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Abstract

Image captioning models have achieved impressive results

on datasets containing limited visual concepts and large

amounts of paired image-caption training data. However,

if these models are to ever function in the wild, a much

larger variety of visual concepts must be learned, ideally

from less supervision. To encourage the development of im-

age captioning models that can learn visual concepts from

alternative data sources, such as object detection datasets,

we present the first large-scale benchmark for this task.

Dubbed ‘nocaps’, for novel object captioning at scale, our

benchmark consists of 166,100 human-generated captions

describing 15,100 images from the Open Images valida-

tion and test sets. The associated training data consists

of COCO image-caption pairs, plus Open Images image-

level labels and object bounding boxes. Since Open Images

contains many more classes than COCO, nearly 400 object

classes seen in test images have no or very few associated

training captions (hence, nocaps). We extend existing novel

object captioning models to establish strong baselines for

this benchmark and provide analysis to guide future work.

1. Introduction

Recent progress in image captioning, the task of generat-

ing natural language descriptions of visual content [9,10,16,

17,41,44], can be largely attributed to the publicly available

large-scale datasets of image-caption pairs [5,14,48] as well

as steady modeling improvements [4, 24, 35, 46]. However,

these models generalize poorly to images in the wild [37]

despite impressive benchmark performance, because they

are trained on datasets which cover a tiny fraction of the

long-tailed distribution of visual concepts in the real world.

For example, models trained on COCO Captions [5] can

typically describe images containing dogs, people and um-

‹First two authors contributed equally, listed in alphabetical order.

Work done by KD during an internship at Georgia Tech.

Figure 1: The nocaps task setup: Image captioning models must

exploit the Open Images object detection dataset (bottom left) to

successfully describe novel objects not covered by the COCO Cap-

tions dataset (top left). The nocaps benchmark (right) evaluates

performance over in-domain, near-domain and out-of-domain

subsets of images containing only COCO classes, both COCO and

novel classes, and only novel classes, respectively.

brellas, but not accordions or dolphins. This limits the use-

fulness of these models in real-world applications, such as

providing assistance for people with impaired vision, or for

improving natural language query-based image retrieval.

To generalize better ‘in the wild’, we argue that cap-

tioning models should be able to leverage alternative data

sources – such as object detection datasets – in order to de-

scribe objects not present in the caption corpora on which

they are trained. Such objects which have detection an-

notations but are not present in caption corpora are re-

ferred to as novel objects and the task of describing im-

ages containing novel objects is termed novel object cap-

tioning [2,3,13,25,40,43,47]. Until now, novel object cap-

tioning approaches have been evaluated using a proof-of-

concept dataset introduced in [12]. This dataset has restric-
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tive assumptions – it contains only 8 novel object classes

held out from the COCO dataset [13], deliberately selected

to be highly similar to existing ones (e.g. horse is seen,

zebra is novel). This has left the large-scale performance

of these methods open to question. Given the emerging

interest and practical necessity of this task, we introduce

nocaps, the first large-scale benchmark for novel object

captioning, containing nearly 400 novel object classes.

In detail, the nocaps benchmark consists of a valida-

tion and test set comprised of 4,500 and 10,600 images,

respectively, sourced from the Open Images object detec-

tion dataset [18] and annotated with 11 human-generated

captions per image (10 reference captions for automatic

evaluation plus a human baseline). Crucially, we provide

no additional paired image-caption data for training. In-

stead, as illustrated in Figure 1, training data for the nocaps

benchmark is image-caption pairs from the COCO Captions

2017 [5] training set (118K images containing 80 object

classes), plus the Open Images V4 object detection train-

ing set (1.7M images annotated with bounding boxes for

600 object classes and image labels for 20K categories).

To be successful, image captioning models may utilize

COCO paired image-caption data to learn to generate syn-

tactically correct captions, while leveraging the massive

Open Images detection dataset to learn many more visual

concepts. Our key scientific goal is to disentangle ‘how

to recognize an object’ from ‘how to talk about it’. Af-

ter learning the name of a novel object, a human can im-

mediately talk about its attributes and relationships. It is

therefore intellectually dissatisfying that existing models,

having already internalized a huge number of caption ex-

amples, can’t also be taught new objects. As with previous

work, this task setting is also motivated by the observation

that collecting human-annotated captions is resource inten-

sive and scales poorly as object diversity grows, while on

the other hand, large-scale object classification and detec-

tion datasets already exist [8,18] and their collection can be

massively scaled, often semi-automatically [28, 29].

To establish the state-of-the-art on our challenging

benchmark, we evaluate two of the best performing exist-

ing approaches [2, 25] and report their performance based

on well-established evaluation metrics – CIDEr [39] and

SPICE [1]. To provide finer-grained analysis, we further

break performance down over three subsets – in-domain,

near-domain and out-of-domain– corresponding to the

similarity of depicted objects to COCO classes. While these

models do improve over a baseline model trained only on

COCO Captions, they still fall well short of human perfor-

mance on this task – indicating there is still work to be done

to scale to ‘in-the-wild’ image captioning.

In summary, we make three main contributions:

- We collect nocaps – the first large-scale benchmark for

novel object captioning, containing „400 novel objects.

- We undertake a detailed investigation of the performance

and limitations of two existing state-of-the-art models on

this task and contrast them against human performance.

- We make improvements and suggest simple heuristics

that improve the performance of constrained beam search

significantly on our benchmark.

We believe that improvements on nocaps will acceler-

ate progress towards image captioning in the wild. We are

hosting a public evaluation server on EvalAI [45] to bench-

mark progress on nocaps. For reproducibility and to spur

innovation, we have also released code to replicate our ex-

periments at: https://github.com/nocaps-org.

2. Related Work
Novel Object Captioning Novel object captioning includes

aspects of both transfer learning and domain adaptation [6].

Test images contain previously unseen, or ‘novel’ objects

that are drawn from a target distribution (in this case, Open

Images [18]) that differs from the source/training distribu-

tion (COCO [5]). To obtain a captioning model that per-

forms well in the target domain, the Deep Compositional

Captioner [13] and its extension, the Novel Object Cap-

tioner [40], both attempt to transfer knowledge by lever-

aging object detection datasets and external text corpora by

decomposing the captioning model into visual and textual

components that can be trained with separate loss functions

as well as jointly using the available image-caption data.

Several alternative approaches elect to use the output of

object detectors more explicitly. Two concurrent works,

Neural Baby Talk [25] and the Decoupled Novel Object

Captioner [43], take inspiration from Baby Talk [19] and

propose neural approaches to generate slotted caption tem-

plates, which are then filled using visual concepts identified

by modern state-of-the-art object detectors. Related to Neu-

ral Baby Talk, the LSTM-C [47] model augments a standard

recurrent neural network sentence decoder with a copying

mechanism which may select words corresponding to ob-

ject detector predictions to appear in the output sentence.

In contrast to these works, several approaches to novel

object captioning are architecture agnostic. Constrained

Beam Search [2] is a decoding algorithm that can be used

to enforce the inclusion of selected words in captions dur-

ing inference, such as novel object classes predicted by

an object detector. Building on this approach, partially-

specified sequence supervision (PS3) [3] uses Constrained

Beam Search as a subroutine to estimate complete captions

for images containing novel objects. These complete cap-

tions are then used as training targets in an iterative algo-

rithm inspired by expectation maximization (EM) [7].

In this work, we investigate two different approaches:

Neural Baby Talk (NBT) [25] and Constrained Beam

Search (CBS) [2] on our challenging benchmark – both

of which recently claimed state-of-the-art on the proof-of-

concept novel object captioning dataset [13].
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Figure 2: Compared to COCO Captions [5], on average nocaps images have more object classes per image (4.0 vs. 2.9), more object

instances per image (8.0 vs. 7.4), and longer captions (11 words vs. 10 words). These differences reflect both the increased diversity of the

underlying Open Images data [18], and our image subset selection strategy (refer Section 3.1).

Image Caption Datasets In the past, two paradigms for

collecting image-caption datasets have emerged: direct an-

notation and filtering. Direct-annotated datasets, such as

Flickr 8K [14], Flickr 30K [48] and COCO Captions [5]

are collected using crowd workers who are given instruc-

tions to control the quality and style of the resulting cap-

tions. To improve the reliability of automatic evaluation

metrics, these datasets typically contain five or more cap-

tions per image. However, even the largest of these, COCO

Captions, is based only on a relatively small set of 80 object

classes. In contrast, filtered datasets, such as Im2Text [27],

Pinterest40M [26] and Conceptual Captions [36], contain

large numbers of image-caption pairs harvested from the

web. These datasets contain many diverse visual concepts,

but are also more likely to contain non-visual content in the

description due to the automated nature of the collection

pipelines. Furthermore, these datasets lack human base-

lines, and may not include enough captions per image for

good correlation between automatic evaluation metrics and

human judgments [1, 39].

Our benchmark, nocaps, aims to fill the gap between

these datasets, by providing a high-quality benchmark with

10 reference captions per image and many more visual con-

cepts than COCO. To the best of our knowledge, nocaps

is the only image captioning benchmark in which humans

outperform state-of-the-art models in automatic evaluation.

3. nocaps
In this section, we detail the nocaps collection process,

constrast it with COCO Captions [5], and introduce the

evaluation protocol and benchmark guidelines.

3.1. Caption Collection
The images in nocaps are sourced from the Open Im-

ages V4 [18] validation and test sets. 1 Open Images is

currently the largest available human-annotated object de-

tection dataset, containing 1.9M images of complex scenes

annotated with object bounding boxes for 600 classes (with

an average of 8.4 object instances per image in the training

set). Moreover, out of the 500 classes that are not overly

broad (e.g. ‘clothing’) or infrequent (e.g. ‘paper cutter’),

1The images used in nocaps come from the Open Images V4 dataset

and are provided under their original license (CC BY 2.0)

nearly 400 are never or rarely mentioned in COCO Cap-

tions [5] (which we select as image-caption training data),

making these images an ideal basis for our benchmark.

Image Subset Selection Since Open Images is primarily

an object detection dataset, a large fraction of images con-

tain well-framed iconic perspectives of single objects. Fur-

thermore, the distribution of object classes is highly unbal-

anced, with a long-tail of object classes that appear rela-

tively infrequently. However, for image captioning, images

containing multiple objects and rare object co-occurrences

are more interesting and challenging. Therefore, we select

subsets of images from the Open Images validation and test

splits by applying the following sampling procedure.

First, we exclude all images for which the correct im-

age rotation is non-zero or unknown. Next, based on the

ground-truth object detection annotations, we exclude all

images that contain only instances from a single object cat-

egory. Then, to capture as many visually complex images

as possible, we include all images containing more than 6

unique object classes. Finally, we iteratively select from the

remaining images using a sampling procedure that encour-

ages even representation both in terms of object classes and

image complexity (based on the number of unique classes

per image). Concretely, we divide the remaining images

into 5 pools based on the number of unique classes present

in the image (from 2–6 inclusive). Then, taking each pool

in turn, we randomly sample n images and among these, we

select the image that when added to our benchmark results

in the highest entropy over object classes. This prevents

nocaps from being overly dominated by frequently occur-

ring object classes such as person, car or plant. In total, we

select 4,500 validation images (from a total of 41,620 im-

ages in Open Images validation set) and 10,600 test images

(from a total of 125,436 images in Open Images test set).

On average, the selected images contain 4.0 object classes

and 8.0 object instances each (see Figure 2).

Collecting Image Captions from Humans To evaluate

model-generated image captions, we collected 11 English

captions for each image from a large pool of crowd-workers

on Amazon Mechanical Turk (AMT). Out of 11 captions,

we randomly sample one caption per image to establish hu-
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Labels: Gondola, Tree, Vehicle Labels: Red Panda, Tree

No Priming: A man and a
woman being transported in a
boat by a sailor through canals

No Priming: A brown rodent
climbing up a tree in the woods.

Priming: Some people enjoying
a nice ride on a gondola with a
tree behind them.

Priming: A red panda is sitting
in grass next to a tree.

Figure 3: We conducted pilot studies to evaluate caption collec-

tion interfaces. Since Open Images contains rare and fine-grained

classes (such as red panda, top right) we found that priming work-

ers with the correct object categories resulted in more accurate and

descriptive captions.

man performance on nocaps and use the remaining 10 cap-

tions as reference captions for automatic evaluation. Prior

work suggests that automatic caption evaluation metrics

correlate better with human judgment when more reference

captions are provided [1, 39], motivating us to collect more

reference captions than COCO (only 5 per image).

Our image caption collection interface closely resem-

bles the interface used for collection of the COCO Cap-

tions dataset, albeit with one important difference. Since the

nocaps dataset contains more rare and fine-grained classes

than COCO, in initial pilot studies we found that human an-

notators could not always correctly identify the objects in

the image. For example, as illustrated in Figure 3, a red

panda was incorrectly described as a brown rodent. We

therefore experimented with priming workers by displaying

the list of ground-truth object classes present in the image.

To minimize the potential for this priming to reduce the lan-

guage diversity of the resulting captions, the object classes

were presented as ‘keywords’, and workers were explicitly

instructed that it was not necessary to mention all the dis-

played keywords. To reduce clutter, we did not display ob-

ject classes which are classified in Open Images as parts,

e.g. human hand, tire, door handle. Pilot studies comparing

captions collected with and without priming demonstrated

that primed workers produced more qualitative accurate and

descriptive captions (see Figure 3). Therefore, all nocaps

captions, including our human baselines, were collected us-

ing this priming-modified COCO collection interface.

To help maintain the quality of the collected captions, we

used only US-based workers who had completed at least 5K

previous tasks on AMT with more than 95% approval rate.

We also spot-checked the captions written by each worker

and blocked workers providing low-quality captions. Cap-

tions written by these workers were then discarded and re-

placed with captions written by high-quality workers. Over-

all, 727 workers participated, writing 228 captions each on

average for a grand total of 166,100 captions of nocaps.

Dataset 1-grams 2-grams 3-grams 4-grams

COCO 6,913 46,664 92,946 119,582

nocaps 8,291 59,714 116,765 144,577

Table 1: Unique n-grams in equally-sized (4,500 images / 22,500

captions) uniformly randomly selected subset from the COCO and

nocaps validation sets. The increased visual variety in nocaps

demands a larger vocabulary compared to COCO (1-grams), but

also more diverse language compositions (2-, 3- and 4-grams).

3.2. Dataset Analysis
In this section, we compare our nocaps benchmark to

COCO Captions [5] in terms of both image content and

caption diversity. Based on ground-truth object detection

annotations, nocaps contains images spanning 600 object

classes, while COCO contains only 80. Consistent with

this greater visual diversity, nocaps contains more object

classes per image (4.0 vs 2.9), and slightly more object in-

stances per image (8.0 vs 7.4) as shown in Figure 2. Fur-

ther, nocaps contains no iconic images containing just one

object class, whereas 20% of the COCO dataset consists of

such images. Similarly, less than 10% of COCO images

contain more than 6 object classes, while such images con-

stitute almost 22% of nocaps.

Although priming the workers with object classes as key-

words during data collection has the potential to reduce lan-

guage diversity, nocaps captions are nonetheless more di-

verse than COCO. Since nocaps images are visually more

complex than COCO, on average the captions collected to

describe these images tend to be slightly longer (11 words

vs. 10 words) and more diverse than the captions in the

COCO dataset. As illustrated in Table 1, taking uniformly

random samples over the same number of images and cap-

tions in each dataset, we show that not only do nocaps cap-

tions utilize a larger vocabulary than COCO captions re-

flecting the increased number of visual concepts present.

The number of unique 2, 3 and 4-grams is also significantly

higher for nocaps– suggesting a greater variety of unique

language compositions as well.

Additionally, we compare visual and linguistic similarity

between COCO, in-domain and out-of-domain in Fig-

ure 4. We observe that in-domain classes shows high vi-

sual similarity to equivalent COCO classes (e.g. cat, book)

while many out-of-domain classes are visually and lin-

guistically different from in-domain classes (e.g. jellyfish,

beetle, cello). out-of-domain also covers many visually

and linguistically similar concepts to COCO but rarely de-

scribed in COCO (e.g. tiger, lemon)

3.3. Evaluation

The aim of nocaps is to benchmark progress towards

models that can describe images containing visually novel

concepts in the wild by leveraging other data sources.

To facilitate evaluation and avoid exposing the novel ob-

ject captions, we host an evaluation server for nocaps on
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cat

cat

tiger

snake

jellyfish

orange

lemon

airplane

airplane

missile

goldfish

fire hydrant

fountain

drum

cello

book

book

mango

carrot

beetle

ladybug

toilet

bidet

toaster

oven

blender

sink

jacuzzi

bathtub

T-SNE: Visual similarity (Average bottom-up 

features from GT bounding boxes of classes).

cat

tiger

strawberry
orangebanana

lemon

potato

brocolli

rifle

handgun

person

girl
boy

jellyfish

starfish

piano

accordion

T-SNE: Linguistic similarity

(GloVe features of class names)

beetle

cello

Figure 4: T-SNE [38] plots comparing visual (left) and linguis-

tic (right) similarity in COCO, in-domain and out-of-domain

classes. We observe that: (a) in-domain shows high visual simi-

larity to COCO (e.g. cat, book (left)). (b) Many out-of-domain

classes are visually and linguistically different from in-domain

classes (e.g. jellyfish, beetle, cello). (c) out-of-domain also cov-

ers many visually and linguistically similar concepts to COCO,

which are not well-covered in COCO (e.g. tiger, lemon).

EvalAI [45] – as such, we put forth these guidelines for us-

ing nocaps:

– Do not use additional paired image-caption data col-

lected from humans. Improving evaluation scores by

leveraging additional human-generated paired image-

caption data is antithetical to this benchmark – the only

paired image-caption dataset that should be used is the

COCO Captions 2017 training split. However, exter-

nal text corpora, knowledge bases, and object detection

datasets may be used during training or inference.

– Do not leverage ground truth object annotations. We

note that ground-truth object detection annotations are

available for Open Images validation and test splits (and

hence, for nocaps). While ground-truth annotations may

be used to establish performance upper bounds on the

validation set, they should never be used in a submission

to the evaluation server unless this is clearly disclosed.

We anticipate that researchers may wish to investigate

the limits of performance on nocaps without any restraints

on the training datasets. We therefore maintain a separate

leaderboard for this purpose "nocaps (XD)" 2 leaderboard.

Metrics As with existing captioning benchmarks, we rely

on automatic metrics to evaluate the quality of model-

generated captions. We focus primarily on CIDEr [39] and

SPICE [1], which have been shown to have the strongest

correlation with human judgments [23] and have been used

in prior novel object captioning work [3,12,25], but we also

report Bleu [30], Meteor [20] and ROUGE [22]. These

metrics test whether models mention novel objects accu-

rately [41] as well as describe them fluently [20].It is worth

noting that the absolute scale of these metrics is not com-

parable across datasets due to the differing number of refer-

ence captions and corpus-wide statistics.

2XD stands for "extra data"

near-domain out-of-domain

1. A man sitting in the saddle on a

camel.

1. A tank vehicle stopped at a gas

station.

2. A person is sitting on a camel

with another camel behind him.

2. A tank and a military jeep at a

gas station

3. A man with long hair and blue

jeans sitting on a camel.

3. A jeep and a tan colored tank

getting gas at a gas station.

4. Man sitting on a camel with a

standing camel behind them.

4. A tank and a truck sit at a gas

station pump.

5. Long haired man wearing sitting

on blanket draped camel

5. An Army humvee is at getting

gas from the 76 gas station.

6. A camel stands behind a sitting

camel with a man on its back.

6. An army tank is parked at a gas

station.

7. The standing camel is near a sit-

ting one with a man on its back.

7. A land vehicle is parked in a gas

station fueling.

8. Someone is sitting on a camel

and is in front of another camel.

8. A large military vehicle at the

gas pump of a gas station.

9. Two camels in the dessert and a

man sitting on the sitting one.

9. A tanker parked outside of an old

gas station

10.Two camels are featured in the

sand with a man sitting on one

of the seated camels.

10.Multiple military vehicles get-

ting gasoline at a civilian gas sta-

tion.

Figure 5: Examples of near-domain and out-of-domain images

from the nocaps validation set. The image on the left belongs to

the near-domain subset (COCO and Open Images categories),

while the image on the right belongs to out-of-domain subset

(only Open Images categories).

Evaluation Subsets We further break down performance

on nocaps over three subsets of the validation and test splits

corresponding to varied ‘nearness’ to COCO.

To determine these subsets, we manually map the 80

COCO classes to Open Images classes. We then select

an additional 39 Open Images classes that are not COCO

classes, but are nonetheless mentioned more than 1,000

times in the COCO captions training set (e.g. ‘table’, ‘plate’

and ‘tree’). We classify these 119 classes as in-domain rel-

ative to COCO. There are 87 Open Images classes that are

not present in nocaps3. The remaining 394 classes are out-

of-domain. Image subsets are then determined as follows:

– in-domain images contain only objects belonging to in-

domain classes. Since these objects have been described

in the paired image-caption training data, we expect cap-

tion models trained only on COCO to perform reasonably

well on this subset, albeit with some negative impact due

to image domain shift. This subset contains 1,311 test

images (13K captions).

– near-domain images contain both in-domain and out-of-

domain object classes. These images are more challeng-

3These classes are not included either because they are not present in

the underlying Open Images val and test splits, or because they got filtered

out by our image subset selection strategy favoring more complex images.
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ing for COCO trained models, especially when the most

salient objects in the image are novel. This is the largest

subset containing 7,406 test images (74K captions).

– out-of-domain images do not contain any in-domain

classes, and are visually very distinct from COCO im-

ages. We expect this subset to be the most challenging

and models trained only on COCO data are likely to make

‘embarrassing errors’ [23] on this subset, reflecting the

current performance of COCO trained models in the wild.

This subset contains 1,883 test images (19K captions).

4. Experiments
To provide an initial measure of the state-of-the-art on

nocaps, we extend and present results for two contempo-

rary approaches to novel object captioning – Neural Baby

Talk (NBT) [25] and Constrained Beam Search (CBS) [2]

inference method which we apply both to NBT and to the

popular UpDown captioner [4]. We briefly recap these ap-

proaches for completeness but encourage readers to seek the

original works for further details.

Bottom-Up Top-Down Captioner (UpDown) [4] reasons

over visual features extracted using object detectors trained

on a large numbers of object and attribute classes and pro-

duces near state-of-the-art for single model captioning per-

formance on COCO. For visual features, we use the pub-

licly available Faster R-CNN [34] detector trained on Vi-

sual Genome by [4] to establish a strong baseline trained

exclusively on paired image-caption data.

Neural Baby Talk (NBT) [25] first generates a hybrid tex-

tual template with slots explicitly tied to specific image re-

gions, and then fill these slots with words associated with

visual concepts identified by an object detector. This gives

NBT the capability to caption novel objects when combined

with an appropriate pretrained object detector. To adapt

NBT to the nocaps setting, we incorporate the Open Images

detector and train the language model using Visual Genome

image features. We use fixed GloVe embeddings [31] in the

visual feature representation for an object region for better

contextualization of words corresponding to novel objects.

Open Images Object Detection. Both CBS and NBT make

use of object detections; we use the same pretrained Faster

R-CNN model trained on Open Images for both. Specifi-

cally, we use a model4 from the Tensorflow model zoo [15]

which achieves a detection mean average precision at 0.5

IoU (mAP@0.5) of 54%.

Constrained Beam Search (CBS) [2] CBS is an inference-

time procedure that can force language models to include

specific words referred to as constraints – achieving this by

casting the decoding problem as a finite state machine with

transitions corresponding to constraint satisfaction. We ap-

ply CBS to both the baseline UpDown model and NBT

based on detected objects. Following [2], we use a Finite

State Machine (FSM) with 24 states to incorporate up to

4tf_faster_rcnn_inception_resnet_v2_atrous_oidv4

three selected objects as constraints, including two and three

word phrases. After decoding, we select the highest log-

probability caption that satisfies at least two constraints.

Constraint Filtering Although the original work [2] se-

lected constraints from detections randomly, in preliminary

experiments in the nocaps setting we find that a simple

heuristic significantly improves the performance of CBS.To

generate caption constraints from object detections, we re-

fine the raw object detection labels by removing 39 Open

Images classes that are ‘parts’ (e.g. human eyes) or rarely

mentioned (e.g. mammal). Specifically, we resolve overlap-

ping detections (IoU ě 0.85) by removing the higher-order

of the two objects (e.g. , a ‘dog’ would suppress a ‘mam-

mal’) based on the Open Images class hierarchy (keeping

both if equal). Finally, we take the top-3 objects based on

detection confidence as constraints.

Language Embeddings To handle novel vocabulary, CBS

requires word embeddings or a language model to estimate

the likelihood of word transitions. We extend the original

model – which incorporated GloVe [31] and dependency

embeddings [21] – to incorporate the recently proposed

ELMo [32] model, which increased performance in our pre-

liminary experiments. As captions are decoded left-to-right,

we can only use the forward representation of ELMo as

input encodings rather than the full bidirectional model as

in [11, 42]. We also initialize the softmax layer of our cap-

tion decoder with that of ELMo and fix it during training to

improve the model’s generalization to unseen or rare words.

Training and Implementation Details. We train all mod-

els on the COCO training set and tune parameters on the

nocaps validation set. All models are trained with cross-

entropy loss, i.e. we do not use RL fine-tuning to optimize

for evaluation metrics [35].

5. Results and Analysis
We report results on the nocaps test set in Table 2. While

our best approach (UpDown + ELMo + CBS, which is ex-

plained further below) outperforms the COCO-trained Up-

Down baseline captioner significantly („19 CIDEr), it still

under-performs humans by a large margin („12 CIDEr). As

expected the most sizable gap occurs for out-of-domain

instances („25 CIDEr). This shows that while existing

novel object captioning techniques do improve over stan-

dard models, captioning in-the-wild still presents a consid-

erable open challenge.

In the remainder of this section, we discuss detailed re-

sults on the nocaps and COCO validation sets (Table 3) to

help guide future work. Overall, the evidence suggests that

further progress can be made through stronger object de-

tectors and stronger language models, but open questions

remain – such as the best way to combine these elements,

and the extent to which that solution should involve learning

vs. inference techniques like CBS. We align these discus-

sions in the context of a series of specific questions below.

8953



nocaps test

in-domain near-domain out-of-domain Overall

Method CIDEr SPICE CIDEr SPICE CIDEr SPICE Bleu-1 Bleu-4 Meteor ROUGE_L CIDEr SPICE

UpDown 74.3 11.5 56.9 10.3 30.1 8.1 74.0 19.2 23.0 50.9 54.3 10.1

UpDown + ELMo + CBS 76.0 11.8 74.2 11.5 66.7 9.7 76.6 18.4 24.4 51.8 73.1 11.2

NBT 60.9 9.8 53.2 9.3 48.7 8.2 72.3 14.7 21.5 48.9 53.4 9.2

NBT + CBS 63.0 10.1 62.0 9.8 58.5 8.8 73.4 12.9 22.1 48.7 61.5 9.7

Human 80.6 15.0 84.6 14.7 91.6 14.2 76.6 19.5 28.2 52.8 85.3 14.6

Table 2: Single model image captioning performance on the nocaps test split. We evaluate four models, including the UpDown model [4]

trained only on COCO, as well as three model variations based on constrained beam search (CBS) [2] and Neural Baby Talk (NBT) [25]

that leverage the Open Images training set.

COCO val 2017 nocaps val

Overall in-domain near-domain out-of-domain Overall

Method Bleu-1 Bleu-4 Meteor CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

(1) UpDown 77.0 37.2 27.8 116.2 21.0 78.1 11.6 57.7 10.3 31.3 8.3 55.3 10.1

(2) UpDown + CBS 73.3 32.4 25.8 97.7 18.7 80.0 12.0 73.6 11.3 66.4 9.7 73.1 11.1

(3) UpDown + ELMo + CBS 72.4 31.5 25.7 95.4 18.2 79.3 12.4 73.8 11.4 71.7 9.9 74.3 11.2

(4) UpDown + ELMo + CBS + GT - - - - - 84.2 12.6 82.1 11.9 86.7 10.6 83.3 11.8

(5) NBT 72.7 29.4 23.8 88.3 16.5 62.7 10.1 51.9 9.2 54.0 8.6 53.9 9.2

(6) NBT + CBS 70.2 28.2 25.1 80.2 15.8 62.3 10.3 61.2 9.9 63.7 9.1 61.9 9.8

(7) NBT + CBS + GT - - - - - 68.9 10.7 68.6 10.3 76.9 9.8 70.3 10.3

(8) Human 66.3 21.7 25.2 85.4 19.8 84.4 14.3 85.0 14.3 95.7 14.0 87.1 14.2

Table 3: Single model image captioning performance on the COCO and nocaps validation sets. We begin with a strong baseline in the

form of the UpDown [4] trained on COCO captions. We then investigate decoding using Constrained Beam Search [2] based on object

detections from the Open Images detector (+ CBS), as well as the impact of incorporating a pretrained language model (+ ELMo) and

ground-truth object detections (+ GT), respectively. In panel 2, we review the performance of Neural Baby Talk (NBT) [25], illustrating

similar performance trends. Even when using ground-truth object detections, all approaches lag well behind the human baseline on nocaps.

Note: Scores on COCO and nocaps should not be directly compared (see Section 3.3). COCO human scores refer to the test split.

– Do models optimized for nocaps maintain their per-

formance on COCO? We find significant gains in

nocaps performance correspond to large losses on

COCO (rows 2-3 vs 1 – dropping „20 CIDEr and „3

SPICE). Given the similarity of the collection methodol-

ogy, we do not expect to see significant differences in lin-

guistic structure between COCO and nocaps. However,

recent work has observed significant performance degra-

dation when transferring models across datasets even

when the new target dataset is an exact recreation of the

old dataset [33]. Limiting this degradation in the caption-

ing setting is a potential focus for future work.

– How important is constraint filtering? Applying CBS

greatly improves performance for both UpDown and

NBT (particularly on the out-of-domain captions), but

success depends heavily on the quality of the constraints.

Without our 39-class blacklist and overlap filtering, we

find overall nocaps validation performance falls „8

CIDEr and „3 SPICE for our UpDown + ELMo + CBS

model – with most of the losses coming from the black-

listed classes. It seems likely that more sophisticated con-

straint selection techniques that consider image context

could improve performance further.

– Do better language models help in CBS? To han-

dle novel vocabulary, CBS requires representations for

the novel words. We compare using ELMo encoding

(row 3) as described in Section 4 with the setting in which

word embeddings are only learned during COCO training

(row 2). Note that in this setting the embedding for any

word not found in COCO is randomly initialized. Sur-

prisingly, the trained embeddings perform on par with the

ELMo embeddings for the in-domain and near-domain

subsets, although the model with ELMo performs much

better on the out-of-domain subset. It appears that even

relatively rare occurrences of nocaps object names in

COCO are sufficient to learn useful linguistic models,

but not visual grounding as shown by the COCO-only

model’s poor scores (row 1).
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in-domain near-domain out-of-domain

Method

UpDown A beach with chairs and umbrellas on it. A man in a red shirt holding a baseball bat. A bird on the ocean in the ocean.

+ ELMo A beach with chairs and umbrellas on it. A man in a red shirt holding a baseball bat. A bird that is floating on the water.

+ ELMo + CBS A beach with chairs and umbrellas and

kites.

A man in a red hat holding a baseball rifle. A dolphin swimming in the ocean on a

sunny day.

+ ELMo + CBS

+ GT
A beach with chairs and umbrellas on it. A man in a red hat holding a baseball rifle. A whale dolphin swimming in the ocean

on the ocean.

NBT A beach with a bunch of lawn chairs and

umbrellas.

A baseball player holding a baseball bat

in the field.

A dolphin sitting in the water.

+ CBS A beach with a bunch of umbrellas on a

beach.

A baseball player holding a baseball rifle

in the field.

A marine mammal sitting on a dolphin

in the ocean.

+ CBS + GT A beach with many umbrellas on a beach. A baseball player holding a baseball rifle

in the field.

A black dolphin swimming in the ocean

on a sunny day.

Human A couple of chairs that are sitting on a

beach.

A man in a red hat is holding a shotgun in

the air.

A dolphin fin is up in the water..

Figure 6: Some challenging images from nocaps and the corresponding captions generated by our baseline models. The constraints given

to the CBS are shown in blue, and the grounded visual words associated with NBT are shown in red. Models perform reasonably well on

in-domain images but confuse objects in near-domain and out-of-domain images with visually similar in-domain objects, such as rifle

(with baseball bat) and fin (with bird). On the difficult out-of-domain images, the models generate captions with repetitions, such as "in

the ocean on the ocean", and produce incoherent captions, such as "marine animal" and "dolphin" referring to the same entity in the image.

– Do better object detectors help? To evaluate reliance

on object detections, we supply ground truth detections

sorted by decreasing area to our full models (rows 4

and 7). These ground truth detections undergo the same

constraint filtering as predicted ones. Comparing to

prediction-reliant models (rows 3 and 6), we see large

gains on all splits (rows 4 vs 3 – „9 CIDEr and „0.6

SPICE gain for UpDown). As detectors improve, we ex-

pect to see commensurate gains on nocaps benchmark.

To qualitatively assess some of the differences between the

various approaches, in Figure 6 we illustrate some exam-

ples of the captions generated using various model con-

figurations. As expected, all our baseline models are able

to generate accurate captions for in-domain images. For

near-domain and out-of-domain, our UpDown model

trained only on COCO fails to identify novel objects such

as rifle and dolphin, and confuses them with known objects

such as baseball bat or bird. The remaining models leverage

the Open Images training data, enabling them to potentially

describe these novel object classes. While they do produce

more reasonable descriptions, there remains much room for

improvement in both grounding and grammar.

6. Conclusion
In this work, we motivate the need for a stronger and

more rigorous benchmark to assess progress on the task of

novel object captioning. We introduce nocaps, a large-

scale benchmark consisting of 166,100 human-generated

captions describing 15,100 images containing more than

500 unique object classes and many more visual concepts.

Compared to the existing proof-of-concept dataset for novel

object captioning [12], our benchmark contains a fifty-fold

increase in the number of novel object classes that are rare

or absent in training captions (394 vs 8). Further, we col-

lected twice the number of evaluation captions per image to

improve the fidelity of automatic evaluation metrics.

We extend two recent approaches for novel object cap-

tioning to provide strong baselines for the nocaps bench-

mark. While our final models improve significantly over a

direct transfer from COCO, they still perform well below

the human baseline – indicating there is significant room

for improvement on this task. We provide further analysis

to help guide future efforts, showing that it helps to lever-

age large language corpora via pretrained word embeddings

and language models, that better object detectors help (and

can be a source of further improvements), and that simple

heuristics for determining which object detections to men-

tion in a caption have a significant impact.
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