
What Else Can Fool Deep Learning?

Addressing Color Constancy Errors on Deep Neural Network Performance

Mahmoud Afifi1

1York University, Toronto

mafifi@eecs.yorku.ca

Michael S Brown1,2

2Samsung AI Center, Toronto

mbrown@eecs.yorku.ca

Abstract

There is active research targeting local image manip-

ulations that can fool deep neural networks (DNNs) into

producing incorrect results. This paper examines a type

of global image manipulation that can produce similar ad-

verse effects. Specifically, we explore how strong color casts

caused by incorrectly applied computational color con-

stancy – referred to as white balance (WB) in photography

– negatively impact the performance of DNNs targeting im-

age segmentation and classification. In addition, we discuss

how existing image augmentation methods used to improve

the robustness of DNNs are not well suited for modeling

WB errors. To address this problem, a novel augmentation

method is proposed that can emulate accurate color con-

stancy degradation. We also explore pre-processing train-

ing and testing images with a recent WB correction algo-

rithm to reduce the effects of incorrectly white-balanced im-

ages. We examine both augmentation and pre-processing

strategies on different datasets and demonstrate notable im-

provements on the CIFAR-10, CIFAR-100, and ADE20K

datasets.

1. Introduction

There is active interest in local image manipulations that

can be used to fool deep neural networks (DNNs) into pro-

ducing erroneous results. Such “adversarial attacks” often

result in drastic misclassifications. We examine a less ex-

plored problem of global image manipulations that can re-

sult in similar adverse effects on DNNs’ performance. In

particular, we are interested in the role of computational

color constancy, which makes up the white-balance (WB)

routine on digital cameras.

We focus on computational color constancy because it

represents a common source of global image errors found

in real images. When WB is applied incorrectly on a cam-

era, it results in an undesirable color cast in the captured im-

age. Images with such strong color casts are often discarded

class: Persian cat class: carton class: Walker Hound class: snorkel

Correct WB Incorrect WBCorrect WB Incorrect WBC
la

ss
ifi

ca
tio

n
 re

su
lts

Se
m

an
tic

 s
eg

m
en

ta
tio

n
re

su
lts

Correct WB Incorrect WB

Correct WB Incorrect WB
wall tree car plant grass road rock floor personshelfpainting

Figure 1. The effect of correct/incorrect computational color

constancy (i.e., white balance) on (top) classification results by

ResNet [29]; and (bottom) semantic segmentation by RefineNet

[39].

by users. As a result, online image databases and reposito-

ries are biased to contain mostly correctly white-balanced

images. This is an implicit assumption that is not acknowl-

edged for datasets composed of images crawled from the

web and online. However, in real-world applications, it is

unavoidable that images will, at some point, be captured

with the incorrect WB applied. Images with incorrect WB

can have unpredictable results on DNNs trained on white-

balanced biased training images, as demonstrated in Fig. 1.

Contribution We examine how errors related to compu-

tational color constancy can adversely affect DNNs focused

on image classification and semantic segmentation. In ad-

dition, we show that image augmentation strategies used to

expand the variation of training images are not well suited

to mimic the type of image degradation caused by color

constancy errors. To address these problems, we introduce

a novel augmentation method that can accurately emulate

243

realistic color constancy degradation. We also examine a

newly proposed WB correction method [2] to pre-process

testing and training images. Experiments on CIFAR-10,

CIFAR-100, and the ADE20K datasets using the proposed

augmentation and pre-processing correction demonstrate

notable improvements to test image inputs with color con-

stancy errors.

2. Related Work

Computational Color Constancy Cameras have on-

board image signal processors (ISPs) that convert the raw-

RGB sensor values to a standard RGB output image (de-

noted as an sRGB image) [33, 47]. Computational color

constancy, often referred to as WB in photography, is ap-

plied to mimic the human’s ability to perceive objects as

the same color under any type of illumination. WB is

used to identify the color temperature of the scene’s il-

lumination either manually or automatically by estimat-

ing the scene’s illumination from an input image (e.g.,

[1, 6, 7, 9, 17, 25, 30, 51]). After WB is applied to the

raw-RGB image, a number of additional nonlinear photo-

finishing color manipulations are further applied by the ISP

to render the final sRGB image [2]. These photo-finishing

operations include, but are not limited to, hue/saturation

manipulation, general color manipulation, and local/global

tone mapping [8, 27, 33, 44, 47]. Cameras generally have

multiple photo-finishing styles the user can select [2,33,34].

Post-WB Correction in sRGB Images When WB is ap-

plied incorrectly, it results in sRGB images with strong

color casts. Because of the nonlinear photo-finishing oper-

ations applied by the ISP after WB, correcting mistakes in

the sRGB image is non-trivial [2, 45]. Current solutions re-

quire meta-data, estimated from radiometric calibration or

raw-image reconstruction methods (e.g., [14, 34, 45]), that

contains the necessary information to undo the particular

nonlinear photo-finishing processes applied by the ISP. By

converting back to a raw-RGB space, the correct WB can

be applied using a diagonal correction matrix and then re-

rendered by the ISP. Unfortunately, meta-data to inverse the

camera pipeline and re-render the image is rarely available,

especially for sRGB images gleaned from the web—as is

the case with existing computer vision datasets. Recently,

it was shown that white balancing sRGB images can be

achieved by estimating a high-degree polynomial correction

matrix [2]. The work in [2], referred to WB for sRGB im-

ages (WB-sRGB), introduces a data-driven framework to

estimate such polynomial matrix for a given testing image.

We build on the WB-sRGB [2] by extending this framework

to emulate WB errors on the final sRGB images, instead of

correcting WB. We also used the WB-sRGB method [2] to

examine applying a pre-process WB correction on training

t = 4800K

t = 2850K t = 3800K

t = 5500K t = 7500K

t =2850K t = 3800K

t =5500K t = 7500K

RGB Jittering Swapping

HSV Jittering Dropping

(A) Rendered image with correct WB (B) Real rendering with different WB

(C) Traditional color augmentation (D) Our generated images

Figure 2. (A) An sRGB image from a camera with the correct WB

applied. (B) Images from the same camera with the incorrect WB

color temperatures (t) applied. (C) Images generated by process-

ing image (A) using existing augmentation methods—the images

clearly do not represent those in (B). (D) Images generated from

(A) using our proposed method detailed in Sec. 4.

and testing images in order to improve the performance of

DNN models against incorrectly white-balanced images.

Adversarial Attacks DNN models are susceptible to ad-

versarial attacks in the form of local image manipulation

(e.g., see [18, 26, 37, 54]). These images are created by

adding a carefully crafted imperceptible perturbation layer

to the original image [26, 54]. Such perturbation layers are

usually represented by local non-random adversarial noise

[3, 26, 41, 54, 58] or local spatial transformations [57]. Ad-

versarial examples are able to misguide pre-trained mod-

els to predict either a certain wrong response (i.e., tar-

geted attack) or any wrong response (i.e., untargeted at-

tack) [3, 12, 40]. While incorrect color constancy is not an

explicit attempt at an adversarial attack, the types of fail-

ures produced by this global modification act much like an

untargeted attack and can adversely affect DNNs’ perfor-

mance.

Data Augmentation To overcome limited training data

and to increase the visual variation, image augmentation

techniques are applied to training images. Existing im-

age augmentation techniques include: geometric transfor-

mations (e.g., rotation, translation, shearing) [19, 28, 28,

46], synthetic occlusions [60], pixel intensity processing

(e.g., equalization, contrast adjustment, brightness, noise)

[19, 56], and color processing (e.g., RGB color jittering

and PCA-based shifting, HSV jittering, color channel drop-

ping, color channel swapping) [15, 19, 23, 32, 36, 38, 42, 48,

49]. Traditional color augmentation techniques randomly

change the original colors of training images aiming for

better generalization and robustness of the trained model in

244

the inference phase. However, existing color augmentation

methods often generate unrealistic colors which rarely hap-

pen in reality (e.g., green skin or purple grass). More impor-

tantly, the visual appearance of existing color augmentation

techniques does not well represent the color casts produced

by incorrect WB applied onboard cameras, as shown in

Fig. 2. As demonstrated in [4, 13, 22], image formation has

an important effect on the accuracy of different computer

vision tasks. Recently, a simplified version of the camera

imaging pipeline was used for data augmentation [13]. This

augmentation method in [13], however, explicitly did not

consider the effects of incorrect WB due to the subsequent

nonlinear operations applied after WB. To address this is-

sue, we propose a camera-based augmentation technique

that can synthetically generates images with realistic WB

settings.

DNN Normalization Layers Normalization layers are

commonly used to improve the efficiency of the training

process. Such layers apply simple statistics-based shifting

and scaling operations to the activations of network layers.

The shift and scale factors can be computed either from the

entire mini-batch (i.e., batch normalization [31]) or from

each training instance (i.e., instance normalization [55]).

Recently, batch-instance normalization (BIN) [43] was in-

troduced to ameliorate problems related to styles/textures

in training images by balancing between batch and instance

normalizations based on the current task. Though the BIN

is designed to learn the trade-off between keeping or reduc-

ing original training style variations using simple statistics-

based operations, the work in [43] does not provide any

study regarding incorrect WB settings. The augmentation

and pre-processing methods proposed in our work directly

target training and testing images and do not require any

change to a DNNs architecture or training regime.

3. Effects of WB Errors on Pre-trained DNNs

We begin by studying the effect of incorrectly white-

balanced images on pre-trained DNN models for image

classification and semantic segmentation. As a motivation,

Fig. 3 shows two different WB settings applied to the same

image. Fig. 3 shows that the DNN’s attention for the same

scene is considerably altered by changing the WB setting.

For quantitative evaluations, we adopted several DNN

models trained for the ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC) 2012 [21] and the ADE20K

Scene Parsing Challenge 2016 [61]. Generating an entirely

new labeled testing set composed of images with incorrect

WB is an enormous task—ImageNet classification includes

1,000 classes and pixel-accurate semantic annotation re-

quires ∼60 minutes per image [50]. In lieu of a new testing

set, we applied our method which emulates WB errors to

(A) Color temperature: 2850K; ResNet-50 response: bee
In-camera WB Synthetic WB

(B) Color temperature: 7500K; ResNet-50 response: rapeseed
In-camera WB Synthetic WB

ReLU activation
(layer 44)

ReLU activation
(layer 44)Input image Input image

Figure 3. Image rendered with two different color temperatures

(denoted by t) using in-camera rendering and our method. (A)

Image class is bee. (B) Image class is rapeseed. Classification

results were obtained by ResNet-50 [29].

the validation images of each dataset. Our method will be

detailed shortly in Sec. 4.

Classification We apply our method to ImageNet’s vali-

dation set to generate images with five different color tem-

peratures and two different photo-finishing styles for a to-

tal of ten WB variations for each validation image; 899

grayscale images were excluded from this process. In to-

tal, we generated 491,010 images. We examined the fol-

lowing six well-known DNN models, trained on the orig-

inal ImageNet training images: AlexNet [36], VGG-16 &

VGG-19 [52], GoogLeNet [53], and ResNet-50 & ResNet-

101 [29]. Table 1 shows the accuracy drop for each model

when tested on our generated validation set (i.e., with differ-

ent WB and photo-finishing settings) compared to the orig-

inal validation set. In most cases, there is a drop of ∼10%

in accuracy. Fig. 4 shows an example of the impact of in-

correct WB.

Semantic Segmentation We used the ADE20K valida-

tion set for 2,000 images, and generated ten images with

different WB/photo-finishing settings for each image. At

the end, we generated a total of 20,000 new images. We

tested the following two DNN models trained on the orig-

inal ADE20K training set: DilatedNet [16, 59] and Re-

fineNet [39]. Table 2 shows the effect of improperly white-

balanced images on the intersection-over-union (IoU) and

(A) Original image (B) Three generated images with different WB settings

VGG: E cat
GoogLeNet: S cat
ResNet: E cat

VGG: candle
GoogLeNet: candle
ResNet: candle

VGG: candle
GoogLeNet: S cat
ResNet: E cat

VGG: candle
GoogLeNet: S cat
ResNet: E cat

t =2850K t =3800K t = 7500K

Figure 4. Pre-trained models are negatively impacted by incorrect

WB settings. (A) Original image. (B) Generated images with dif-

ferent WB color temperatures (denoted by t). Classification results

of: VGG-16 [52], GoogLeNet [53], and ResNet-50 [29] are writ-

ten on top of each image. The terms E and S stand for Egyptian

and Siamese, respectively.

245

Table 1. Adverse performance on ImageNet [21] due to the in-

clusion of incorrect WB versions of its validation images. The

models were trained on the original ImageNet training set. The re-

ported numbers denote the changes in the top-1 accuracy achieved

by each model.

Model Effect on top-1 accuracy

AlexNet [36] -0.112

VGG-16 [52] -0.104

VGG-19 [52] -0.102

GoogLeNet [53] -0.107

ResNet-50 [29] -0.111

ResNet-101 [29] -0.109

Table 2. Adverse performance on ADE20K [61] due to the inclu-

sion of incorrect WB versions of its validation images. The mod-

els were trained on ADE20K’s original training set. The reported

numbers denote the changes in intersection-over-union (IoU) and

pixel-wise accuracy (pxl-acc) achieved by each model on the orig-

inal validation.

Model Effect on IoU Effect on pxl-acc

DilatedNet [16, 59] -0.023 -0.024

RefineNet [39] -0.031 -0.026

pixel-wise accuracy (pxl-acc) obtained by the same models

on the original validation set. While DNNs for segmenta-

tion fare better than the results for classification, we still

incur a drop of over 2% in performance.

4. Proposed Method to Emulate WB Errors

Given an sRGB image, denoted as Itcorr
, that is assumed

to be white-balanced with the correct color temperature, our

goal is to modify Itcorr
’s colors to mimic its appearance as

if it were rendered by a camera with different (incorrect)

color temperatures, t, under different photo-finishing styles.

Since we do not have access to Itcorr
’s original raw-RGB im-

age, we cannot re-render the image from raw-RGB to sRGB

using a standard camera pipeline. Instead, we have adopted

a data-driven method that mimics this manipulation directly

in the sRGB color space. Our framework draws heavily

from the WB-sRGB data-driven framework [2], which was

proposed to correct improperly white-balanced sRGB im-

ages. Our framework, however, “emulates” WB errors on

the rendered sRGB images. Fig. 5 provides an overview of

our method.

4.1. Dataset

Our method relies on a large dataset of sRGB images

generated by [2]. This dataset contains images rendered

with different WB settings and photo-finishing styles. There

is a ground truth sRGB image (i.e., rendered with the

“correct” color temperature) associated with each training

image. The training sRGB images were rendered using

five different color temperatures: 2850 Kelvin (K), 3800K,

5500K, 6500K, and 7500K. In addition, each image was

rendered using different camera photo-finishing styles. In

our WB emulation framework, we used 17,970 images from

this dataset (1,797 correct sRGB images each with ten cor-

responding images rendered with five different color tem-

peratures and two different photo-finishing styles, Camera

Standard and Adobe Standard).

4.2. Color Mapping

Next, we compute a mapping between the correct white-

balanced sRGB image to each of its ten corresponding im-

ages. We follow the same procedure of the WB-sRGB

method [2] and use a kernel function, ϕ, to project RGB

colors into a high-dimensional space. Then, we perform

polynomial data fitting on these projected values. Specifi-

cally, we used ϕ:[R, G, B]T → [R, G, B, RG, RB, GB, R2,

G2, B2]T [24]. The data fitting can be represented by a color

transformation matrix Mtcorr→t computed by the following

minimization equation:

argmin
Mtcorr→t

‖Mtcorr→t ϕ (Itcorr
)− It‖F , (1)

where Itcorr
and It are 3×n color matrices of the white-

balanced image rendered with the correct color temperature

tcorr and color values of the same image rendered with the

target different color temperature t, respectively, n is the

total number of pixels in each image, ‖.‖F is the Frobenius

norm, and Mtcorr→t is represented as a nonlinear 3×9 full

matrix.

We compute a color transformation matrix between each

pair of correctly white-balanced image and its correspond-

ing target image rendered with a specific color temperature

and photo-finishing. In the end, we have ten matrices asso-

ciated with each image in our training data.

4.3. Color Feature

As shown in Fig. 5, when augmenting an input sRGB

image to have different WB settings, we search our dataset

for similar sRGB images to the input image. This search

is not based on scene content, but on the color distribu-

tion of the image. As a result, we represent each image in

the training set with the RGB-uv projected color histogram

feature used in [2]. Each histogram feature is represented

as an m×m×3 tensor. To further reduce the size of the

histogram feature, we apply principal component analysis

(PCA) to the three-layer histogram feature. This transfor-

mation maps the zero-centered vectorized histogram to a

new lower-dimensional space. Our implementation used a

55-dimensional PCA vector. Our final training data there-

fore consists of the compacted feature vector of each train-

ing white-balanced image, the associated color transforma-

tion matrices, and the PCA coefficient matrix and bias vec-

tor.

4.4. KNN Retrieval

Given a new input image Iin, we extract its compacted

color feature v, and then search for training examples with

246

Input sRGB image

Histogram feature
Compacted

feature
KNN

retrieval
Generate color transformation matrices

from similar training examples
Apply color transformation
matrices to the input image

Sy
nt

he
tic

 W
B

re
nd

er
in

g

…

t = 5500K

t = 2850K t = 3800K

t = 7500K

…

Compacted
features

…

…

… …

Images with different WB/photo-finishing Images with
correct WB Training

histogram
features

&

…

(A) Training data

AS

CS

(B) WB emulation

(C) Our generated images

Training image

A set of color
transformation matrices
is associated with each

compacted featureAS

CS
t = 2850K

t = 2850K

t = 7500K

t = 7500K

…
t = 3800K

t = 3800K

… …
Figure 5. Our WB emulation framework. (A) A dataset of 1,797 correctly white-balanced sRGB images [2]; each image has ten corre-

sponding sRGB images rendered with five different color temperatures and two photo-finishing styles, Camera Standard (CS) and Adobe

Standard (AS). For each white-balanced image, we generate its compact histogram feature and ten color transformation matrices to the

corresponding ten images. (B) Our WB emulation pipeline (detailed in Sec. 4). (C) The augmented images for the input image that

represent different color temperatures (denoted by t) and photo-finishing styles.

color distributions similar to the input image’s color distri-

bution. The L2 distance is adopted as a similarity metric

between v and the training compacted color features. Af-

terwards, we retrieve the color transformation matrices as-

sociated with the nearest k training images. The retrieved

set of matrices is represented by Ms = {M
(j)
s }j=k

j=1 , where

M
(j)
s represents the color transformation matrix that maps

the jth white-balanced training image colors to their corre-

sponding image colors rendered with color temperature t.

4.5. Transformation Matrix

After computing the distance vector d between v and the

nearest training features, we compute a weighting vector α

as follows [2]:

αj =
exp

(

−d
2
j/2σ

2
)

∑k

k
′=1 exp

(

−d2
k
′ /2σ2

) , j ∈ [1, ..., k], (2)

where σ is the radial basis function parameter. We used

σ = 0.25 in our experiments. We construct the final color

transformation matrix M̂tcorr→t as a linear weighted com-

bination of the retrieved color transformation matrices Ms.

This process is performed as follows [2]:

M̂tcorr→t =

k
∑

j=1

αjM
(j)
s . (3)

Lastly, the “re-rendered” image Ît with color temperature t
is computed as:

Ît = M̂tcorr→t ϕ (Iin) . (4)

5. Experiments

Robustness Strategies Our goal is to improve the per-

formance of DNN methods in the face of test images that

may have strong global color casts due to computational

color constancy errors. Based on the WB-sRGB frame-

work [2] and the modified framework discussed in Sec. 4,

we examine three strategies to improve the robustness of

the DNN models.

(1) The first strategy is to apply a WB correction to

each testing image in order to remove any unexpected color

casts during the inference time. Note that this approach im-

plicitly assumes that the training images are correctly WB.

In our experiments, we used the WB-sRGB method [2]

to correct the test images, because it currently achieves

the state-of-the-art on white balancing sRGB rendered

images. We examined adapting the simple diagonal-based

correction – which is applied by traditional WB methods

that are intended to be applied on raw-RGB images (e.g.,

gray-world [10]) – but found that they give inadequate re-

sults when applied on sRGB images, as also demonstrated

in [2]. In fact, applying diagonal-based correction directly

on the training image is similar to multiplicative color

jittering. This is why we need to use a nonlinear color

manipulation (e.g., polynomial correction estimated by [2])

for more accurate WB correction for sRGB images. An

example of the difference is shown in Fig. 6.

It is worth mentioning that the training data used by

the WB-sRGB method has five fixed color temperatures

(2850K, 3800K, 5500K, 6500K, 7500K), all with color

correction matrices mapping to their corresponding correct

WB. In most cases, one of these five fixed color temper-

atures will be visually similar to the correct WB. Thus,

if the WB-sRGB method is applied to an input image

that is already correctly white-balanced, the computed

transformation will act as an identity.

(2) The second strategy considers the case that some

of the training images may include some incorrectly

247

white-balanced images. We, therefore, also apply the WB

correction step to all the training images as well as testing

images. This again uses the WB-sRGB method [2] on both

testing and training images.

(3) The final strategy is to augment the training dataset

based on our method described in Sec. 4. Like other aug-

mentation approaches, there is no pre-processing correction

required. The assumption behind this augmentation process

is that the robustness of DNN models can be improved by

training on augmented images that serve as exemplars for

color constancy errors.

Testing Data Categories Testing images are grouped

into two categories. In Category 1 (Cat-1), we expand the

original testing images in the CIFAR-10, CIFAR-100, and

ADE20K datasets by applying our method to emulate cam-

era WB errors (described in Sec. 4). Each test image now

has ten (10) variations that share the same ground truth la-

bels. We acknowledge this is less than optimal, given that

the same method to modify the testing image is used to

augment the training images. However, we are confident

in the proposed method’s ability to emulate WB errors that

we feel Cat-1 images represents real-world examples. With

that said, we do not apply strategies 1 and 2 to Cat-1, as the

WB-sRGB method is based on a similar framework used

to generate the testing images. For the sake of complete-

ness, we also include Category 2 (Cat-2), which consists

of new datasets generated directly from raw-RGB images.

Specifically, raw-RGB images are rendered using the full

in-camera pipeline to sRGB images with in-camera color

constancy errors. As a result, Cat-2’s testing images ex-

hibit accurate color constancy errors but contain fewer test-

ing images for which we have provided the ground truth

labels.

(A
) O

rig
in

al

im
ag

es
(B

) G
W

co

rre
ct

io
n

(C
) W

B-
sR

G
B

co
rre

ct
io

n

killer whaleplatypus

grey whalepuffer

Groenendael dogGerman shepherd

sleeping bag

snorkel

Chihuahua dog

Figure 6. (A) Images with different categories of “dogs” rendered

with incorrect WB settings. (B) Corrected images using gray-

world (GW) [10]. (C) Corrected images using the WB-sRGB

method [2]. Predicted class by AlexNet is written on top of each

image. Images in (A) and (B) are misclassified.

5.1. Experimental Setup

We compare the three above strategies with two exist-

ing and widely adopted color augmentation processes: RGB

color jittering and HSV jittering.

Our Method The nearest neighbor searching was applied

using k = 25. The proposed WB augmentation model

runs in 7.3 sec (CPU) and 1.0 sec (GPU) to generate ten

12-mega-pixel images. The reported runtime was com-

puted using Intelr Xeonr E5-1607 @ 3.10 GHz CPU and

NVIDIA™ Titan X GPU.

Existing Color Augmentation To the best of our knowl-

edge, there is no standardized approach for existing color

augmentation methods. Accordingly, we tested different

settings and selected the settings that produce the best re-

sults.

For RGB color jittering, we generated ten images with

new colors by applying a random shift x ∼ N (µx, σ
2) to

each color channel of the image. For HSV jittering, we

generated ten images with new colors by applying a ran-

dom shift x to the hue channel and multiplying each of the

saturation and value channels by a random scaling factor

s ∼ N (µs, σ
2). We found that µx = −0.3, µs = 0.7, and

σ = 0.6 give us the best compromise between having color

diversity with low color artifacts during the augmentation

process.

5.2. Network Training

For image classification, training new models on Ima-

geNet dataset requires unaffordable efforts—for instance,

ILSVRC 2012 consists of ∼1 million images and would be

∼10 million images after applying any of the color augmen-

tation techniques. For that reason, we perform experiments

on CIFAR-10 and CIFAR-100 datasets [35] due to a more

manageable number of images in each dataset.

We trained SmallNet [46] from scratch on CIFAR-10.

We also fine-tuned AlexNet [36] to recognize the new

classes in CIFAR-10 and CIFAR-100 datasets. For seman-

tic segmentation, we fine-tuned SegNet [5] on the training

set of the ADE20K dataset [61].

We train each model on: (i) the original training images,

(ii) the WB-sRGB method [2] applied to the original train-

ing images, and (iii) original training images with the ad-

ditional images produced by color augmentation methods.

For color augmentation, we examined RGB color jittering,

HSV jittering, and our WB augmentation. Thus, we trained

five models for each CNN architecture, each of which was

trained on one of the mentioned training settings.

For fair comparisons, we trained each model for the

same number of iterations. Specifically, the training was for

∼29,000 and ∼550,000 iterations for image classification

248

and semantic segmentation tasks, respectively. We adjusted

the number of epochs to make sure that each model was

trained on the same number of mini-batches for fair compar-

ison between training on augmented and original sets. Note

that by using a fixed number of iterations to train models

with both original training data and augmented data, we did

not fully exploit the full potential of the additional train-

ing images when we trained models using additional aug-

mented data.

The training was performed using NVIDIA™ Titan X

GPU. The details of training parameters are given in sup-

plemental materials.

5.3. Results on Cat­1

Cat-1 tests each model using test images that have been

generated by our method described in Sec. 4.

Classification We used the CIFAR-10 testing set (10,000

images) to test SmallNet and AlexNet models trained on the

training set of the same dataset. We also used the CIFAR-

100 testing set (10,000 images) to evaluate the AlexNet

model trained on CIFAR-100. After applying our WB em-

ulation to the testing sets, we have 100,000 images for each

testing set of CIFAR-10 and CIFAR-100. The top-1 accura-

cies obtained by each trained model are shown in Table 3.

The best results on our expanded testing images, which in-

clude strong color casts, were obtained using models trained

on our proposed WB augmented data.

Interestingly, the experiments show that applying WB

correction [2] on the training data, in most cases, improves

the accuracy using both the original and expanded test sets.

DNNs that were trained on WB augmented training images

achieve the best improvement on the original testing images

compared to using other color augmenters.

Semantic Segmentation We used the ADE20K valida-

tion set using the same setup explained in Sec. 3. Table

4 shows the obtained pxl-acc and IoU of the trained SegNet

models. The best results were obtained with our WB aug-

mentation; Fig. 7 shows qualitative examples. Additional

examples are also given in supplemental materials.

5.4. Results on Cat­2

Cat-2 data requires us to generate and label our own

testing image dataset using raw-RGB images. To this end,

we collected 518 raw-RGB images containing CIFAR-10

object classes from the following datasets: HDR+ Burst

Photography dataset [27], MIT-Adobe FiveK dataset [11],

and Raise dataset [20]. We rendered all raw-RGB images

with different color temperatures and two photo-finishing

styles using the Adobe Camera Raw module. Adobe

Camera Raw accurately emulates the ISP onboard a camera

Table 3. [Cat-1] Results of SmallNet [46] and AlexNet [36] on

CIFAR dataset [35]. The shown accuracies obtained by models

trained on: original training, “white-balanced”, and color aug-

mented sets. The testing was performed using: original testing

set and testing set with different synthetic WB settings (denoted

as diff. WB). The results of the baseline models (i.e., trained on

the original training set) are highlighted in green, while the best

result for each testing set is shown bold. We highlight best results

obtained by color augmentation techniques in yellow. Effects on

baseline model results are shown in parentheses.

Cat-1 SmallNet [46] on CIFAR-10 [35]

Training set Original Diff. WB

Original training set 0.799 0.655

“White-balanced” set 0.801 (+0.002) 0.683 (+0.028)

HSV augmented set 0.801 (+0.002) 0.747 (+0.092)

RGB augmented set 0.780 (-0.019) 0.765 (+0.11)

WB augmented set (ours) 0.809 (+0.010) 0.786 (+0.131)

Cat-1 AlexNet [36] on CIFAR-10 [35]

Original training set 0.933 0.797

“White-balanced” set 0.932 (-0.001) 0.811 (+0.014)

HSV augmented set 0.923 (-0.010) 0.864 (+0.067)

RGB augmented set 0.922 (-0.011) 0.872 (+0.075)

WB augmented set (ours) 0.926 (-0.007) 0.889 (+0.092)

Cat-1 AlexNet [36] on CIFAR-100 [35]

Original training set 0.768 0.526

“White-balanced” set 0.757 (-0.011) 0.543 (+0.017)

HSV augmented set 0.722 (-0.044) 0.613 (+0.087)

RGB augmented set 0.723 (-0.045) 0.645 (+0.119)

WB augmented set (ours) 0.735 (-0.033) 0.670 (+0.144)

Table 4. [Cat-1] Results of SegNet [5] on the ADE20K validation

set [61]. The shown intersection-over-union (IoU) and pixel-wise

accuracy (pxl-acc) were achieved by models trained using: orig-

inal training, “white-balanced”, and color augmented sets. The

testing was performed using: original testing set and testing set

with different synthetic WB settings (denoted as diff. WB). Ef-

fects on results of SegNet trained on the original training set are

shown in parentheses. Highlight marks are as described in Table

3.
IoU

Cat-1 Original Diff. WB

Original training set 0.208 0.180

“White-balanced” set 0.210 (+0.002) 0.197 (+0.017)

HSV augmented set 0.192 (-0.016) 0.185 (+0.005)

RGB augmented set 0.195 (-0.013) 0.190 (+0.010)

WB augmented set (ours) 0.202 (-0.006) 0.199 (+0.019)

Cat-1 pxl-acc

Original training set 0.603 0.557

“White-balanced” set 0.605 (+0.002) 0.579 (+0.022)

HSV augmented set 0.583 (-0.020) 0.536 (-0.021)

RGB augmented set 0.544 (-0.059) 0.534 (-0.023)

WB augmented set (ours) 0.597 (-0.006) 0.581 (+0.024)

and produces results virtually identical to what the in-

camera processing would produce [2]. Images that contain

multiple objects were manually cropped to include only

the interesting objects—namely, the CIFAR-10 classes. At

the end, we generated 15,098 rendered testing images that

reflect real in-camera WB settings. We used the following

testing sets in our experiments:

(i) In-camera auto WB contains images rendered

with the auto WB (AWB) correction setting in Adobe Cam-

era Raw, which mimics the camera’s AWB functionality.

249

others wall

tower

building sky
tree grass

earthwater

housefence
sand pole

grandstand van

road bridge
boat truck

floor

plant

sidewalk

mountain

sea

ceiling

stairway stairs

bench

(H) Color
codes

(G) Results w/ WB
augmentation

(F) Results w/o
color augmentation

(E) Images with
different WB settings

(D) Results w/ WB
augmentation

(C) Results w/o
color augmentation

(B) Ground truth
semantic masks

(A) Original
validation images

pxl-acc = 0.8261 pxl-acc = 0.8631 pxl-acc = 0.6900 pxl-acc = 0.8568

pxl-acc = 0.4910 pxl-acc = 0.8734 pxl-acc = 0.4119 pxl-acc = 0.8469

Figure 7. Results of SegNet [5] on the ADE20K validation set [61]. (A) Original validation image. (B) Ground truth semantic mask. (C) &

(D) Results of trained model wo/w color augmentation using image in (A), respectively. (E) Image with a different WB. (F) & (G) Results

w/o and with color augmentation using image in (E), respectively. (H) Color codes. The term ‘pxl-acc’ refers to pixel-wise accuracy.

Table 5. [Cat-2] Results of SmallNet [46] and AlexNet [36]. The

shown accuracies were obtained using trained models on the orig-

inal training, “white-balanced”, and color augmented sets. Effects

on results of models trained on the original training set are shown

in parentheses. Highlight marks are as described in Table 3.

Cat-2 SmallNet

Training Set In-cam AWB In-cam Diff. WB WB pre-processing

Original training set 0.467 0.404 0.461

“White-balanced” set 0.496 (+0.029) 0.471 (+0.067) 0.492 (+0.031)

HSV augmented set 0.477 (+0.001) 0.462 (+0.058) 0.481 (+0.02)

RGB augmented set 0.474 (+0.007) 0.475 (+0.071) 0.470 (+0.009)

WB augmented set (ours) 0.494 (+0.027) 0.496 (+0.092) 0.484 (+0.023)

Cat-2 AlexNet

Original training set 0.792 0.734 0.772

“White-balanced” set 0.784 (-0.008) 0.757 (+0.023) 0.784 (+0.012)

HSV augmented set 0.790 (+0.002) 0.771 (+0.037) 0.779 (+0.007)

RGB augmented set 0.791 (-0.001) 0.779 (+0.045) 0.783 (+0.011)

WB augmented set (ours) 0.799 (+0.007) 0.788 (+0.054) 0.787 (+0.015)

AWB does fail from time to time; we manually removed

images that had a noticeable color cast. This set of images

is intended to be equivalent to testing images on existing

image classification datasets.

(ii) In-camera WB settings contains images rendered

with the different color temperatures and photo-finishing

styles. This set represents testing images that contain WB

color cast errors.

(iii) WB pre-processing correction applied to set

(ii) contains images of set (ii) after applying the WB-sRGB

correction [2]. This set is used to study the potential

improvement of applying a pre-processing WB correction

in the inference phase.

Table 5 shows the top-1 accuracies obtained by Small-

Net and AlexNet on the external testing sets. The exper-

iments show the accuracy is reduced by ∼6% when the

testing set is images that have been modified with incor-

rect WB settings compared with their original accuracies

obtained with “properly” white-balanced images using the

in-camera AWB. We also notice that the best accuracies

are obtained by applying either a pre-processing WB on

both training/testing images or our WB augmentation in an

end-to-end manner. Examples of misclassified images are

shown in Fig. 8. Additional examples are also given in sup-

(A) In-camera auto WB
class: cat

class: bird class: automobile

class: bird class: dog class: ship class: airplane

class: ship class: airplane

(B) Different in-camera WB settings

class: cat class: dog class: dog

Figure 8. (A) Correctly classified images rendered with in-camera

auto WB. (B) Misclassified images rendered with in-camera dif-

ferent WB. Note that all images in (B) are correctly classified by

the same model (AlexNet [36]) trained on WB augmented data.

plemental materials.

6. Conclusion

This work has examined the impact on computational

color constancy errors on DNNs for image classification

and semantic segmentation. A new method to perform

augmentation that accurately mimics WB errors was intro-

duced. We show that both pre-processing WB correction

and training DNNs with our augmented WB images im-

prove the results for DNNs targeting CIFAR-10, CIFAR-

100, and ADE20K datasets. We believe our WB augmenta-

tion method will be useful for other tasks targeted by DNN

where image augmentation is sought.

Acknowledgments This study was funded in part by the

Canada First Research Excellence Fund for the Vision: Science

to Applications (VISTA) programme and an NSERC Discovery

Grant. Dr. Brown contributed to this article in his personal ca-

pacity as a professor at York University. The views expressed are

his own and do not necessarily represent the views of Samsung

Research.

250

References

[1] Mahmoud Afifi and Michael S Brown. Sensor-independent

illumination estimation for DNN models. In BMVC, 2019. 2

[2] Mahmoud Afifi, Brian Price, Scott Cohen, and Michael S

Brown. When color constancy goes wrong: Correcting im-

properly white-balanced images. In CVPR, 2019. 2, 4, 5, 6,

7, 8

[3] Naveed Akhtar and Ajmal Mian. Threat of adversarial at-

tacks on deep learning in computer vision: A survey. IEEE

Access, 6:14410–14430, 2018. 2

[4] Alexander Andreopoulos and John K Tsotsos. On sensor

bias in experimental methods for comparing interest-point,

saliency, and recognition algorithms. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 34(1):110–126,

2012. 3

[5] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

Segnet: A deep convolutional encoder-decoder architecture

for image segmentation. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 39(12):2481–2495, 2017. 6,

7, 8

[6] Jonathan T Barron. Convolutional color constancy. In ICCV,

2015. 2

[7] Jonathan T Barron and Yun-Ta Tsai. Fast fourier color con-

stancy. In CVPR, 2017. 2

[8] Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen,

Dillon Sharlet, and Jonathan T Barron. Unprocessing images

for learned raw denoising. arXiv preprint arXiv:1811.11127,

2018. 2

[9] Gershon Buchsbaum. A spatial processor model for ob-

ject colour perception. Journal of the Franklin Institute,

310(1):1–26, 1980. 2

[10] Gershon Buchsbaum. A spatial processor model for ob-

ject colour perception. Journal of the Franklin Institute,

310(1):1–26, 1980. 5, 6

[11] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo

Durand. Learning photographic global tonal adjustment with

a database of input/output image pairs. In CVPR, 2011. 7

[12] N. Carlini and D. Wagner. Towards evaluating the robustness

of neural networks. In IEEE Symposium on Security and

Privacy (SP), 2017. 2

[13] Alexandra Carlson, Katherine A Skinner, and Matthew

Johnson-Roberson. Modeling camera effects to improve

deep vision for real and synthetic data. In ECCV, 2018. 3

[14] A. Chakrabarti, Ying Xiong, Baochen Sun, T. Darrell, D.

Scharstein, T. Zickler, and K. Saenko. Modeling radiometric

uncertainty for vision with tone-mapped color images. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

36(11):2185–2198, 2014. 2

[15] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and An-

drew Zisserman. Return of the devil in the details: Delving

deep into convolutional nets. In BMVC, 2014. 2

[16] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 40(4):834–848, 2018. 3,

4

[17] Dongliang Cheng, Brian Price, Scott Cohen, and Michael S

Brown. Effective learning-based illuminant estimation using

simple features. In CVPR, 2015. 2

[18] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann

Dauphin, and Nicolas Usunier. Parseval networks: Improv-

ing robustness to adversarial examples. In ICML, 2017. 2

[19] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. Autoaugment: Learning augmentation

policies from data. arXiv preprint arXiv:1805.09501, 2018.

2

[20] Duc-Tien Dang-Nguyen, Cecilia Pasquini, Valentina Conot-

ter, and Giulia Boato. Raise: A raw images dataset for digital

image forensics. In ACM Multimedia Systems Conference,

2015. 7

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009. 3, 4

[22] Steven Diamond, Vincent Sitzmann, Stephen Boyd, Gordon

Wetzstein, and Felix Heide. Dirty pixels: Optimizing im-

age classification architectures for raw sensor data. arXiv

preprint arXiv:1701.06487, 2017. 3

[23] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-

vised visual representation learning by context prediction. In

ICCV, 2015. 2

[24] Graham D Finlayson, Michal Mackiewicz, and Anya Hurl-

bert. Color correction using root-polynomial regression.

IEEE Transactions on Image Processing, 24(5):1460–1470,

2015. 4

[25] Graham D Finlayson and Elisabetta Trezzi. Shades of gray

and colour constancy. In Color and Imaging Conference,

2004. 2

[26] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. arXiv

preprint arXiv:1412.6572, 2014. 2

[27] Samuel W Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew

Adams, Jonathan T Barron, Florian Kainz, Jiawen Chen, and

Marc Levoy. Burst photography for high dynamic range and

low-light imaging on mobile cameras. ACM Transactions on

Graphics, 35(6):192, 2016. 2, 7

[28] Søren Hauberg, Oren Freifeld, Anders Boesen Lindbo

Larsen, John Fisher, and Lars Hansen. Dreaming more

data: Class-dependent distributions over diffeomorphisms

for learned data augmentation. In Artificial Intelligence and

Statistics, 2016. 2

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 1, 3, 4

[30] Yuanming Hu, Baoyuan Wang, and Stephen Lin. Fc4: fully

convolutional color constancy with confidence-weighted

pooling. In CVPR, 2017. 2

[31] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015. 3

[32] Nima Khademi Kalantari and Ravi Ramamoorthi. Deep high

dynamic range imaging of dynamic scenes. ACM Transac-

tions on Graphics, 36(4):144–1, 2017. 2

251

[33] Hakki Can Karaimer and Michael S Brown. A software

platform for manipulating the camera imaging pipeline. In

ECCV, 2016. 2

[34] Seon Joo Kim, Hai Ting Lin, Zheng Lu, Sabine Süsstrunk,

Stephen Lin, and Michael S Brown. A new in-camera imag-

ing model for color computer vision and its application.

IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 34(12):2289–2302, 2012. 2

[35] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, 2009.

6, 7

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, 2012. 2, 3, 4, 6, 7, 8

[37] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-

versarial examples in the physical world. Technical report,

Google, Inc., 2016. 2

[38] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-

Hsuan Yang. Unsupervised representation learning by sort-

ing sequences. In ICCV, 2017. 2

[39] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian

Reid. Refinenet: Multi-path refinement networks for high-

resolution semantic segmentation. In CVPR, 2017. 1, 3, 4

[40] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.

Delving into transferable adversarial examples and black-

box attacks. In ICLR, 2017. 2

[41] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and

Pascal Frossard. Deepfool: a simple and accurate method

to fool deep neural networks. In CVPR, 2016. 2

[42] Yair Movshovitz-Attias, Takeo Kanade, and Yaser Sheikh.

How useful is photo-realistic rendering for visual learning?

In ECCV, 2016. 2

[43] Hyeonseob Nam and Hyo-Eun Kim. Batch-instance nor-

malization for adaptively style-invariant neural networks. In

NIPS, 2018. 3

[44] Seonghyeon Nam and Seon Joo Kim. Modelling the scene

dependent imaging in cameras with a deep neural network.

In ICCV, 2017. 2

[45] Rang MH Nguyen and Michael S Brown. Raw image re-

construction using a self-contained sRGB–JPEG image with

small memory overhead. International Journal of Computer

Vision, 126(6):637–650, 2018. 2

[46] Luis Perez and Jason Wang. The effectiveness of data aug-

mentation in image classification using deep learning. arXiv

preprint arXiv:1712.04621, 2017. 2, 6, 7, 8

[47] Rajeev Ramanath, Wesley E Snyder, Youngjun Yoo, and

Mark S Drew. Color image processing pipeline. IEEE Signal

Processing Magazine, 22(1):34–43, 2005. 2

[48] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In CVPR, 2016. 2

[49] Alexander Jung Revision. Imgaug library. Online; accessed

30 January 2019. 2

[50] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen

Koltun. Playing for data: Ground truth from computer

games. In ECCV. 3

[51] Wu Shi, Chen Change Loy, and Xiaoou Tang. Deep spe-

cialized network for illuminant estimation. In ECCV, 2016.

2

[52] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 3, 4

[53] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015. 3, 4

[54] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-

triguing properties of neural networks. In ICLR, 2014. 2

[55] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Im-

proved texture networks: Maximizing quality and diversity

in feed-forward stylization and texture synthesis. In CVPR,

2017. 3

[56] VSR Veeravasarapu, Constantin Rothkopf, and Ramesh Vis-

vanathan. Adversarially tuned scene generation. In CVPR,

2017. 2

[57] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan

Liu, and Dawn Song. Spatially transformed adversarial ex-

amples. arXiv preprint arXiv:1801.02612, 2018. 2

[58] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou,

Lingxi Xie, and Alan Yuille. Adversarial examples for se-

mantic segmentation and object detection. In ICCV, 2017.

2

[59] Fisher Yu and Vladlen Koltun. Multi-scale context aggrega-

tion by dilated convolutions. In ICLR, 2015. 3, 4

[60] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and

Yi Yang. Random erasing data augmentation. arXiv preprint

arXiv:1708.04896, 2017. 2

[61] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela

Barriuso, and Antonio Torralba. Scene parsing through

ADE20K dataset. In CVPR, 2017. 3, 4, 6, 7, 8

252

