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Figure 1: We introduce a novel corpus of utterances that refer to the shape of objects and use it to develop multimodal neural

speakers and listeners with broad generalization capacity. Top row: Our neural speaker generates utterances to distinguish

a ‘target’ shape from two ‘distractor’ shapes in unseen: images of synthetic data (left), out-of-distribution (OOD) real-world

images (center), and 3D point-clouds of CAD models (right). Bottom row: Our neural listener interprets human-generated

utterances in unseen (left-to-right): images of synthetic data, OOD object classes (here, lamps), and OOD isolated object

parts. Listener scores indicate the model’s confidence about which object the utterance refers to. The words are color-coded

according to their importance, as judged by the attention module of this listener (warmer color indicates higher attention).

Abstract

In this work we explore how fine-grained differences be-

tween the shapes of common objects are expressed in lan-

guage, grounded on 2D and/or 3D object representations.

We first build a large scale, carefully controlled dataset of

human utterances each of which refers to a 2D rendering of

a 3D CAD model so as to distinguish it from a set of shape-

wise similar alternatives. Using this dataset, we develop

neural language understanding (listening) and production

(speaking) models that vary in their grounding (pure 3D

forms via point-clouds vs. rendered 2D images), the de-

gree of pragmatic reasoning captured (e.g. speakers that

reason about a listener or not), and the neural architecture

*Corresponding author: optas@cs.stanford.edu

Webpage: https://ai.stanford.edu/˜optas/shapeglot

(e.g. with or without attention). We find models that perform

well with both synthetic and human partners, and with held

out utterances and objects. We also find that these models

are capable of zero-shot transfer learning to novel object

classes (e.g. transfer from training on chairs to testing on

lamps), as well as to real-world images drawn from furni-

ture catalogs. Lesion studies indicate that the neural lis-

teners depend heavily on part-related words and associate

these words correctly with visual parts of objects (without

any explicit supervision on such parts), and that transfer to

novel classes is most successful when known part-related

words are available. This work illustrates a practical ap-

proach to language grounding, and provides a novel case

study in the relationship between object shape and linguis-

tic structure when it comes to object differentiation.
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1. Introduction

Objects are best understood in terms of their structure

and function, both of which rest on a foundation composed

of object parts and their relations [9, 8, 47, 7]. Natural lan-

guage has been optimized across human history to solve

the problem of efficiently communicating the aspects of the

world most relevant to one’s current goals [19, 11]. As

such, language can provide an effective medium to describe

the shape and the parts of different objects, and as a re-

sult, to express object differences. For instance, when we

see a chair we can analyze it into semantically meaningful

parts, like its back and its seat, and can combine words to

create utterances that reflect its geometric and topological

shape-properties e.g. ‘has a wide seat with a solid back’.

Moreover, given a specific communication context, we can

craft references that are not merely true, but which are also

relevant e.g. we can refer to the lines found in a chair’s back

to distinguish it among other similar objects (see Fig. 1).

In this paper we explore this interplay between natu-

ral, referential language, and the shape of common objects.

While a great deal of recent work has explored visually-

grounded language understanding [18, 27, 44, 24, 23, 43],

the resulting models have limited capacity to reflect the ge-

ometry and topology (i.e. the shape) of the underlying ob-

jects. This is because reference in previous studies was pos-

sible using properties like the object’s color, or spatial con-

figuration, including the absolute or relative (to other ob-

jects) location. Indeed, eliciting language that refers only to

shape properties requires carefully controlling the objects,

their presentation, and the underlying linguistic task. To

address these challenges, in this work we utilize 3D CAD

representations of objects which allow for flexible and con-

trolled presentation (i.e. textureless, uniform-color objects,

viewed in a fixed pose). We further make use of the 3D

form to construct a reference game task in which the re-

ferred object is shape-wise similar to the distracting ob-

jects. The result of this effort is a new multimodal dataset,

termed ShapeGlot, comprised of 4,511 unique chairs from

ShapeNet [3] and 78,789 referential utterances. In Shape-

Glot chairs are organized into 4,054 sets of size 3 (repre-

senting communication contexts) and each utterance is in-

tended to distinguish a chair in context.

We use ShapeGlot to build and analyze a pool of modern

neural language understanding (listening) and production

(speaking) models. These models vary in their grounding

(pure 3D forms via point-clouds vs. rendered 2D images),

the degree of pragmatic reasoning captured (e.g. speakers

that reason about a listener or not) and their precise neu-

ral architecture (e.g. with or without word attention, with

context-free, or context-aware object encodings). We eval-

uate the effect of these choices on the original reference

game task with both synthetic and human partners and find

models with strong performance. Since language conveys

abstractions such as object parts, that are shared between

object categories, we hypothesize that our models learn ro-

bust representations that are transferable to objects of un-

seen classes (e.g. training on chairs while testing on lamps).

Indeed, we show that these models have strong generaliza-

tion capacity to novel object classes, as well as to real-world

images drawn from furniture catalogs.

Finally, we explore how our models are succeeding on

their communication tasks. We demonstrate that the neu-

ral listeners learn to prioritize the same abstractions in ob-

jects (i.e. properties of chair parts) that humans do in solv-

ing the communication task, despite never being provided

with an explicit decomposition of these objects into parts.

Similarly, we find that neural listeners transfer to novel

object classes more successfully when known part-related

words are available. Finally, we show that pragmatic neural

speakers who consult an imagined (simulated) listener pro-

duce significantly more informative utterances than listener-

unaware, literal speakers, as measured by human perfor-

mance in identifying the correct object given the generated

utterance.

2. Dataset and task

Hard context

Easy context

ShapeGlot consists of

triplets of chairs coupled

with referential utterances

that aim to distinguish one

chair (the ‘target’) from the

remaining two (the ‘dis-

tractors’). To obtain such

utterances, we paired par-

ticipants from Amazon’s

Mechanical Turk (AMT)

to play an online reference game [15]. On each round of the

game the two players were shown the same triplet of chairs.

The designated target chair was privately highlighted for

one player (the ‘speaker’) who was asked to send a message

through a chat box such that their partner (the ‘listener’)

could successfully select it. To ensure speakers used only

shape-related information, we scrambled the positions of

the chairs for each participant independently and used tex-

tureless, uniform-color renderings of pre-aligned 3D CAD

models, taken from the same viewpoint. To ensure that

the communicative interaction was natural, no constraints

were placed on the chat box: referring expressions from the

speaker were occasionally followed by clarification ques-

tions from the listener or other discourse.

A key decision in building our dataset concerned the

construction of contexts that would reliably elicit diverse

and potentially very fine-grained contrastive language. To

achieve diversity we considered all ∼7,000 chairs from

ShapeNet. This object class is geometrically complex,

highly diverse, and abundant in the real world. To control

8939



the granularity of fine-grained distinctions that were neces-

sary in solving the communication task, we constructed two

types of contexts: hard contexts consisted of very similar

shape-wise chairs, and easy contexts consisted of less sim-

ilar chairs. To measure shape-similarity in a scalable man-

ner, we used the semantically rich latent space of a Point

Cloud-AutoEncoder (PC-AE) [1]. We note, that point-

clouds are an intrinsic representation of a 3D object, oblique

to color or texture. After extracting a 3D point-cloud from

the surface of each ShapeNet model we computed the un-

derlying K-nearest-neighbor graph among all models ac-

cording to their PC-AE embedding distances. For a chair

with sufficiently high-in degree on this graph (correspond-

ing intuitively to a canonical chair) we contrasted it with

four distractors: the two closest to it in latent-space, and

two that were sufficiently far (see inset and Supplementary

Materials for details). Last, we note that we counterbal-

anced the collected utterances, by considering every chair in

a given context as the context’s target (in different games).

Before we present our neural agents, we identify some

distinctive properties of our corpus. Human performance

on the reference game was high, but listeners made signif-

icantly more errors in the hard contexts (accuracy 94.2%
vs. 97.2%, z = 13.54, p < 0.001). Also, in hard contexts

longer utterances were used to describe the targets (on av-

erage 8.4 words vs. 6.1, t = −35, p < 0.001). A wide

spectrum of descriptions was elicited, ranging from more

holistic/categorical (e.g. ‘the rocking chair’) common for

easy contexts, to more complex and fine-grained language,

(e.g. ‘thinner legs but without armrests’) common for hard

ones. Interestingly, 78% of the produced utterances con-

tained at least one part-related word: back, legs, seat, arms,

or closely related synonyms e.g. armrests.

3. Neural listeners

Developing neural listeners that reason about shape-

related properties is a key contribution of our work. Below

we conduct a detailed comparison between three distinct ar-

chitectures, highlight the effect of different regularization

techniques, and investigate the merits of different represen-

tations of 3D objects for the listening task, namely, 2D ren-

dered images and 3D surface point clouds. In what follows,

we denote the three objects of a communication context as

O = {o1, o2, o3}, the corresponding word-tokenized utter-

ance as U = u1, u2, . . . and as t ∈ O the designated target.

Our proposed listener is inspired by [26]. It takes as in-

put a (latent code) vector that captures shape information

for each of the objects in O, and a (latent code) vector for

each token of U , and outputs an object–utterance compat-

ibility score L(oi, U) ∈ [0, 1] for each input object. At its

core lies a multi-modal LSTM [16] that receives as initial

input (“is grounded” with) the vector corresponding to one

object, processes the word-sequence U , and is read out by

an MLP to yield a single number (a compatibility score).

This is repeated for each object, while sharing all network

parameters across the objects. The resulting three scores

are soft-max normalized and compared to the ground-truth

indicator vector of the target, under the cross-entropy loss.*

Shape encoders We experiment with three repre-

sentations to capture the shapes of the underlying ob-

jects: (a) the bottleneck vector of a pretrained Point Cloud-

AutoEncoder (PC-AE), (b) the embedding provided by a

convolutional network operating on single-view images of

non-textured 3D objects, or (c) a combination of (a) and (b).

Specifically, for (a) we use the PC-AE architecture of [1]

trained with single-class point clouds extracted from the

surfaces of 3D CAD models, while for (b) we use the activa-

tions of the penultimate layer of a VGG-16 [32], pre-trained

on ImageNet [6], and fine-tuned on an 8-way classification

task with images of objects from ShapeNet. For each rep-

resentation we project the corresponding latent code vec-

tor to the input space of the LSTM using a fully connected

(FC) layer with L2-norm weight regularization. While there

are many ways to incorporate image-based with point-cloud

based features in the LSTM, we found that the best perfor-

mance occurs when we i) ground the LSTM with the image-

based codes, ii) concatenate the LSTM’s output (after pro-

cessing U ) with the point cloud-based codes, and iii) feed

the concatenated result in a shallow MLP that produces the

compatibility score (see Supp. for a visual overview of the

pipeline and more details). We note that proper regular-

ization is critical: adding dropout at the input layer of the

LSTM and L2 weight regularization and dropout at and be-

fore the FC projecting layers improves performance ∼10%.

Incorporating context information Our baseline lis-

tener architecture (Baseline, just described) first scores each

object separately then applies softmax normalization to

yield a score distribution over the three objects. We also

consider two alternative architectures that explicitly encode

information about the entire context before scoring a sin-

gle object. The first alternative (Early-Context), is identi-

cal to the proposed architecture, except for the codes used

to ground the LSTM. Specifically, if vi is the image-based

code vector of the i-th object, instead of using vi as the

grounding vector for oi, a shallow convolutional network is

introduced to create a more complex (context-aware) fea-

ture. This network, of which the output is the ground-

ing code for oi, receives the signal f(vj , vk)||g(vj , vk)||vi,
where f, g are the symmetric max/mean-pool functions,

|| denotes feature-wise concatenation and vj , vk are the

codes of the remaining objects. Here, we use symmet-

ric functions to induce the orderless nature of our con-

texts. The second alternative (Combined-Interpretation) in-

puts the image-based code vectors for all three objects se-

*Architecture details and hyper-parameters for all the experiments, are

provided in the Supplementary Materials.
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quentially to the LSTM and then proceeds to process the

tokens of U once, before yielding three scores. Similarly to

the Baseline architecture, point clouds are incorporated in

both alternatives at the MLP operating after the LSTM.

Word attention We hypothesized that a listener

forced to prioritize a few tokens in each utterance would

learn to prioritize tokens that express properties that distin-

guish the target from the distractors (and, thus, perform bet-

ter). To test this hypothesis, we augment the listener models

with a standard bilinear attention mechanism [31]. Specifi-

cally, to estimate the ‘importance’ of each token ui we com-

pare the output of the LSTM when it inputs ui (denoting the

output as ri); with the hidden state after the entire utterance

has been processed (denoted as h). The relative importance

of each token is ai =
∆

rTi ×Watt×h, where Watt is a trainable

diagonal matrix. The new (weighted) output of the LSTM

is:
∑|U |

i=1 ri ⊙ âi, where âi = exp(ai)
∑|U|

j
exp(aj)

and ⊙ is the

point-wise product.

4. Listener experiments

We begin our evaluation of the proposed listeners using

two reference tasks based on different data splits. In the

language generalization task, we test on target objects that

were seen as targets in at least one context during training

but ensure that all utterances in the test split are from un-

seen speakers. In the more challenging object generaliza-

tion task, we restrict the set of objects that appeared as tar-

gets in the test set to be disjoint from those in training such

that all speakers and objects in the test split are new. For

each of these tasks, we evaluate choices of input modality

and word attention, using [80%, 10%, 10%] of the data, for

training, validating and testing purposes.

Baseline listener accuracies are shown in Table 2.† Over-

all the Baseline achieves good performance. As expected,

the listeners have higher accuracy on the language general-

ization task (3.2% on average). The attention mechanism on

words yields a mild performance boost, as long as images

are part of the input. Interestingly, images provide a signifi-

cantly better input than point-clouds when only one modal-

ity is used. This may be due to the higher-frequency content

of images (we use point-clouds with only 2048 points), or

the fact that VGG was pre-trained while the PC-AE was

not. However, we find significant gains in accuracy (4.1%
on average) from exploiting the two object representations

simultaneously, implying a complementarity among them.

Next, we evaluate how the different approaches in incor-

porating context information described in Section 3 affect

listener performance. We focus on the more challenging

object generalization task, using listeners that include at-

†In all results mean accuracies and standard errors across 5 random

seeds are reported, to control for the data-split populations and the initial-

ization of the neural-network.

tention and both object modalities. We report the findings

in Table 1. We find that the Baseline and Early-Context

models perform best overall, outperforming the Combined-

Interpretation model, which does not share weights across

objects. This pattern held for both hard and easy con-

texts of our dataset. We further explore the small portion

(∼14%) of our test set that use explicitly contrastive lan-

guage: superlatives (‘skinniest’) and comparatives (‘skin-

nier’). Somewhat surprisingly we find that the Baseline

architecture remains competitive against the architectures

with more explicit context information. The Baseline model

thus achieves high performance and is the most flexible (at

test time it can be applied to arbitrary-sized contexts); we

focus on this architecture in the explorations below.

4.1. Exploring learned representations

Linguistic ablations Which aspects of a sentence are

most critical for our listener’s performance? To inspect the

properties of words receiving the most attention, we ran

a part-of-speech tagger on our corpus. We found that the

highest attention weight is placed on nouns, controlling for

the length of the utterance. However, adjectives that modify

nouns received more attention in hard contexts (controlling

for the average occurrence in each context), where nouns

are often not sufficient to disambiguate (see Fig. 2A). To

more systematically evaluate the role of higher-attention to-

kens in listener performance, we conducted an utterance le-

sioning experiment. For each utterance in our dataset, we

successively replaced words with the <UNK> token accord-

ing to three schemes: (1) from highest attention to lowest,

(2) from lowest attention to highest, and (3) in random or-

der. We then fed these through an equivalent listener trained

without attention. We found that up to 50% of words can be

removed without much performance degradation, but only

if these are low attention words (see Fig. 2B). Our word-

attentive listener thus appears to rely on context-appropriate

content words to successfully disambiguate the referent.

Visual ablations To test the extent to which our listener is

relying on the same semantic parts of the object as humans,

we next conducted a lesion experiment on the visual input.

We took the subset of our test set where (1) all chairs had

complete part annotations available [42] and (2) the corre-

sponding utterance mentioned a single part (17% of our test

set). We then created lesioned versions of all three objects

on each trial by removing pixels of images (and/or points

when point-clouds are used), corresponding to parts accord-

ing to two schemes: removing a single part or keeping a sin-

gle part. We did this either for the mentioned one, or another

part, chosen at random. We report listener accuracies on

these lesioned objects in Table 3. We found that removing

random parts hurts the accuracy by 10.4% on average, but

removing the mentioned part dropped accuracy more than
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Architecture
Subpopulations

Overall Hard Easy Sup-Comp

Combined-Interpretation 75.9± 0.5% 67.4± 1.0% 83.8± 0.6% 74.4± 1.5%
Early-Context 79.4± 0.8% 70.1 ± 1.3% 88.1± 0.6% 75.6± 2.2%

Baseline 79.6 ± 0.8% 69.9± 1.3% 88.8 ± 0.4% 76.3 ± 1.3%

Table 1: Comparing different ways to include context. The simplest Baseline model performs as well as more complex

alternatives. Subpopulations are the subsets of test data containing: hard contexts (shape-wise similar distractors), easy

contexts, superlatives or comparatives.

Input

Modality

Language

Task

Object

Task

No

Attention

Point Cloud 67.6± 0.3% 66.4± 0.7%
Image 81.2± 0.5% 77.4± 0.7%
Both 83.1± 0.4% 78.9± 1.0%

With

Attention

Point Cloud 67.4± 0.3% 65.6± 1.4%
Image 81.7± 0.5% 77.6± 0.8%
Both 83.7 ± 0.3% 79.6 ± 0.8%

Table 2: Performance of the Baseline listener architec-

ture using different object representations and with/without

word level attention, in two reference tasks.
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Figure 2: (A) The listener places more attention on adjec-

tives in hard (orange) triplets than easy (blue) ones. The

histogram’s heights depict mean attention scores normal-

ized by the length of the underlying utterances; the error

bars are bootstapped 95% confidence intervals. (B) Lesion-

ing highest attention words to lowest worsens performance

more than lesioning random words or lesioning lowest at-

tention words.

three times as much, nearly to chance. Conversely, keeping

only the mentioned part while lesioning the rest of the im-

age merely drops accuracy by 10.6% while keeping a non-

mentioned (random) part alone brings accuracy down close

to chance. In other words, on trials when participants de-

pended on information about a part to communicate the ob-

ject to their partner, we found that visual information about

that part was both necessary and sufficient for the perfor-

mance of our listener model.

Single Part

Lesioned

Single Part

Present

Mentioned Part 42.8%± 2.3 66.8%± 1.4
Random Part 67.0%± 2.9 38.8%± 2.0

Table 3: Evaluating the part-awareness of neural listeners

by lesioning object parts. Results shown are for image-only

listeners, with average accuracy of 77.4% when intact ob-

jects are used. Similar findings regarding point-cloud-based

listeners are provided in the Supplementary Materials.

5. Neural speakers

Architecture Next, we explore models that learn to gen-

erate an utterance that refers to the target and which dis-

tinguishes it from the distractors. Similarly to a neural

listener the heart of these (speaker) models is an LSTM

which encodes the objects of a communication context, and

then decodes an utterance. Specifically, for an image-based

speaker, on the first three time steps, the LSTM input is the

VGG code of each object. Correspondingly, for a point-

cloud-based speaker, the LSTM’s initial input is the object

codes extracted from a PC-AE. During training and after

the object codes are processes by the LSTM, the LSTM

receives sequentially the i-th utterance token, while at its

output if forced to predict the (i + 1)-th token (i.e. we use

teacher-force [38]). For these models we feed the target

object always last (third), eliminating the need to represent

an index indicating the target’s position. To find the best

model hyper-parameters (e.g. L2-weights, dropout-rate and

# of LSTM neurons) and the optimal amount of training, we

sample synthetic utterances from the model during training

and use a pretrained listener to select the result with the

highest listener accuracy. We found this approach to pro-

duce results that yield better quality utterances than evalu-

ating with listening-unaware metrics like BLEU [29].

Variations The above (literal) speakers can learn to gen-

erate language that discriminates targets from distractors.

To test the degree to which distractor objects are used for

this purpose, we experimented with context-unaware speak-

ers that were provided with the latent code of the target only,
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(and are otherwise identical to the above literal models).

Furthermore, and motivated by the recursive social reason-

ing characteristic of human pragmatic language use (as for-

malized in the Rational Speech Act framework [12]), we

created pragmatic speakers that choose utterances accord-

ing to their capacity to be discriminative, as judged by a

pretrained ‘internal’ listener. In this case, we sample ut-

terances from the (literal) speakers, but score (i.e. re-rank)

them with:

β log(PL(t|U,O)) +
(1− β)

|U |α
log(PS(U |O, t)), (1)

where PL is the listener’s probability to predict the target

(t) and PS is the likelihood of the literal speaker to gener-

ate U . The parameter α controls a length-penalty term to

discourage short sentences [40], while β controls the rela-

tive importance of the speaker’s vs. the listener’s opinions.

6. Speaker experiments

Qualitatively, our speakers produce good object descrip-

tions, see Fig. 3 for examples, with the pragmatic speak-

ers yielding more discriminating utterances.‡ To quantita-

tively evaluate the speakers we measured their success in

reference games with two different kinds of partners: with

independently-trained neural listeners and with human lis-

teners. To conduct a fair study when we used a neural lis-

tener for evaluations, we split the training data in half. The

evaluating listener was trained using one half, while the ‘in-

ternal’ listener used by the pragmatic speaker was trained

on the remaining half. For the human-based evaluations,

we first used the literal and pragmatic variants to generate

an utterance for every context of the test split of the object-

generalization task (which contains 1200 unique contexts).

We then showed the resulting utterances to participants re-

cruited with AMT and asked them to select the object from

context that the speaker was referring to. We collected ap-

proximately 2.2 responses for each context. Here, we used

the synthetic utterances with the highest scores (Eq. 1) from

each model, with optimal (per-validation) α and an ‘aggres-

sive’ β = 1.0. We note that while the point-based speakers

operate solely with 3D point-clouds, we sent their generated

utterances to AMT coupled with CAD rendered images, so

as to keep the visual (AMT-human) presentation identical

across the two variants.

We found (see Table 4) that our pragmatic speakers per-

form best with both neural and human partners. While their

success with the neural listener model may be unsurpris-

ing, given the architectural similarity of the internal listener

and the evaluating listener, human listeners were 10.4 per-

centage points better at picking out the target on utterances

produced by the pragmatic vs. literal speaker for the best-

performing (image-based) variant. Similar to what we saw

‡The project’s webpage contains additional qualitative results.

Table 4: Evaluating neural speakers operating with 3D

point-cloud or image-based object representations, across

architectural variants.

Speaker

Architecture
Modality

Neural

Listener

Human

Listener

Context

Unaware

Point Cloud

Image

59.1± 2.0%
64.0± 1.7%

-

-

Literal
Point Cloud

Image

71.5 ±1.3%
76.6± 1.0%

66.2

68.3

Pragmatic
Point Cloud

Image

90.3 ±1.3%
92.2 ±0.5%

69.4

78.7

in the listener experiments (Section 4), we found that (sole)

point-cloud-based speakers achieve lower performance than

image-based variants. However, we also found an asymme-

try between the listening and speaking tasks: while context-

unaware (Baseline) listeners achieved high performance,

we found that context-unaware speakers fare significantly

worse than context-aware ones. Last, we note that both lit-

eral and pragmatic speakers produce succinct descriptions

(average sentence length 4.21 vs. 4.97) but the pragmatic

speakers use a much richer vocabulary (14% more unique

nouns and 33% more unique adjectives, after controlling for

average length discrepancy).

7. Out-of-distribution transfer learning

Language is abstract and compositional. These prop-

erties make language use generalizable to new situations

(e.g. using concrete language in novel scientific domains)

and robust to low-level perceptual variation (e.g. lighting).

In our final set of experiments we examine the degree to

which our neural listeners and speakers learn representa-

tions that are correspondingly robust: that capture associ-

ations between the visual and the linguistic domains that

permit generalization out of the training domain.

Understanding out-of-class reference To test the gener-

alization of listeners to novel stimuli, we collected refer-

ring expressions in communication contexts made of ob-

jects in ShapeNet drawn from new classes: beds, lamps,

sofas and tables. These classes are distinct from chairs, but

share some parts and properties, making transfer possible

for a sufficiently compositional model. For each of these

classes we created 200 contexts made of random triplets

of objects; and collected 2 referring expressions for each

target in each context (from participants on AMT). Exam-

ples of visual stimuli and collected utterances are shown in

Fig. 4 (bottom-row). To this data, we applied an (image-

only, with/without-attention) listener trained on the Shape-

Glot (i.e. chairs) data. We avoid using point-clouds since
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the one with the circle on the bottom

it has rollers on the feet

the chair with the thin-est legs

square back, straight legspragmatic speaker

distractors

0.55 0.16 0.29

0.29 0.20 0.51

0.19 0.32 0.49

0.00 0.14 0.86

target

literal speaker

listener scores

listener scores

distractors target distractors target

the one with the thick-est legs

0.05 0.85 0.10

thin-est seat

0.19 0.24 0.57

Figure 3: Pragmatic vs. literal speakers in unseen (‘hard’) contexts. The pragmatic generations successfully discern the

target even in cases where the literal generations fail. The left and center contexts (gray-color) are used by image-based

speakers/listeners, and the right-most by point-cloud-based ones. The utterances are color-coded according to the attention

placed by a separate evaluating neural listener whose classification scores are shown above each corresponding utterance.

distractors target

gap between the back and the seat

distractors target distractors target

circular arm reststwo legs connected

the bed has a fancy metal 

headboard and two pillows

0.06 0.02 0.92

very narrow and tall rectangular 

table with four tapered legs

0.06 0.07 0.87

listener scores:

targetdistractors targetdistractors targetdistractors

this lamp is wire mesh

0.01 0.02 0.97

Figure 4: Examples of out-of-distribution neural speaking and listening. Top row: model generations for real-world cat-

alogue images. The speaker successfully describes fine grained shape differences on images with rich color and texture

content; two factors not present in the training data. Bottom row: results of applying a word-attentive listener on renderings

of CAD objects from unseen classes with human-produced utterances. The listener can detect the (often localized) visual

cues that humans refer to, despite the large visual discrepancy of these objects from the training-domain of chairs. (The

utterances are color coded according to the attention placed to them by the attentive neural listener.)

unlike VGG which was finetuned with multiple ShapeNet

classes, the PC-AE was pre-trained on a single-class.

As shown in Table 5, the average accuracy is well above

chance in all transfer categories (56% on average). More-

over, constraining the evaluation to utterances that contain

only words that are in the ShapeGlot training vocabulary

(75% of all utterances, column: known) only slightly im-

proves the results. This is likely because utterances with

unknown words still contain enough known vocabulary for

the model to determine meaning. We further dissect the

known population into utterances that contain part-related

words (with-part) and their complement (without-part). For

the training domain of chairs without-part utterances yield

slightly higher accuracy. However the useful subcategories

that support this performance (e.g. ‘recliner’) do not sup-

port transfer to new categories. Indeed, we observe that

for transfer classes the listener performs better when part-

related words are present. Furthermore, the performance

gap between the two populations appears to become larger

as the perceptual distance between the transfer and training

domains increases (compare sofas to lamps).

Describing real images Transfer from synthetic data to

real data is often difficult for modern machine learning

models, that are attuned to subtle statistics of the data. We

explored the ability of our models to transfer to real chair

images (rather than the training images which were ren-
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Table 5: Transfer-learning of neural listeners trained with

chair data to novel object classes for different subpopula-

tions of utterances. For reference, the accuracies of the ob-

ject generalization task are included (chairs, first row); The

last row reports the average of the transfer/novel categories

only. All numbers are average accuracies of five listeners

trained with different splits of the object generalization task

(See Section 7 for details, and Supp. for other variants.).

Population

Class entire known with part without part

chair 77.4 77.8 77.0 80.5

bed 56.4 55.8 63.8 51.5

lamp 50.1 51.9 60.3 47.1

sofa 53.6 55.0 55.1 54.7

table 63.7 65.5 68.3 62.7

average 56.0 57.1 61.9 54.9

dered without color or texture from CAD models) by cu-

rating a modest-sized (300) collection of chair images from

online furniture catalogs. These images were taken from

a similar view-point to that of the training renderings and

have rich color and texture content. We applied the (image-

only) pragmatic speaker to these images, after subtracting

the average ImageNet RGB values (i.e. before passing the

images to VGG). Examples of the speaker’s productions are

shown in Figure 4. For each chair, we randomly selected

two distractors and asked 2 AMT participants to guess the

target given the (highest-scoring) utterance produced by our

speaker. Human listeners correctly guessed the target chair

70.1% of the time. Our speaker appears to transfer success-

fully to real images, which contain color, texture, pose vari-

ation, and likely other differences from our training data.

8. Related work

Image labeling and captioning Our work builds on

recent progress in the development of vision models that in-

volve some amount of language data, including object cate-

gorization [32, 46] and image captioning [17, 37, 41]. Un-

like object categorization, which pre-specifies a fixed set of

class labels to which all images must project, our systems

use open-ended, referential language. Similarly to other re-

cent works in image captioning [25, 27, 44, 35, 24, 23, 43],

instead of captioning a single image (or entity therein), in

isolation, our systems learn how to communicate across di-

verse communication contexts.

Reference games In our work we use reference games

[18] in order to operationalize the demand to be relevant

in context. The basic arrangement of such games can be

traced back to the language games explored by Wittgenstein

[39] and Lewis [22]. For decades, such games have been a

valuable tool in cognitive science to quantitatively measure

inferences about language use and the behavioral conse-

quences of those inferences [30, 20, 4, 34]. Recently, these

approaches have also been adopted as a benchmark for dis-

criminative or context-aware NLP [28, 2, 33, 36, 26, 5, 21].

Rational speech acts framework Our models draw

on recent formalization of human language use in the Ra-

tional Speech Acts (RSA) framework [12]. At the core of

RSA is the Gricean proposal [14] that speakers are agents

who select utterances that are parsimonious yet informative

about the state of the world. RSA formalizes this notion of

informativity as the expected reduction in the uncertainty of

an (internally simulated) listener, as our pragmatic speaker

does. The literal listener in RSA uses semantics that mea-

sure compatibility between an utterance and a situation, as

our baseline listener does. Previous work has shown that

RSA models account for context sensitivity in speakers and

listeners [13, 26, 45, 10]. Our results add evidence for the

effectiveness of this approach in the shape domain.

9. Conclusion

In this paper, we have explored models of natural lan-

guage grounded in the shape of common objects. The ge-

ometry and topology of objects can be complex and the lan-

guage we have for referring to them is correspondingly ab-

stract and compositional. This makes the shape of objects

an ideal domain for exploring grounded language learning,

while making language an especially intriguing source of

evidence for shape variations. We introduced the Shape-

Glot corpus of highly descriptive referring expressions for

shapes in context. Using this data we investigated a vari-

ety of neural listener and speaker models, finding that the

best variants exhibited strong performance. These models

draw on both 2D and 3D object representations and appear

to reflect human-like part decomposition, though they were

never explicitly trained with object parts. Finally, we found

that the learned models are surprisingly robust, transferring

to real images and to new classes of objects. Future work

will be required to understand the transfer abilities of these

models and how this depends on the compositional structure

they have learned.
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