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Abstract

In this work, we consider the problem of instance-wise

dynamic network model selection for multi-task learning.

To this end, we propose an efficient approach to exploit a

compact but accurate model in a backbone architecture for

each instance of all tasks. The proposed method consists

of an estimator and a selector. The estimator is based on a

backbone architecture and structured hierarchically. It can

produce multiple different network models of different con-

figurations in a hierarchical structure. The selector chooses

a model dynamically from a pool of candidate models given

an input instance. The selector is a relatively small-size

network consisting of a few layers, which estimates a prob-

ability distribution over the candidate models when an in-

put instance of a task is given. Both estimator and selec-

tor are jointly trained in a unified learning framework in

conjunction with a sampling-based learning strategy, with-

out additional computation steps. We demonstrate the pro-

posed approach for several image classification tasks com-

pared to existing approaches performing model selection

or learning multiple tasks. Experimental results show that

our approach gives not only outstanding performance com-

pared to other competitors but also the versatility to per-

form instance-wise model selection for multiple tasks.

1. Introduction

Multi-task learning (MTL) [5] simultaneously learns

multiple tasks to improve generalization performance for

the tasks. Most of recent MTL approaches [22–24, 29]

are based on deep neural networks (DNNs) which have

outstanding performance compared to traditional machine

learning methods in computer vision and machine learning,

such as image classification [10, 37], object detection [21],

and pose estimation [26], to name a few.

Since it is believed that MTL methods using a DNN

require a huge number of parameters and computing re-

∗Indicates equal contribution

Figure 1. An overview of the proposed framework, which consists

of an estimator and a selector. The estimator, whose structure is

identical to the backbone network, includes multiple internal net-

works (models) of different configurations and scales. The selector

outputs a probability distribution over the candidate models given

an instance from a task. The model with the highest probability is

chosen from the estimator to perform the assigned task.

sources, a compact network with a small number of param-

eters and low computational complexity is highly desirable

for many practical applications, such as mobile and embed-

ded platforms [13]. To address this, there have been stud-

ies on designing compact DNNs, such as network pruning

[9,34], knowledge distillation [12,28], network architecture

search [39], and adaptive model compression [3, 20, 35].

However, these prior works have been applied to a single

task problem and multiple tasks have been little considered

in a single framework.

The MTL problem has a potential issue that the required

number of parameters may increase depending on the num-

ber of tasks [5]. However, a single shared model for multi-

ple tasks may cause performance degradation when associ-
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ated tasks are less relevant [29]. To avoid this issue, recent

approaches [15, 16] proposed a network architecture which

can contain several sub-models to assign the them to mul-

tiple tasks. Despite their attempts for MTL, they require

human efforts to construct sub-models from the network ar-

chitecture and assign the model to each task. For more flex-

ible and adaptive model assignment for multiple tasks, it

is desired to realize a model selection approach which au-

tomatically determines a proper sub-model depending on a

given instance.

In this work, we aim to develop an instance-aware dy-

namic model selection approach for a single network to

learn multiple tasks. To that end, we present an effi-

cient learning framework that exploits a compact but high-

performing model in a backbone network, depending on

each instance of all tasks. The proposed framework con-

sists of two main components of different roles, termed an

estimator and a selector (see Figure 1). The estimator is

based on a backbone (baseline) network, such as VGG [30]

or ResNet [10]. It is structured hierarchically based on mod-

ularized blocks which consist of several convolution layers

in the backbone network. It can produce multiple network

models of different configurations and scales in a hierar-

chy. The selector is a relatively small network compared

to the estimator and outputs a probability distribution over

candidate network models for a given instance. The model

with the highest probability is chosen by the selector from

a pool of candidate models to perform the task. Note that

the approach is learned to choose a model corresponding to

each instance throughout all tasks. This makes it possible to

share the common models or features across all tasks [7,15].

We design the objective function to achieve not only com-

petitive performance but also resource efficiency (i.e., com-

pactness) required for each instance. Inspired by [31], we

introduce a sampling-based learning strategy to approxi-

mate the gradient for the selector which is hard to derive

exactly. Both the estimator and the selector are trained in

a unified learning framework to optimize the associated ob-

jective function, which does not require additional efforts

(e.g., fine-tuning) performed in existing works [35, 39].

We perform a number of experiments to demonstrate the

competitiveness of the proposed method, including model

selection and model compression problems when a single

or multiple tasks are given. For the experiments, we use

an extensive set of benchmark datasets: CIFAR-10 and

CIFAR-100 [18], Tiny-ImageNet1, STL-10 [6], and Ima-

geNet [19]. The experimental results on different learning

scenarios show that the proposed method outperforms ex-

isting state-of-the-art approaches. Notably, our approach

addresses both model selection and multi-task learning si-

multaneously in a single framework without introducing ad-

ditional resources, making it highly efficient.

1https://tiny-imagenet.herokuapp.com/

2. Related Work

Model selection. In order to reduce the burden of an expert

for designing a compact network, architecture search meth-

ods [39] were proposed to explore the space of potential

models automatically. To shrink the daunting search space

which usually requires a time-consuming exploration,

methods based on a well-developed backbone structure

find an efficient model architecture by compressing a given

backbone network [2, 3]. Furthermore, the recent studies

realizing such strategy [20, 33, 35] determine a different

network model for each instance to reduce an additional

redundancy. However, they usually achieve the lower

performance compared to their backbone network [20, 33]

or require additional fine-tuning process [35]. In contrast

to them, we propose an efficient learning framework which

can achieve better performance than the backbone network

due to the dynamic model search and also does not includes

an additional fine-tuning stage. Besides, our approach can

be applied to learn multiple tasks simultaneously in a single

framework, while aforementioned methods are limited to a

single task.

Multi-task learning. The purpose of multi-task learn-

ing (MTL) is to develop a learning framework that jointly

learns multiple tasks [5]. Note that we focus on a MTL

method that learns a single DNN architecture for memory

efficiency. There are several recent studies [11, 23, 24] that

proposed a network structure in which parameters can be ef-

ficiently shared across tasks. Other approaches [15, 16, 22]

suggest a single architecture which includes multiple inter-

nal networks (or models) so that they can assign different

models to multiple tasks without increasing the parameters.

However, they use a fixed model structure for each task and

it requires expert efforts to assign the model to each task. In

contrast, we propose a dynamic model selection for MTL

which determines a proper model automatically for a given

instance. Even if a recent MTL method [29] attempts model

selection by a routing mechanism, it does not consider an

optimized network structure associated with the number of

parameters or FLOPs.

3. Approach

3.1. Overall framework

The goal of the proposed method is to develop a dy-

namic model selection framework when an input instance

drawn from one of the target tasks is given. The proposed

framework consists of two different components: an “esti-

mator f” which is a network of the same size to the target

backbone network and contains multiple different models of

different network configurations, and a “selector g” which

reveals a model with the highest probability in the estima-

tor. Both estimator and selector are constructed based on
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Figure 2. A graphical representation of the proposed framework which is based on a backbone network (a residual network [10]). The

framework consists of an estimator and a selector. The estimator, whose structure is identical to the backbone network, contains n disjoint

blocks. A block is defined as a collection of consecutive convolution layers (a block is the same as a residual block while keeping the

number of channels). To simplify the hierarchical structure of each block, convolution layers in each block are divided into multiple

groups. As shown on the right side of the figure, lower levels of hierarchy contain fewer convolution groups and higher levels contains

more groups. The estimator can produce different network models by selecting convolution groups from zero to all groups in every block.

The selector outputs a probability distribution over the convolution groups in every block, and a network model is determined from the

distribution. The overall loss function consists of a prediction loss term (e.g., cross-entropy) from the determined network model and a

sparse regularization term.

a CNN-based architecture, and the selector is designed to

be much smaller than the estimator (see Section 4). The

proposed approach explores a model search space and iden-

tifies an efficient network model to perform the given task

in an instance-wise manner. The overall framework of the

proposed approach is illustrated in Figure 1.

Note that there are a vast number of candidate models

produced by the estimator, and this makes it difficult for the

selector to explore the extensive search space. As a simplifi-

cation strategy of the daunting task, we use a block notation

to shrink the search space over the candidate models. A

block is defined as a disjoint collection of multiple convolu-

tion (or fully connected) layers. The block is constructed as

a hierarchical structure such that a lower level of hierarchy

only refers fewer channels of hidden layers in the block and

a higher level refers more channels, maintaining input and

output dimensions of the block. Moreover, the lowest level

of hierarchy can be constructed without any channels when

the block is equivalent to a residual module [10]. This is

similar to a layer skipping method in [35]. The hierarchical

structure in a block is illustrated in Figure 2.

We determine a model structure by selecting a level of

hierarchy in each block as follows: z = (l1, l2, · · · , ln),
where n is the number of the blocks in the estimator f and

li denotes the selected level in the i-th block. Namely, a net-

work model is collected in the estimator when the network

model structure z is given. The inference of the determined

network model is represented as follows:

f(·; θest, z, t) : Xt → Yt, (1)

where θest is a set of parameters in the estimator, andXt and

Yt denote input and output domains for task t, respectively.

To address different input or output dimensions, we assume

that the task ID is given beforehand.

The goal of the selector g is to find an appropriate net-

work model for a given instance from a task by inferring

the probability distribution over candidate models in the es-

timator. As mentioned earlier, we design the selector to pro-

duce a set of probability distributions over the modularized

blocks (with their levels of hierarchy) as follows:

g(·; θsel) : Xt → [0, 1]h×n, (2)

where θsel is a set of parameters of the selector and h is the

number of levels of hierarchy in each block. We define the

output of the selector as C ∈ [0, 1]h×n and each column of C
reveals probabilities of selecting levels in the corresponding

block (i.e.,
∑

i Cij = 1, ∀j). Then, the probability of a

candidate model for an instance x can be calculated as

Pg(x;θsel) (z;x) =

n
∏

i=1

Ci(li;x),

s.t. z = (l1, · · · , ln),

(3)
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where Ci(li;x) ∈ [0, 1] denotes the li-th element of the i-
th column of C, which means the probability that the li-th
level is selected in the i-th block for an input x. Thus, we

can represent up to hn different candidate models, and one

of them is selected to produce its corresponding model to

perform the task. The overall framework is shown in Figure

2.

3.2. Optimization

The proposed approach is optimized to perform multi-

task learning in an instance-wise manner within a sin-

gle framework. We denote a set of datasets D as D =
{(x, y, t)|(x, y) ∈ Dt, ∀t}, where x and y are an image

and a label, respectively, and Dt is a dataset for task t.
The proposed model selection problem is to minimize the

loss functions for instances of all tasks while imposing the

model size compact:

J(θest, θsel) =

E(x,y,t)∈D,z∼g(x;θsel) [L(f(x; θest, z, t), y) + S(z)] ,
(4)

where L(·, ·) denotes a classification loss function (e.g.,

cross-entropy). S(z) is a sparse regularization term on the

model structure z, which is defined as:

S(z) = ρ ·

(

1

n

n
∑

i=1

di(li)

)2

, s.t. z = (l1, · · · , ln), (5)

where di(li) gives the ratio of the number of parameters de-

termined by li from the total number of parameters in the

i-th block, and ρ is a weighting factor. The square func-

tion in (5) can help enforce high sparsity ratio, and we have

empirically found that it performs better than other regular-

ization function, such as the l1-norm.

The proposed approach involves alternating optimization

steps for two sets of parameters, θest and θsel
2. While θest

can be updated by a stochastic gradient descent optimizer

(SGD [4]), the gradient with respect to (4) for θsel is diffi-

cult to calculate without a exact expected value in (4). For

this reason, we introduce a sampling-based approach to ap-

proximate the gradient. To describe the approximation, we

introduce R which is equivalent to the loss function for θsel
as follows:

Js(θsel) = E(x,y,t)∈D,z∼g(x;θsel) [R(z;x, y, t)]

s.t. R(z;x, y, t) , L(f(x; θest, z, t), y) + S(z).
(6)

Then, we can approximate the gradient value with sampled

2 We call this alternating step as a stage.

model structures, following the strategy in [31]:

∇θselJs(θsel)

= E(x,y,t)∈D

[

∑

∀z

R(z;x, y, t)∇θselP (z;x)

]

= E(x,y,t)∈D

[

∑

∀z

R(z;x, y, t)P (z;x)
∇θselP (z;x)

P (z;x)

]

= E(x,y,t)∈D,z∼g(x;θsel) [R(z;x, y, t)∇θsel logP (z;x)]

≈ E(x,y,t)∈D

[

∑

z∈Z

P (z;x)

|Z|
R(z;x, y, t)∇θsel logP (z;x)

]

,

(7)

where P (z;x) , Pg(x;θsel)(z;x). The last line approxi-

mates the expectation as the average for some randomly

chosen samples z’s which are collected from the same prob-

ability distribution when x is given. Z is a set of the col-

lected z’s and |Z| denotes the number of samples in Z .

Note that the sampling scheme follows the common

strategy in the reinforcement learning literature [25]. How-

ever, this can often lead to a worse network structure when

the selected model is poor [36]. As a remedy, we apply the

ǫ-greedy method [32] to allow more dynamic exploration at

the earliest training time. In addition, we would like to note

that the performance of the selected model may be sensitive

to the initial distribution of the selector. For this reason, we

use the following pre-determined distributions of the net-

work model in the initial stage:

p(zi) =

{

(1− τ)/hn + τ, if zi = z∗,

(1− τ)/hn, otherwise,
(8)

where τ is a weighting factor, p(zi) is a probability that the

model structure zi is selected, and z∗ denotes the full model

structure which includes all parameters in the estimator. In

this work, we set τ to 0.75 in all conducted experiments.

We increase the probability that the full model structure is

selected more often in the initial stage, and it shows better

performance compared to other initial distributions, such as

a uniform distribution.

The overall training procedure of the proposed method,

named deep elastic network (DEN), is summarized in Al-

gorithm 1, where S denotes the number of stages. We opti-

mize two sets of parameters, θest and θsel, during the sev-

eral stages of the training process. At each stage, one of

the above parameter sets is trained until it reaches the local

optima.

4. Experiments

4.1. Experimental setup

Datasets. We evaluated the proposed framework on several

classification datasets as listed in Table 1. For CIFAR-10,
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Algorithm 1 Deep Elastic Network (DEN)

1: Input: D, ρ
2: Initialize: θest, θsel ← Xavier-initializer [8], S

3: p← initial distribution in (8)

4: for s = 1 to S do

5: repeat

6: derive a model structure from p
7: update θest w.r.t. (4)

8: until convergence

9: decay the learning rate for θest
10: repeat

11: update θsel using the gradient (7)

12: until convergence

13: decay the learning rate for θsel
14: p← g(·; θsel)
15: end for

CIFAR-100, Tiny-ImageNet, and STL-10 datasets, we

used the original image size. Mini-ImageNet is a subset

of ImageNet [19] which has 50 class labels and each class

has 800 training instances. We resized each image in the

Mini-ImageNet dataset to 256 × 256 and center-cropped it

to have the size of 224×224. As pre-processing techniques,

we performed the random horizontal flip for all datasets

and added zero padding of four pixels before cropping for

CIFAR, Tiny-ImageNet, and STL-10 datasets. CIFAR-100

dataset includes two types of class categories for each

image: 20 coarse and 100 fine classes. We used both of

them for hierarchical classification; otherwise, we used the

fine classes for the rest of the experiments.

Scenarios. We evaluated three scenarios for multi-task

learning (MTL) and one scenario for network compression.

For MTL, we organized two scenarios (M1, M2) using

multiple datasets and one scenario (M3) using a single

dataset with hierarchical class categories. For the first

scenario, M1, we used three datasets of different image

scales: CIFAR-100 (32×32), Tiny-ImageNet (64×64), and

STL-10 (96×96). For M2, 50 labels are randomly chosen

from the 1000 class labels in the ImageNet dataset and the

chosen labels are separated into 10 disjoint subsets (tasks)

each of which has 5 labels. M3 is a special case of MTL

(we call it hierarchical classification), which aims to predict

two different labels (coarse and fine classes) simultaneously

for each image. CIFAR-100 was used for the scenario

M3. We also conducted the network compression scenario

(C1) as a single task learning problem for CIFAR-10 and

CIFAR-100, respectively.

Implementation details. We used ResNet-l [10] and

WRN-l-r [38] as backbone networks in the MTL scenar-

ios, where l is the number of layers and r is the scale factor

Table 1. Summary of the datasets. The size represents the width

and height of an input image for each dataset. # train and # test

denote the number of images in the train and test sets, respectively.
Dataset Size # train # test # classes

CIFAR-10 [18] 32 50,000 10,000 10

CIFAR-100 [18] 32 50,000 10,000 100

Tiny-ImageNet 64 100,000 10,000 200

STL-10 [18] 96 5,000 8,000 10

Mini-ImageNet [29] 224 40,000 2,500 50

on the number of convolutional channels. We borrowed a

residual network architecture designed for ImageNet [19]

to handle large-scale images and a WRN architecture de-

signed for CIFAR [18] to handle small-scale images. We

also used SimpleConvNet introduced in [27, 29] as a back-

bone network for Mini-ImageNet. SimpleConvNet con-

sists of four 3x3 convolutional layers (32 filters) and three

fully connected layers (128 dimensions for hidden units).

In the network compression scenario, we used ResNeXt-l
(c× sd) [37] and VGG-l [30] to apply our methods in vari-

ous backbones, where c and sd are the number of individual

convolution blocks and unit depth of the convolution blocks

in each layer, respectively [37]. The backbone networks

are used as baseline methods performing an individual task

in each scenario. To build the structure of the estimator,

we defined a block as a residual module [10] and as two

consecutive convolution layers for VGG networks. Then

we split each block into multiple convolution groups along

the channel dimension (2 or 3 groups in our experiments)

to construct a hierarchical structure. Note that the lowest

level of hierarchy does not have any convolution groups for

ResNet, WRN, and ResNeXt, but has one group for VGG,

and SimpleConvNet. The selector was designed with a net-

work which is smaller than the estimator. The size of the

selector is stated in each experiment.

For the proposed method, named deep elastic network

(DEN), the estimator was trained by the SGD optimizer

with Nesterov momentum of 0.9, with the batch size of

256 for large-scale dataset (ImageNet) and 128 for other

datasets. The ADAM optimizer [17] was used to learn the

selector with the same batch size. The initial learning rates

were 0.1 for the estimator and 0.00001 for the selector,

and we decayed the learning rate with a factor of 10 when

it converges (three or four decays happened in all experi-

ments for both estimator and selector). All experiments are

conducted in the TensorFlow environment [1].

Compared methods. We compared with four state-of-

the-art algorithms considering resource efficiency for multi-

task learning: PackNet*, NestedNet [15], Routing [29], and

Cross-stitch [24]. PackNet* is a variant of PackNet [22],

which considers group-wise compression along the channel

dimension, in order to achieve practical speed-up like ours.

Both PackNet* and NestedNet divide convolutional chan-
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Table 2. Accuracy (%) on three tasks (datasets) of different input scales based on two different backbone networks: (a) ResNet-42 [10] and

(b) WRN-32-4 [38]. We also provide FLOPs and the number of parameters for all compared methods. [·] denotes the number of required

network models to perform the same tasks. Baseline requires three models to perform different tasks. ρ controls sparsity of the proposed

method in (5). The bold and underline letters represent the best and the second best accuracy, respectively.
Dataset Baseline [10] NestedNet [15] PackNet* [22] DEN (ρ = 1) DEN (ρ = 0.1)

CIFAR-100 (32×32) 75.05 74.53 72.22 74.30 75.11

Tiny-ImageNet (64×64) 57.22 56.71 56.49 56.74 60.21

STL-10 (96×96) 76.25 82.54 80.78 83.90 87.58

Average 69.51 71.26 69.83 71.65 74.30

FLOPs 2.91G 1.70G 1.70G 1.35G 1.61G

No. parameters 89.4M [3] 29.8M [1] 29.8M [1] 29.8M [1] 29.8M [1]

(a) ResNet-42

Dataset Baseline [38] NestedNet [15] PackNet* [22] DEN (ρ = 1) DEN (ρ = 0.1)

CIFAR-100 (32×32) 75.01 74.09 73.56 75.43 75.65

Tiny-ImageNet (64×64) 58.89 57.87 57.17 58.17 58.25

STL-10 (96×96) 79.88 83.78 84.15 87.54 87.56

Average 71.26 71.91 71.63 73.71 73.82

FLOPs 2.13G 1.24G 1.24G 1.13G 1.14G

No. parameters 22.0M [3] 7.35M [1] 7.35M [1] 7.35M [1] 7.35M [1]

(b) WRN-32-4

nels into multiple disjoint groups and construct a hierarchi-

cal structure such that the i-th level of hierarchy includes

i divided groups (the number of levels of hierarchy corre-

sponds to the number of tasks). When updating the i-th
level of hierarchy, NestedNet considers parameters in the i-
th level but PackNet* considers parameters except those in

the (i-1)-th level. For Routing and Cross-stitch, we used the

results in [29] under the same circumstance. We also com-

pared with BlockDrop [35], N2N [3], Pruning (which we

termed) [14], and NestedNet [15] for the network compres-

sion problem. Note that we reported FLOPs and the number

of parameters of the proposed method for the estimator in

all experiments.

4.2. Multitask learning

For the first scenario M1 (on three tasks), we used both

ResNet-42 and WRN-32-4 as backbone networks, respec-

tively. The three tasks, Tiny-ImageNet, CIFAR-100, and

STL-10, are assigned to the levels of hierarchy for Pack-

Net* and NestedNet from the lowest to highest levels, re-

spectively. The number of parameters and FLOPs of the

selector are 1.49M and 0.15G for the ResNet-42 backbone

and 0.37M and 0.11G for the WRN-32-4 backbone, respec-

tively. The baseline method requires three separate net-

works, each trained independently. Table 2 shows the re-

sults with respect to accuracy, FLOPs and the number of

parameters of the compared methods. Here, FLOPs denotes

the average FLOPs for multiple tasks, and the number of pa-

rameters is measured from all networks required to perform

the tasks. Overall, our approach outperforms other methods

including the baseline method. In addition, we provide the

results by varying the weighting factor ρ of our sparse reg-

ularizer in (5). As shown in the table, the performance is

better when ρ is lower, and more compact model is selected

when ρ is higher.

For the scenario M2, SimpleConvNet was used as a

backbone network. Since the scenario contains a larger

number of tasks than the previous scenario, PackNet* and

NestedNet, which divide the model by human design, can-

not be applied. We divided the convolution parts which

takes most of the FLOPs in the network into two levels such

that lowest level of hierarchy contains half the parameters of

the highest level. The number of parameters of the selector

is 0.4M, whereas the number of parameters of the estimator

is 0.8M. In this scenario, the selector is not much smaller

than the estimator because the estimator is constructed in

sufficiently small size. However, the number of parame-

ters of the selector for other scenarios are negligible com-

pared to those of the estimator. The accuracy, FLOPs and

the number of parameters of the compared methods are re-

ported in Table 3. The result of the compared methods

are reported in the work in [29]. Note that since the num-

ber of parameters and FLOPs are not precisely reported in

the paper, we provide lower bounds. The proposed method

shows a significant performance improvement compared to

the other methods, even though ours uses lower average

FLOPs than others for evaluations.

4.3. Hierarchical classification

For the scenario M3, we dealt with CIFAR-100 which

has coarse and fine class categories for each image as de-

scribed in Section 4.1. WRN-32-4 was used as a backbone

network for this scenario. We compared with PackNet* and

NestedNet, and the lowest and highest levels of hierarchy

for them were allocated to perform the coarse and fine clas-

sifications, respectively. The structure of the selector in our

method is equal to that in the scenario M1.

Table 4 summarizes the results of the compared meth-

6534



Table 3. Accuracy (%) on the Mini-ImageNet dataset, FLOPs, and

the number of parameters for all compared methods. Baseline

uses the different last fully-connected layer for different tasks and

shares other layers across the tasks. The bold and underline letters

represent the best and the second best accuracy, respectively.
Method Accuracy FLOPs No. params

Baseline 51.03 49.6M 0.8M

Cross-stitch [24] 56.03 > 49.6M > 0.8M

Routing [29] 58.97 49.6M > 0.8M

DEN (ρ = 1) 63.20 33.3M 0.8M

DEN (ρ = 0.1) 65.23 39.1M 0.8M

ods for the coarse and fine classification problems. Our

approach shows the best accuracy while giving the low-

est FLOPs compared to the competitors except the base-

line method for both problems. Furthermore, the proposed

method has higher performance than the baseline method on

average. Since each image has two different tasks (coarse

and fine class categories), the selector exploits the same

model structure and thus gives almost the same FLOPs.

4.4. Network compression

The goal of the network compression problem is to de-

sign a compact network model from a given backbone

network while minimizing the performance degradation.

We applied the proposed method to the network compres-

sion problem which is a single-task learning problem. We

compared with BlockDrop [35] and NestedNet [15] on

two backbone networks: ResNeXt [37] and VGG [30].

Since BlockDrop is developed for residual networks, we

compared with it using ResNeXt. The CIFAR-10 and

CIFAR-100 [18] datasets were used for the scenario, re-

spectively. To verify the efficiency of the proposed method,

we constructed our method with four levels of hierarchy

for ResNeXt-29 (8×64d) and three levels for ResNeXt-29

(4×64d), respectively. The numbers of parameters of the

selector are 3.9M and 3.6M for VGG and ResNeXt back-

bone networks, respectively.

Table 5 summarizes the classification accuracy of the

compared approaches for the backbone networks. Over-

all, the proposed method shows the highest accuracy com-

pared to other compression approaches. Our results with

different ρ show that ρ can provide a trade-off between

the network size and its corresponding accuracy. We also

tested the proposed method (estimator) with a random se-

lector, which reveals a model structure randomly among the

candidate models in the estimator, to compare it with our

model selection method. From the result, we can observe

that the accuracy of the random selector is lower than the

proposed selector, which reveals that the selector has po-

tential to explore the desired model. Moreover, we com-

pared with the state-of-the-art network compression meth-

ods, N2N [3], and Pruning [14], whose results were reported

from their papers [3, 14]. Our approach has 94.47% classi-

Table 4. Hierarchical classification results on CIFAR-100. Base-

line (WRN-32-4 [38]) requires two models to perform different

tasks. The bold and underline letters represent the best and the

second best accuracy, respectively.
Method Accuracy FLOPs No. params

Baseline [38] 83.53 2.91G 14.7M

NestedNet [15] 84.55 1.46G 7.35M

PackNet* [22] 84.53 1.46G 7.35M

DEN (ρ = 1) 84.87 1.37G 7.35M

(a) Coarse classification (20)

Method Accuracy FLOPs No. params

Baseline [38] 76.32 2.91G 14.7M

NestedNet [15] 75.84 2.91G 7.35M

PackNet* [22] 75.65 2.91G 7.35M

DEN (ρ = 1) 75.93 1.37G 7.35M

(b) Fine classification (100)

fication accuracy using 5.8M parameters and the Pruning

method has 94.15% accuracy using 6.4M parameters on the

CIFAR-10 dataset. The proposed method also shows better

performance than N2N and Pruning methods on the CIFAR-

100 dataset.

4.5. Quantitative results

The proposed instance-wise model selection for multi-

task learning can associate similar features for similar im-

ages, which means that similar model structures can be se-

lected for similar images. To verify this, we chose one in-

put image (query) at each task and derived its output model

distribution from the selector. Here, we measured the simi-

larity between the distributions using l2-distance. Then we

collected four samples from each task, whose correspond-

ing outputs have the similar model distribution to the query

image. To do so, we constructed the proposed method based

on the WRN-32-4 backbone architecture for the three tasks

(datasets): CIFAR-100, Tiny-ImageNet, and STL-10. We

set the size of input image to 32 × 32 for all the datasets

to see the similarity under the same image scale. Figure 3

shows some selected images from all tasks for each query

image. The results show that instance-wise model selection

can be a promising strategy for multi-task learning as it can

reveal the common knowledge across the tasks. We provide

model distributions for instances from the test set in supple-

mentary materials, along with the ablation study of using

different numbers of levels.

5. Conclusion

In this work, we have proposed an efficient learning ap-

proach to perform resource-aware dynamic model selec-

tion for multi-task learning. The proposed method con-

tains two main components of different roles, an estima-

tor which produces multiple candidate models, and a selec-

tor which exploits a compact and competitive model among

the candidate models to perform the designated task. We
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Table 5. Network compression results on the CIFAR dataset. For FLOPs, we refer to the compression ratio from the baseline network for

each model and dataset. The bold and underline letters represent the best and the second best accuracy, respectively. “rand sel” denotes

that the random model structure is used without using the selector in the proposed method. The results of NestedNet are obtained from the

lowest (L) to the highest (H) levels of hierarchy (including the intermediate level (M) for ResNeXt-29 (8 × 64d)).
Dataset CIFAR-10 CIFAR-100

Backbone Method Acc (%) No. params FLOPs Acc (%) No. params FLOPs

VGG-16

Baseline [30] 92.52 38.9M 1.0× 69.64 38.9M 1.0×

NestedNet [15], L 91.29 19.4M 2.0× 68.10 19.4M 2.0×

NestedNet [15], H 92.40 38.9M 1.0× 69.01 38.9M 1.0×

DEN (ρ = 0.1) 92.31 18.5M 2.4× 68.87 18.9M 1.7×

ResNet-18
N2N [3]

91.97 2.12M − 69.64 4.76M −

ResNet-34 93.54 3.87M − 70.11 4.25M −

ResNet-50
Pruning [14] 94.15 6.44M − 74.10 9.24M −

DEN (ρ = 1) 94.50 4.25M − 77.98 4.67M −

ResNeXt-29 (8 × 64d)

Baseline [37] 94.61 22.4M 1.0× 78.73 22.4M 1.0×

NestedNet [15], L 93.56 5.6M 4.0× 74.83 5.6M 4.0×

NestedNet [15], M 93.64 11.2M 2.0× 74.98 11.2M 2.0×

NestedNet [15], H 94.13 22.4M 1.0× 76.16 22.4M 1.0×

BlockDrop [35] 93.56 16.9M 1.2× 78.35 15.5M 1.4×

DEN + rand sel 90.55 9.8M 2.3× 69.67 9.8M 2.3×

DEN (ρ = 1) 91.45 4.1M 5.5× 78.27 7.3M 3.0×

DEN (ρ = 0.1) 94.61 8.7M 2.7× 78.68 13.5M 1.9×

ResNeXt-29 (4 × 64d)

Baseline [37] 94.37 11.2M 1.0× 77.95 11.2M 1.0×

NestedNet [15], L 93.59 5.6M 2.0× 75.70 5.6M 2.0×

NestedNet [15], H 94.11 11.2M 1.0× 76.36 11.2M 1.0×

BlockDrop [35] 93.07 6.53M 1.7× 77.23 7.47M 1.5×

DEN (rand sel) 87.33 5.6M 2.0× 65.44 5.6M 2.0×

DEN (ρ = 1) 93.38 5.4M 2.1× 76.71 5.6M 2.0×

DEN (ρ = 0.1) 94.47 5.8M 1.9× 77.58 6.3M 1.8×

ResNeXt-29 (2 × 64d) Baseline [37] 93.60 5.6M − 76.54 5.6M −

Figure 3. Sampled images from each task (dataset) which have the similar model distribution to that of the query images (first column).

The query images belong to CIFAR-100, Tiny-ImageNet, and STL-10 from top to bottom, respectively.

have also introduced a sampling-based optimization strat-

egy to address the discrete action space of the potential can-

didate models. The proposed approach is learned in a single

framework without introducing many additional parameters

and much training efforts. The proposed approach has been

evaluated on several problems including multi-task learning

and network compression. The results have shown the out-

standing performance of the proposed method compared to

other competitors.
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