the task itself. How-

ever, the FIMs computed on different networks are not di-

rectly comparable. To address this, we use a single “probe”

network pre-trained on ImageNet as a feature extractor and

re-train only the classifier layer on any given task, which

usually can be done efficiently. After training is complete,

we compute the FIM for the feature extractor parameters.

Since the full FIM is unmanageably large for rich probe

networks based on CNNs, we make two additional approxi-

mations. First, we only consider the diagonal entries, which

implicitly assumes that correlations between different filters

in the probe network are not important. Second, since the

weights in each filter are usually not independent, we aver-

age the Fisher Information for all weights in the same filter.

The resulting representation thus has fixed size, equal to the

number of filters in the probe network. We call this embed-

ding method TASK2VEC.

Robust Fisher computation. Since the FIM is a local

quantity, it is affected by the local geometry of the training

loss landscape, which is highly irregular in many deep net-

work architectures [21], and may be too noisy when trained

with few samples. To avoid this problem, instead of direct

computation, we use a more robust estimator that leverages

connections to variational inference. Assume we perturb

the weights ŵ of the network with Gaussian noise N (0,Λ)
with precision matrix Λ, and we want to find the optimal Λ
which yields a good expected error, while remaining close

to an isotropic prior N (ŵ, λ2I). That is, we want to find Λ
that minimizes:

L(ŵ; Λ) = Ew∼N (ŵ,Λ)[Hpw,p̂(y|x)]

+ β KL(N (0,Λ) ‖N (0, λ2I)),

where H is the cross-entropy loss and β controls the weight

of the prior. Notice that for β = 1 this reduces to the Evi-

dence Lower-Bound (ELBO) commonly used in variational

inference. Approximating to the second order, the optimal

value of Λ satisfies (see Supplementary Material):

β

2N
Λ = F +

βλ2

2N
I.

Therefore, β
2NΛ ∼ F + o(1) can be considered as an es-

timator of the FIM F , biased towards the prior λ2I in the

low-data regime instead of being degenerate. In case the

task is trivial (the loss is constant or there are too few sam-

ples) the embedding will coincide with the prior λ2I , which

we will refer to as the trivial embedding. This estimator has

the advantage of being easy to compute by directly mini-

mizing the loss L(ŵ; Σ) through Stochastic Gradient Vari-

ational Bayes [18], while being less sensitive to irregulari-

ties of the loss landscape than direct computation, since the

value of the loss depends on the cross-entropy in a neighbor-

hood of ŵ of size Λ−1. As mentioned previously, we esti-

mate one parameter per filter, rather than per weight, which

in practice means that we constrain Λii = Λjj whenever

wi and wj belongs to the same filter. In this case, opti-

mization of L(ŵ; Λ) can be done efficiently using the local

reparametrization trick of [18].

3.2. Properties of the TASK2VEC embedding

The task embedding we just defined has a number of

useful properties. For illustrative purposes, consider a two-

layer sigmoidal network for which an analytic expression

can be derived (see Supplementary Materials). The FIM

of the feature extractor parameters can be written using the

Kronecker product as

F = Ex,y∼p̂(x)pw(y|x)[(y − p)2 · S ⊗ xxT ]

where p = pw(y = 1|x) and the matrix S = wwT ⊙ zzT ⊙
(1 − z)(1 − z)T is an element-wise product of classifier

weights w and first layer feature activations z. It is informa-

tive to compare this expression to an embedding based only

on the dataset domain statistics, such as the (non-centered)

covariance C0 = E
[

xxT
]

of the input data or the covari-

ance C1 = E
[

zzT
]

of the feature activations. One could

take such statistics as a representative domain embedding

since they only depend on the marginal distribution p(x) in

contrast to the FIM task embedding, which depends on the

joint distribution p(x, y). These simple expressions high-

light some important (and more general) properties of the

Fisher embedding we now describe.

Invariance to the label space. The task embedding does

not directly depend on the task labels but only on the pre-

dicted distribution pw(y|x) of the trained model. Infor-

mation about the ground-truth labels y is encoded in the

weights w which are a sufficient statistic of the task [5]. In

particular, the task embedding is invariant to permutations

of the labels y and has fixed dimension (number of filters

of the feature extractor) regardless of the output space (e.g.,

k-way classification with varying k).
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Figure 2: Distance between species classification tasks. (Left) Task similarity matrix ordered by hierarchical clustering.

Note that the dendrogram produced by the task similarity matches the taxonomic clusters (indicated by color bar). (Center)

For tasks extracted from iNaturalist and CUB, we compare the cosine distance between tasks to their taxonomical distance.

As the size of the task embedding neighborhood increases (measured by number of tasks in the neighborhood), we plot the

average taxonomical distance of tasks from the neighborhood center. While the task distance does not perfectly match the

taxonomical distance (whose curve is shown in orange), it shows a good correlation. Difference are both due to the fact that

taxonomically close species may need very different features to be classified, creating a mismatch between the two notions

of distance, and because for some tasks in iNaturalist too few samples are provided to compute a good embedding. (Right)

Correlation between L1 norm of the task embedding (distance from origin) and test error obtained on the task.

Encoding task difficulty. As we can see from the expres-

sions above, if the model is very confident in its predictions,

E[(y − p)2] goes to zero. Hence, the norm of the task em-

bedding ‖F‖⋆ scales with the difficulty of the task for a

given feature extractor φ. Fig. 2 (Right) shows that even for

more complex models trained on real data, the FIM norm

correlates with test performance.

Encoding task domain. Data points x that are classi-

fied with high confidence, i.e., p is close to 0 or 1, will

have a lower contribution to the task embedding than points

near the decision boundary since p(1 − p) is maximized at

p = 1/2. Compare this to the covariance matrix of the data,

C0, to which all data points contribute equally. Instead, in

TASK2VEC the information on the domain is based on data

near the decision boundary (task-weighted domain embed-

ding).

Encoding useful features for the task. The FIM depends

on the curvature of the loss function with the diagonal en-

tries capturing the sensitivity of the loss to model parame-

ters. Specifically, in the two-layer model, one can see that

if a given feature is uncorrelated with y, the correspond-

ing blocks of F are zero. In contrast, a domain embedding

based on feature activations of the probe network (e.g., C1)

only reflects which features vary over the dataset without

indication of whether they are relevant to the task.

3.3. Symmetric and asymmetric TASK2VEC metrics

By construction, the Fisher embedding on which

TASK2VEC is based captures fundamental information

about the structure of the task. We may therefore expect

that the distance between two embeddings correlates posi-

tively with natural metrics on the space of tasks. However,

there are two problems in using the Euclidean distance be-

tween embeddings: the parameters of the network have dif-

ferent scales, and the norm of the embedding is affected by

complexity of the task and the number of samples used to

compute the embedding.

Symmetric TASK2VEC distance. To make the distance

computation robust, we propose to use the cosine distance

between normalized embeddings:

dsym(Fa, Fb) = dcos

( Fa

Fa + Fb

,
Fb

Fa + Fb

)

,

where dcos is the cosine distance, Fa and Fb are the two

task embeddings (i.e., the diagonal of the Fisher Informa-

tion computed on the same probe network), and the division

is element-wise. This is a symmetric distance which we ex-

pect to capture semantic similarity between two tasks. For

example, we show in Fig. 2 that it correlates well with the

taxonomical distance between species on iNaturalist.

On the other hand, precisely for this reason, this distance

is ill-suited for tasks such as model selection, where the (in-

trinsically asymmetric) transfer distance is more relevant.

Asymmetric TASK2VEC distance. In a first approxima-

tion, that does not consider either the model or the training

procedure used, positive transfer between two tasks depends

both on the similarity between two tasks and on the com-

plexity of the first. Indeed, pre-training on a general but
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complex task such as ImageNet often yields a better result

than fine-tuning from a close dataset of lower complexity.

In our case, complexity can be measured as the distance

from the trivial embedding. This suggests the following

asymmetric score, again improperly called a “distance” de-

spite being asymmetric and possibly negative:

dasym(ta → tb) = dsym(ta, tb)− αdsym(ta, t0),

where t0 is the trivial embedding, and α is an hyperparam-

eter. This has the effect of bringing more complex models

closer. The hyper-parameter α can be selected based on

the meta-task. In our experiments, we found that the best

value of α (α = 0.15 when using a ResNet-34 pretrained

on ImageNet as the probe network) is robust to the choice

of meta-tasks.

3.4. MODEL2VEC: Co­embedding models and tasks

By construction, the TASK2VEC distance ignores details

of the model and only relies on the task. If we know what

task a model was trained on, we can represent the model by

the embedding of that task. However, in general we may

not have such information (e.g., black-box models or hand-

constructed feature extractors). We may also have multiple

models trained on the same task with different performance

characteristics. To model the joint interaction between task

and model (i.e., architecture and training algorithm), we aim

to learn a joint embedding of the two.

We consider for concreteness the problem of learning

a joint embedding for model selection. In order to em-

bed models in the task space so that those near a task

are likely to perform well on that task, we formulate the

following meta-learning problem: Given k models, their

MODEL2VEC embedding are the vectors mi = Fi + bi,
where Fi is the task embedding of the task used to train

model mi (if available, else we set it to zero), and bi is a

learned “model bias” that perturbs the task embedding to

account for particularities of the model. We learn bi by opti-

mizing a k-way cross entropy loss to predict the best model

given the task distance (see Supplementary Material):

L = E[− log p(m | dasym(t,m0), . . . , dasym(t,mk))].

After training, given a novel query task t, we can then pre-

dict the best model for it as the argmini dasym(t,mi), that

is, the model mi embedded closest to the query task.

4. Experiments

We test TASK2VEC on a large collection of tasks and

models with a range of task similarities2. Our experiments

aim to test both qualitative properties of the embedding and

2Here we discuss only classification tasks, the supplement describes

additional experiments on pixel-labeling and regression tasks

its performance on meta-learning tasks. We use an off-the-

shelf ResNet-34 pretrained on ImageNet as our probe net-

work, which we found to give the best overall performance

(see Sect. 4.2). The collection of tasks is generated starting

from the following four main datasets. iNaturalist [36]:

Each task corresponds to species classification in a given

taxonomical order. For instance, the “Rodentia task” is to

classify species of rodents. Each task is defined on a sepa-

rate subset of the images in the original dataset; that is, the

domains of the tasks are disjoint. CUB-200 [37]: We use

the same procedure as iNaturalist to create tasks. All tasks

are classifications inside orders of birds (the aves taxonom-

ical class) and have generally much fewer training samples

than corresponding tasks in iNaturalist. iMaterialist [1]

and DeepFashion [23]: Each image in these datasets is as-

sociated with several binary attributes (e.g., style attributes)

and categorical attributes (e.g., color, type of dress, mate-

rial). We binarize the categorical attributes and consider

each attribute as a separate task. Notice that in this case, all

tasks share the same domain and are naturally correlated.

In total, our collection of tasks has 1460 tasks (207

iNaturalist, 25 CUB, 228 iMaterialist, 1000 DeepFashion).

While a few tasks have many training examples (e.g., hun-

dred thousands), most have just hundreds or thousands of

samples. This simulates the heavy-tail distribution of data

in real-world applications.

For model selection experiments, we assemble a library

of “expert” feature extractors. These are ResNet-34 mod-

els pre-trained on ImageNet and then fine-tuned on a spe-

cific task or collection of related tasks (see Supplementary

Materials for details). We also consider a “generic” expert

pre-trained on ImageNet without any fine-tuning. Finally,

for each combination of expert feature extractor and task,

we trained a linear classifier on top of the expert in order to

solve the selected task using the expert.

In total, we trained 4,100 classifiers, 156 feature extrac-

tors and 1,460 embeddings. The total effort to generate the

final results was about 1,300 GPU hours.

Meta-tasks. In Sect. 4.2, for a given task we aim to pre-

dict, using TASK2VEC , which expert feature extractor will

yield the best classification performance. In particular, we

formulate two model selection meta-tasks: iNat + CUB and

Mixed. The first consists of 50 tasks and experts from iNat-

uralist and CUB, and aims to test fine-grained expert selec-

tion in a restricted domain. The second contains a mix of

26 curated experts and 50 random tasks extracted from all

datasets, and aims to test model selection between different

domains and tasks (see Supplementary Material for details).

4.1. Task Embedding Results

Task Embedding qualitatively reflects taxonomic dis-

tance for iNaturalist. For tasks extracted from the iNat-

uralist dataset (classification of species), the taxonomical
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Figure 3: TASK2VEC often selects the best available experts. Violin plot of the test error distribution (shaded) on tasks

from the CUB-200 dataset (columns) obtained by training a linear classifier over several expert feature extractors (points).

Most specialized feature extractors perform similarly on a given task, and similar or worse than a generic feature extractor

pre-trained on ImageNet (blue triangles). However, in some cases a carefully chosen expert, trained on a related task, can

greatly outperform all others (long lower whiskers). The model selection algorithm based on TASK2VEC can predict an

expert to use for the task (red cross, lower is better) and often recommends the optimal, or near optimal, feature extractor

without performing an expensive brute-force training and evaluation over all available experts. Columns are ordered by norm

of the task embedding vector. Tasks with lower embedding norm have lower error and more “complex” task (task with higher

embedding norm) tend to benefit more from a specialized expert.

distance between orders provides a natural metric of the se-

mantic similarity between tasks. In Fig. 2, we compare the

symmetric TASK2VEC distance with the taxonomical dis-

tance, showing strong agreement.

Task embedding for iMaterialist. In Fig. 1, we show a

t-SNE visualization of the embedding for iMaterialist and

iNaturalist tasks. Task embedding yields interpretable re-

sults: Tasks that are correlated in the dataset, such as binary

classes corresponding to the same categorical attribute, may

end up far away from each other and close to other tasks that

are semantically more similar (e.g., the jeans category task

is close to the ripped attribute and the denim material). In

the visualization, this non-trivial grouping is reflected in the

mixture of colors of semantically related nearby tasks.

We also compare the TASK2VEC embedding with a do-

main embedding baseline, which only exploits the input

distribution p(x) rather than the task distribution p(x, y).
While some tasks are highly correlated with their domain

(e.g., tasks from iNaturalist), other tasks differ only on the

labels (e.g., all the attribute tasks of iMaterialist, which

share the same clothes domain). Accordingly, the domain

embedding recovers similar clusters on iNaturalist. How-

ever, on iMaterialst, domain embedding collapses all tasks

to a single uninformative cluster (not a single point due to

slight noise in embedding computation).

Task Embedding encodes task difficulty. The scatter-plot

in Fig. 1 compares the norm of embedding vectors vs. per-

formance of the best expert (or task specific model for cases

where pre-train and test tasks coincide). As suggested by

the analysis for the two-layer model, the norm of the task

embedding also correlates with the complexity of the task

for real tasks and model architectures.

4.2. Model Selection

Given a task, our aim is to select an expert feature extrac-

tor that maximizes the classification performance on that

task. We propose two strategies: (1) embed the task and

select the feature extractor trained on the most similar task,

and (2) jointly embed the models and tasks, and select a

model using the learned metric (see Section 3.4). Notice

that (1) does not use knowledge of the model performance

on various tasks, which makes it more widely applicable

but requires we know what task a model was trained for and

may ignore the fact that models trained on slightly differ-

ent tasks may still provide an overall better feature extrac-

tor (for example by over-fitting less to the task they were

trained on).

In Table 1 we compare the overall results of the various

proposed metrics on the model selection meta-tasks. On

both the iNat+CUB and Mixed meta-tasks, the Asymmetric

TASK2VEC model selection is close to the ground-truth op-

timal, and significantly improves over both chance, and over

using an generic ImageNet expert. Notice that our method

has O(1) complexity, while searching over a collection of
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Meta-task Optimal Chance ImageNet TASK2VEC Asymmetric TASK2VEC MODEL2VEC

iNat + CUB 31.24 +59.52% +30.18% +42.54% +9.97% +6.81%

Mixed 22.90 +112.49% +75.73% +40.30% +29.23% +27.81%

Table 1: Model selection performance. Average error obtained on two meta-learning datasets by exhaustive search to select

the optimal expert, and relative error increase when using cheaper model selection methods. A general model pre-trained

on ImageNet performs better than picking an expert at random (chance). However, picking an expert using the Asymmetric

TASK2VEC distance achieves substantially better performance and can be further improved by meta-learning (MODEL2VEC).

N experts is O(N).

Error distribution. In Fig. 3, we show in detail the error

distribution of the experts on multiple tasks. It is interest-

ing to observe that the classification error obtained using

most experts clusters around some mean value, and little

improvement is observed over using a generic expert. On

the other hand, for each task there often exist a few ex-

perts that can obtain significantly better performance on the

task than a generic expert. This confirms the importance

of having access to a large collection of experts when solv-

ing a new task, especially if few training data are available.

TASK2VEC provides an efficient way to index this collection

and identify an appropriate expert for a new task without

brute-force search.

Dependence on task dataset size. Selecting pre-trained

experts is especially important when the novel query task

has relatively few training samples. In Fig. 4, we show how

the performance of TASK2VEC model selection varies as a

function of dataset size. Even for tasks with few samples,

TASK2VEC selection performs nearly as well as using the

optimal (ground-truth) expert. If in addition to training a

classifier, we fine-tune the selected expert, error decreases

further. At all dataset sizes, we see that the expert selected

by TASK2VEC significantly outperforms the standard base-

line of using a generic ImageNet pre-trained model.

Choice of probe network. In Table 2, we show that

DenseNet [15] and ResNet architectures [11] perform sig-

nificantly better when used as probe networks to compute

the TASK2VEC embedding than a VGG [32] architecture.

5. Discussion
TASK2VEC is an efficient way to represent a task as a

fixed dimensional vector with several appealing properties.

Chance VGG-13 DenseNet-121 ResNet-13

Top-10 +13.95% +4.82% +0.30% +0.00%

All +59.52% +38.03% +10.63% +9.97%

Table 2: Choice of probe network. Mean increase in er-

ror relative to optimal (ground-truth) expert selection on

the iNat+CUB meta-task for different choices of the probe-

network. We also report the performance on a subset of 10

tasks with the most training samples to show the effect of

data size in choosing a probe architecture.
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Figure 4: TASK2VEC improves outperforms baselines

at different dataset sizes: Performance of model selec-

tion on a subset of 4 tasks as a function of the number

of samples available to train relative to optimal model se-

lection (dashed orange). Training a classifier on the fixed

feature extractor selected by TASK2VEC (solid red) is al-

ways better than using a generic ImageNet feature extractor

(dashed red). The same holds when fine-tuning the feature

extractor (blue curves). In the low-data regime, the fixed

pre-trained experts selected by TASK2VEC even outperform

costly fine-tuning of a generic ImageNet feature extractor

(dashed blue).

The embedding norm correlates with the task difficulty,

and the cosine distance between embeddings is predictive

of both natural semantic distances between tasks (e.g., the

taxonomic distance for species classification) and the fine-

tuning distance for transfer learning. Having a represen-

tation of tasks paves the way for a wide variety of meta-

learning tasks. In this work, we focused on selection of

an expert feature extractor in order to solve a new task, and

showed that using TASK2VEC to select an expert from a col-

lection can improve test performance over the de facto base-

line of using an ImageNet pre-trained model while adding

only a small overhead to the training process.

We demonstrate that TASK2VEC is scalable to thousands

of tasks, allowing us to reconstruct a topology on the task

space, and to test meta-learning solutions. The current ex-

periments highlight the usefulness of our methods. Even

so, our collection does not capture the full complexity and

variety of tasks that one may encounter in real-world situa-

tions. Future work should further test effectiveness, robust-

ness, and limitations of the embedding on larger and more

diverse collections.
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