
Proximal Mean-field for Neural Network Quantization

Thalaiyasingam Ajanthan∗1, Puneet K. Dokania2, Richard Hartley1, and Philip H. S. Torr2

1Australian National University 2University of Oxford

Abstract

Compressing large Neural Networks (NN) by quantiz-

ing the parameters, while maintaining the performance is

highly desirable due to reduced memory and time complex-

ity. In this work, we cast NN quantization as a discrete la-

belling problem, and by examining relaxations, we design

an efficient iterative optimization procedure that involves

stochastic gradient descent followed by a projection. We

prove that our simple projected gradient descent approach

is, in fact, equivalent to a proximal version of the well-

known mean-field method. These findings would allow the

decades-old and theoretically grounded research on MRF

optimization to be used to design better network quantiza-

tion schemes. Our experiments on standard classification

datasets (MNIST, CIFAR10/100, TinyImageNet) with convo-

lutional and residual architectures show that our algorithm

obtains fully-quantized networks with accuracies very close

to the floating-point reference networks.

1. Introduction

Despite the success of deep neural networks, they are

highly overparametrized, resulting in excessive computa-

tional and memory requirements. Compressing such large

networks by quantizing the parameters, while maintaining

the performance, is highly desirable for real-time applica-

tions, or for resource-limited devices.

In Neural Network (NN) quantization, the objective is to

learn a network while restricting the parameters to take val-

ues from a small discrete set (usually binary) representing

quantization levels. This can be formulated as a discrete

labelling problem where each learnable parameter takes a

label from the discrete set and the learning objective is to

find the label configuration that minimizes the empirical

loss. This is an extremely challenging discrete optimization

problem because the number of label configurations grows

exponentially with the number of parameters in the network

and the loss function is highly non-convex.

Over the past 20 years, similar large-scale discrete la-

∗Part of the work was done while at the University of Oxford.

belling problems have been extensively studied under the

context of Markov Random Field (MRF) optimization, and

many efficient approximate algorithms have been developed

[2, 6, 11, 31, 41, 42]. In this work, we take inspiration from

the rich literature on MRF optimization, and design an ef-

ficient approximate algorithm based on the popular mean-

field method [42] for NN quantization.

Specifically, we first formulate NN quantization as a dis-

crete labelling problem. Then, we relax the discrete solu-

tion space to a convex polytope and introduce an algorithm

to iteratively optimize the first-order Taylor approximation

of the loss function over the polytope. This approach is a

(stochastic) gradient descent method with an additional pro-

jection step at each iteration. For a particular choice of pro-

jection, we show that our method is equivalent to a proxi-

mal version of the well-known mean-field method. Further-

more, we prove that under certain conditions, our algorithm

specializes to the popular BinaryConnect [10] algorithm.

The MRF view of NN quantization opens up many inter-

esting research directions. In fact, our approach represents

the simplest case where the NN parameters are assumed to

be independent of each other. However, one can potentially

model second-order or even high-order interactions among

parameters and use efficient inference algorithms developed

and well-studied in the MRF optimization literature. There-

fore, we believe, many such algorithms can be transposed

into this framework to design better network quantization

schemes. Furthermore, in contrast to the existing NN quan-

tization methods [21, 35], we quantize all the learnable pa-

rameters in the network (including biases) and our formu-

lation can be seamlessly extended to quantization levels be-

yond binary.

We evaluate the merits of our algorithm on MNIST,

CIFAR-10/100, and TinyImageNet classification datasets

with convolutional and residual architectures. Our ex-

periments show that the quantized networks obtained by

our algorithm yield accuracies very close to the floating-

point counterparts while consistently outperforming di-

rectly comparable baselines. Our code is available at

https://github.com/tajanthan/pmf.

14871

2. Neural Network Quantization

Neural Network (NN) quantization is the problem of

learning neural network parameters restricted to a small

discrete set representing quantization levels. This primar-

ily relies on the hypothesis that overparametrization of NNs

makes it possible to obtain a quantized network with per-

formance comparable to the floating-point network. To this

end, given a dataset D = {xi,yi}
n
i=1, the NN quantization

problem can be written as:

min
w∈Qm

L(w;D) :=
n
∑

i=1

ℓ(w; (xi,yi)) . (1)

Here, ℓ(·) is the input-output mapping composed with a

standard loss function (e.g., cross-entropy loss), w is the m
dimensional parameter vector, andQ with |Q| = d is a pre-

defined discrete set representing quantization levels (e.g.,

Q = {−1, 1} or Q = {−1, 0, 1}). In Eq. (1), we seek a

fully-quantized network where all the learnable parameters

including biases are quantized. This is in contrast to the

previous methods [10, 35] where some parts of the network

are not quantized (e.g., biases and last layer parameters).

2.1. NN Quantization as Discrete Labelling

NN quantization (1) naturally takes the form of a discrete

labelling problem where each learnable parameter wj takes

a label qλ from the discrete set Q. In particular, Eq. (1) is

directly related to an MRF optimization problem [23] where

the random variables correspond to the set of weights w, the

label set is Q, and the energy function is L(w). We refer to

Appendix A for a brief overview on MRFs.

An important part of an MRF is the factorization of the

energy function that depends on the interactions among

the random variables. While modelling a problem as an

MRF, emphasis is given to the form of the energy function

(e.g., submodularity) as well as the form of the interactions

(cliques), because both of these aspects determine the com-

plexity of the resulting optimization. In the case of NNs,

the energy function (i.e., loss) is a composition of functions

which, in general, has a variety of interactions among the

random variables. For example, a parameter at the initial

layer is related to parameters at the final layer via function

composition. Thus, the energy function does not have an

explicit factorization. In fact, optimizing Eq. (1) directly is

intractable due to the following inherent problems [26, 32]:

1. The solution space is discrete with exponentially many

feasible points (dm with m in the order of millions).

2. The loss function is highly non-convex and does not sat-

isfy any regularity condition (e.g., submodularity).

3. The loss function does not have an explicit factorization

(corresponding to a neighbourhood structure).

This hinders the use of any off-the-shelf discrete optimiza-

tion algorithm. However, to tackle the aforementioned

problems, we take inspiration from the MRF optimization

literature [5, 9, 42]. In particular, we first relax the dis-

crete solution space to a convex polytope and then itera-

tively optimize the first-order approximation of the loss over

the polytope. Our approach, as will be shown subsequently,

belongs to the class of (stochastic) gradient descent meth-

ods and is applicable to any loss function. Next we describe

these relaxations and the related optimization in detail.

2.2. Continuous Relaxation of the Solution Space

Recall that Q is a finite set of d real-valued parameters.

The elements of Q will be indexed by λ ∈ {1, . . . , d}.
An alternative representation of Q is by a d-dimensional

vector q with entries qλ ∈ Q. A element w ∈ Q can

be written in terms of indicator variables uλ ∈ {0, 1} as

w =
∑d

λ=1 qλuλ, assuming that only one value of qλ has

value 1. Denote by V the set of size d of such d-vectors

with a single 1 component (elements of the standard basis

of IRd) acting as indicator vectors for the elements of Q.

Explicitly, a vector uj ∈ IRd is in set V if

d
∑

λ=1

uj:λ = 1 and uj:λ ∈ {0, 1} ∀λ ∈ {1, . . . , d} .

Similarly, the vector w ∈ Qm of all parameters can

be represented using indicator variables as follows. Let

uj:λ ∈ {0, 1} be the indicator variable, where uj:λ = 1 if

and only if wj = qλ ∈ Q. Then, for any j ∈ {1, . . . ,m},
we can write

wj =

d
∑

λ=1

uj:λ qλ =
〈

uj ,q
〉

where uj ∈ V . (2)

Any wj represented using Eq. (2) belongs to Q. The vec-

tor w of all parameters may be written as a matrix-vector

product,
w = uq where u ∈ Vm . (3)

Here, u = {uj:λ} is thought of as an m × d matrix (each

row uj , for j ∈ {1, . . . ,m} is an element of V). Note that

there is a one-to-one correspondence between the sets Vm

and Qm. Substituting Eq. (3) in the NN quantization objec-

tive (1) results in the variable change from w to u as:

min
w∈Qm

L(w;D) = min
u∈Vm

L(uq;D) . (4)

Even though the above variable change converts the prob-

lem from m to md dimensional space, the cardinalities of

the sets Qm and Vm are the same. The binary constraint

uj:λ ∈ {0, 1} together with the non-convex loss function

L(·) makes the problem NP-hard [32].

Relaxation. By relaxing the binary constraints to

uj:λ ∈ [0, 1], instead of uj:λ ∈ {0, 1} we obtain the convex

hull ∆m of the set Vm. The minimization Eq. (4) may be

carried out over ∆m instead of Vm. In detail, we define

∆ =

{

z ∈ IRd

∑

λ zλ = 1
zλ ≥ 0, ∀λ

}

. (5)

4872

This is the standard (d−1)-dimensional simplex embedded

in IRd and the vertices of ∆ are the points in V . Similarly,

the Cartesian product ∆m is the convex hull of Vm, which

are in turn the vertices of ∆m.

Simplex ∆ will be referred to as the probability simplex

because an element u ∈ ∆ may be thought of (formally)

as a probability distribution on the finite set {1, . . . , d}. A

value uλ is the probability of choosing the discrete parame-

ter w = qλ ∈ Q. With this probabilistic interpretation, one

verifies that uq = Eu[w], the expected value of the vector

of parameters w, where each wj has independent probabil-

ity distribution defined by uj .

Now, the relaxed optimization can be written as:

min
u∈∆m

L̃(u;D) := L(uq;D) , (6)

The minimum of this problem will generally be less than

the minimum of Eq. (4). However, if u ∈ Vm, then the

loss function L̃(u) has the same value as the original loss

function L(w). Furthermore, the relaxation of u from Vm

to ∆m translates into relaxing w from Qm to the convex

region [qmin, qmax]
m. Here, qmin and qmax represent the

minimum and maximum quantization levels, respectively.

In fact, u ∈ ∆m is an overparametrized representation

of w ∈ [qmin, qmax]
m, and the mapping u → w = uq is a

many-to-one surjective mapping. In the case where d = 2
(two quantization levels), the mapping is one-to-one and

subjective. In addition it can be shown that any local min-

imum of Eq. (6) (the relaxed u-space) is also a local mini-

mum of the loss in [qmin, qmax]
m (the relaxed w-space) and

vice versa (Proposition 2.1). This essentially means that the

variable change from w to u does not alter the optimiza-

tion problem and a local minimum in the w-space can be

obtained by optimizing in the u-space.

Proposition 2.1. Let f(w) : [qmin, qmax]
m → IR be

a function, and w a point in [qmin, qmax]
m such that

w = g(u) = uq. Then u is a local minimum of f ◦g in ∆m

if and only if w is a local minimum of f in [qmin, qmax]
m.

Proof. The function g : ∆m → [qmin, qmax]
m is surjective

continuous and affine. It follows that it is also an open map.

From this the result follows easily.

Finally, we would like to point out that the relaxation

used while moving from w to u space is well studied in

the MRF optimization literature and has been used to prove

bounds on the quality of the solutions [9, 25]. In the case of

NN quantization, in addition to the connection to mean-field

(Sec. 3), we believe that this relaxation allows for explo-

ration, which would be useful in the stochastic setting.

2.3. First­order Approximation and Optimization

Here we talk about the optimization of L̃(u) over ∆m,

discuss how our optimization scheme allows exploration in

the parameter space, and also discuss the conditions when

this optimization will lead to a quantized solution in the w

space, which is our prime objective.

Stochastic Gradient Descent (SGD)1 [37] is the de facto

method of choice for optimizing neural networks. In this

section, we interpret SGD as a proximal method, which will

be useful later to show its difference to our final algorithm.

In particular, SGD (or gradient descent) can be interpreted as

iteratively minimizing the first-order Taylor approximation

of the loss function augmented by a proximal term [33].

In our case, the objective function is the same as SGD but

the feasible points are now constrained to form a convex

polytope. Thus, at each iteration k, the first-order objective

can be written as:

uk+1 = argmin
u∈∆m

L̃(uk) +
〈

gk,u− uk
〉

+
1

2η

∥

∥u− uk
∥

∥

2
,

= argmin
u∈∆m

〈

u, ηgk − uk
〉

+ ‖u‖2/2 , (7)

where η > 0 is the learning rate and gk := ∇uL̃
k is

the stochastic (or mini-batch) gradient of L̃ with respect

to u evaluated at uk. In the unconstrained case, by set-

ting the derivative with respect to u to zero, one verifies

that the above formulation leads to standard SGD updates

uk+1 = uk − ηgk. For constrained optimization (as in

our case (7)), it is natural to use the stochastic version of

Projected Gradient Descent (PGD) [38]. Specifically, at it-

eration k, the projected stochastic gradient update can be

written as:
uk+1 = P∆m

(

uk − η gk
)

, (8)

where P∆m(·) denotes the projection to the polytope ∆m.

Even though this type of problem can be optimized using

projection-free algorithms [3, 13, 27], by relying on PGD,

we enable the use of any off-the-shelf first-order optimiza-

tion algorithms (e.g., Adam [24]). Furthermore, for a par-

ticular choice of projection, we show that the PGD update is

equivalent to a proximal version of the mean-field method.

2.3.1 Projection to the Polytope ∆m

Projection to ∆m can be decomposed into m independent

projections to the d-dimensional probability simplexes. The

objective function (7) is also separable for each j. Thus,

for notational convenience, without loss of generality, we

assume m = 1. Now, for a given updated parameter

ũk+1 = uk − η gk (where ũk+1 ∈ IRd), we discuss three

approaches of projecting to the probability simplex ∆. An

illustration of these projections is shown in Fig. 1. In this

section, for brevity, we also ignore the superscript k + 1.

Euclidean Projection (Sparsemax). The standard ap-

proach of projecting to a set in the Euclidean space is via

sparsemax [30]. Given a scalar β > 0 (usually β = 1),

1The difference between SGD and gradient descent is that the gradients

are approximated using a stochastic oracle in the former case.

4873

Figure 1: Illustration of w and u-spaces, different projec-

tions, and exploration with softmax when m = 1. Here

each vertex of the simplex corresponds to a discrete quan-

tization level in the w-space and the simplex is partitioned

based on its vertex association. Given an infeasible point ũ,

it is projected to the simplex via softmax (or sparsemax)

and when β →∞, the projected point would move towards

the associated vertex.

sparsemax amounts to finding a point u in ∆ which is the

closest to βũ, namely

u = sparsemax(βũ) = argmin
z∈∆

‖z− βũ‖
2
. (9)

As the name suggests, this projection is likely to hit the

boundary of the simplex2, resulting in sparse solutions (u)

at every iteration. Please refer to [30] for more detail. As β
increases, the projected point moves towards a vertex.

Hardmax Projection. The hardmax projection maps a

given ũ to one of the vertices of the simplex ∆:

u = hardmax(ũ) , (10)

uλ =

{

1 if λ = argmax
µ∈Q

ũµ

0 otherwise
for λ ∈ {1, . . . , d} .

Softmax Projection. We now discuss the softmax pro-

jection which projects a point to the interior of the sim-

plex, leading to dense solutions. Given a scalar β > 0,

the softmax projection is:

u = softmax(βũ) , (11)

uλ =
exp(βũλ)

∑

µ∈Q
exp(βũµ)

∀λ ∈ {1, . . . , d} .

Even though approximate in the Euclidean sense, softmax
shares many desirable properties to sparsemax [30] (for

example, it preserves the relative order of ũ) and when

β →∞, the projected point moves towards a vertex.

2.3.2 Exploration and Quantization using Softmax

All of the projections discussed above are valid in the sense

that the projected point lies in the simplex ∆. However,

2Unless βũ when projected to the simplex plane is in ∆, which is rare.

our goal is to obtain a quantized solution in the w-space

which is equivalent to obtaining a solution u that is a ver-

tex of the simplex ∆. Below we provide justifications be-

hind using softmax with a monotonically increasing sched-

ule for β in realizing this goal, rather than either sparsemax
or hardmax projection.

Recall that the main reason for relaxing the feasible

points to lie within the simplex ∆ is to simplify the op-

timization problem with the hope that optimizing this re-

laxation will lead to a better solution. However, in case of

hardmax and sparsemax projections, the effective solution

space is restricted to be either the set of vertices V (no relax-

ation) or the boundary of the simplex (much smaller subset

of ∆). Such restrictions hinder exploration over the sim-

plex and do not fully utilize the potential of the relaxation.

In contrast, softmax allows exploration over the entire sim-

plex and a monotonically increasing schedule for β ensures

that the solution gradually approaches a vertex. This inter-

pretation is illustrated in Fig. 1.

Entropy based view of Softmax. In fact, softmax can be

thought of as a “noisy” projection to the set of vertices V ,

where the noise is controlled by the hyperparameter β. We

now substantiate this interpretation by providing an entropy

based view for the softmax projection.

Lemma 2.1. Let u = softmax(βũ) for some ũ ∈ IRd and

β > 0. Then,

u = argmax
z∈∆

〈ũ, z〉+
1

β
H(z) , (12)

where H(z) = −
∑d

λ=1 zλ log zλ is the entropy.

Proof. This can be proved by writing the Lagrangian and

setting the derivatives to zero.

The softmax projection translates into an entropy term

in the objective function (12), and for small values of β, it

allows the iterative procedure to explore the optimization

landscape. We believe, in the stochastic setting, such an

explorative behaviour is crucial, especially in the early stage

of training. Furthermore, our empirical results validate this

hypothesis that PGD with softmax projection is relatively

easy to train and yields consistently better results compared

to other PGD variants. Note that, when β →∞, the entropy

term vanishes and softmax approaches hardmax.

Note, constraining the solution space through a hyperpa-

rameter (β in our case) has been extensively studied in the

optimization literature and one such example is the barrier

method [7]. Moreover, even though the softmax based PGD

update yields an approximate solution to Eq. (7), in Sec. 3,

we prove that it is theoretically equivalent to a proximal ver-

sion of the mean-field method.

4874

3. Softmax based PGD as Proximal Mean-field

Here we discuss the connection between softmax based

PGD and the well-known mean-field method [42]. Precisely,

we show that the update uk+1 = softmax(β(uk − η gk))
is actually an exact fixed point update of a modified mean-

field objective function. This connection bridges the gap

between the MRF optimization and the NN quantization lit-

erature. We now begin with a brief review of the mean-field

method and then proceed with our proof.

Mean-field Method. A self-contained overview is pro-

vided in Appendix A, but here we review the important

details. Given an energy (or loss) function L(w) and the

corresponding probability distribution of the form P (w) =
e−L(w)/Z, mean-field approximates P (w) using a fully-

factorized distribution U(w) =
∏m

j=1 Uj(wj). Here, the

distribution U is obtained by minimizing the KL-divergence

KL(U‖P). Note that, from the probabilistic interpretation

of u ∈ ∆m (see Sec. 2.2), for each j ∈ {1, . . . ,m}, the

probability Uj(wj = qλ) = uj:λ. Therefore, the distribu-

tion U can be represented using the variables u ∈ ∆m, and

hence, the mean-field objective can be written as:

argmin
u∈∆m

KL(u‖P) = argmin
u∈∆m

Eu[L(w)]−H(u) , (13)

where Eu[·] is expectation over u and H(u) is the entropy.

In fact, mean-field has been extensively studied in the

MRF literature where the energy function L(w) factorizes

over small subsets of variables w. This leads to effi-

cient minimization of the KL-divergence as the expectation

Eu[L(w)] can be computed efficiently. However, in a stan-

dard neural network, the function L(w) does not have an

explicit factorization and direct minimization of the KL-

divergence is not straight forward. To simplify the NN loss

function one can approximate it using its first-order Taylor

approximation which discards the interactions between the

NN parameters altogether.

In Theorem 3.1, we show that our softmax based PGD

iteratively applies a proximal version of mean-field to the

first-order approximation of L(w). At iteration k, let

L̂k(w) be the first-order Taylor approximation of L(w).
Then, since there are no interactions among parameters in

L̂k(w), and it is linear, our proximal mean-field objective

has a closed form solution, which is exactly the softmax
based PGD update.

The following theorem applies to the update of each

uj ∈ ∆ separately, and hence the update of the correspond-

ing parameter wj .

Theorem 3.1. Let L(u) : ∆→ IR be a differentiable func-

tion defined in an open neighbourhood of the polytope ∆,

and uk a point in ∆. Let gk be the gradient of L(u) at uk,

and L̂k(u) = L(uk)+
〈

u−uk,gk
〉

the first-order approx-

imation of L at uk. Let β and η (learning rate) be positive

constants, and

uk+1 = softmax(β(uk − η gk)) , (14)

the softmax-based PGD update. Then,

uk+1 = argmin
u∈∆

η L̂k(u)−
〈

uk,u
〉

−
1

β
H(u) . (15)

Proof. First one shows that

η L̂k(u)−
〈

uk,u
〉

= −
〈

u,uk − η gk
〉

, (16)

apart from constant terms (those not containing u). Then

the proof follows from Lemma 2.1.

The objective function Eq. (15) is essentially the

same as the mean-field objective (13) for L̂k(w) (noting

Eu[L̂
k(w)] = L̂k(uq) = 〈gk,u〉 up to constant terms) ex-

cept for the term 〈uk,u〉. This, in fact, acts as a proximal

term. Note, it is the cosine similarity but subtracted from

the loss to enforce proximity. Therefore, it encourages the

resulting uk+1 to be closer to the current point uk and its in-

fluence relative to the loss term is governed by the learning

rate η. Since gradient estimates are stochastic in our case,

such a proximal term is highly desired as it encourages the

updates to make a smooth transition.

Furthermore, the negative entropy term acts as a convex

regularizer and when β → ∞ its influence becomes negli-

gible and the update results in a binary labelling u ∈ Vm.

In addition, the entropy term in Eq. (15) captures the

(in)dependency between the parameters. To encode depen-

dency, the entropy of the fully-factorized distribution can

perhaps be replaced with a more complex entropy such as a

tree-structured entropy, following the idea of [36]. Further-

more, in place of L̂k, a higher-order approximation can be

used. Such explorations go beyond the scope of this paper.

Remark. Note that, our update (15) can be interpreted as

an entropic penalty method and it is similar in spirit to that

of the mirror-descent algorithm when entropy is chosen as

the mirror-map (refer Sec. 4.3 of [8]). In fact, at each it-

eration, both our algorithm and mirror-descent augment the

gradient descent objective with a negative entropy term and

optimizes over the polytope. However, compared to mirror-

descent, our update additionally constitutes a proximal term

and an annealing hyperparameter β which enables us to

gradually enforce a discrete solution. Therefore, to employ

mirror-descent, one needs to understand the effects of using

adaptive mirror-maps (that depend on β). Nevertheless, it is

interesting to explore the potential of mirror-descent which

could allow us to derive different variants of our algorithm.

Proximal Mean-Field (PMF). The preferred embodiment

of our PMF algorithm is similar to softmax based PGD. Al-

gorithm 1 summarizes our approach. Similar to the existing

methods [21], however, we introduce the auxiliary variables

ũ ∈ IRm×d and perform gradient descent on them, compos-

ing the loss function L̃ with the softmax function that maps

ũ into ∆m. In effect this solves the optimization problem:

min
ũ∈IRm×d

L̃ (softmax(βũ);D) . (17)

4875

Algorithm 1 Proximal Mean-Field (PMF)

Require: K, b, {ηk}, ρ > 1,D, L̃
Ensure: w∗ ∈ Qm

1: ũ0 ∈ IRm×d, β ← 1 ⊲ Initialization

2: for k ← 0, . . . ,K do

3: uk ← softmax(βũk) ⊲ Projection (Eq. (11))

4: Db = {(xi,yi)}
b
i=1 ∼ D ⊲ Sample a mini-batch

5: gk
u
← ∇uL̃(u;D

b)
∣

∣

∣

u=u
k

⊲ Gradient w.r.t. u at uk

6: gk
ũ
← gk

u

∂u
∂ũ

∣

∣

ũ=ũ
k

⊲ Gradient w.r.t. ũ at uk

7: ũk+1 ← ũk − ηkgk
ũ

⊲ Gradient descent on ũ

8: β ← ρβ ⊲ Increase β
9: end for

10: w∗ ← hardmax(ũK)q ⊲ Quantization (Eq. (10))

In this way, optimization is carried out over the uncon-

strained domain IRm×d rather than over the domain ∆m. In

contrast to existing methods, this is not a necessity but em-

pirically it improves the performance. Finally, since β can

never be ∞, to ensure a fully-quantized network, the final

quantization is performed using hardmax. Since, softmax
approaches hardmax when β →∞, the fixed points of Al-

gorithm 1 corresponds to the fixed points of PGD with the

hardmax projection. However, exploration due to softmax
allows our algorithm to converge to fixed points with better

validation errors as demonstrated in the experiments.

3.1. Proximal ICM as a Special Case

For PGD, if hardmax is used instead of the softmax pro-

jection, the resulting update is the same as a proximal ver-

sion of Iterative Conditional Modes (ICM) [5]. In fact,

following the proof of Lemma 2.1, it can be shown that the

update uk+1 = hardmax(uk − η gk) yields a fixed point

of the following equation:

min
u∈∆m

η
〈

gk,u
〉

−
〈

uk,u
〉

. (18)

Notice, this is exactly the same as the ICM objective aug-

mented by the proximal term. In this case, u ∈ Vm ⊂ ∆m,

meaning, the feasible domain is restricted to be the vertices

of the polytope ∆m. Since softmax approaches hardmax
when β →∞, this is a special case of proximal mean-field.

3.2. BinaryConnect as Proximal ICM

In this section, considering binary neural networks, i.e.,

Q = {−1, 1}, and non-stochastic setting, we show that the

Proximal Iterative Conditional Modes (PICM) algorithm is

equivalent to the popular BinaryConnect (BC) method [10].

In these algorithms, the gradients are computed in two dif-

ferent spaces and therefore to alleviate any discrepancy we

assume that gradients are computed using the full dataset.

Let w̃ ∈ IRm and w ∈ Qm be the infeasible and feasible

points of BC. Similarly, ũ ∈ IRm×d and u ∈ Vm ⊂ ∆m

Algorithm 2 One iteration of BinaryConnect (BC) [10]

Require: w̃k, ηw,D, L
1: wk ← sign(w̃k) ⊲ Projection

2: gk
w
← ∇wL(w;D)|

w=w
k ⊲ Gradient w.r.t. w

3: gk
w̃
← gk

w

∂w
∂w̃

∣

∣

w̃=w̃
k

⊲ Gradient w.r.t. w̃

4: w̃k+1 ← w̃k − ηw gk
w̃

⊲ Gradient descent

be the infeasible and feasible points of our PICM method,

respectively. For convenience, we summarize one iteration

of BC in Algorithm 2. Now, we show that the update steps

in both BC and PICM are equivalent.

Proposition 3.1. Consider BC and PICM with q = [−1, 1]T

and ηw > 0. For an iteration k > 0, if w̃k = ũkq then,

1. the projections in BC: wk = sign(w̃k) and

PICM: uk = hardmax(ũk) satisfy wk = ukq.

2. let the learning rate of PICM be ηu = ηw/2, then the

updated points after the gradient descent step in BC and

PICM satisfy w̃k+1 = ũk+1q.

Proof. Case (1) is simply applying w̃k = ũkq̃ whereas

case (2) can be proved by writing wk as a function of ũk

and then applying chain rule. See Appendix B.

Since hardmax is a non-differentiable operation, the

partial derivative ∂u/∂ũ = ∂ hardmax /∂ũ is not defined.

However, to allow backpropagation, we write hardmax in

terms of the sign function, and used the straight-through-

estimator [17] to allow gradient flow similar to binary con-

nect. For details please refer to Appendix B.1.

4. Related Work

There is much work on NN quantization focusing on dif-

ferent aspects such as quantizing parameters [10], activa-

tions [20], loss aware quantization [18] and quantization for

specialized hardware [12], to name a few. Here we give a

brief summary of latest works and for a comprehensive sur-

vey we refer the reader to [15].

In this work, we consider parameter quantization, which

can either be treated as a post-processing scheme [14]

or incorporated into the learning process. Popular meth-

ods [10, 21] falls into the latter category and optimize the

constrained problem using some form of projected stochas-

tic gradient descent. In contrast to projection, quantization

can also be enforced using a penalty term [4, 43]. Even

though, our method is based on projected gradient descent,

by optimizing in the u-space, we provide theoretical in-

sights based on mean-field and bridge the gap between NN

quantization and MRF optimization literature.

In contrast, the variational approach can also be used for

quantization, where the idea is to learn a posterior proba-

bility on the network parameters in a Bayesian framework.

4876

Dataset Image # class Train / Val. b K

MNIST 28× 28 10 50k / 10k 100 20k

CIFAR-10 32× 32 10 45k / 5k 128 100k

CIFAR-100 32× 32 100 45k / 5k 128 100k

TinyImageNet 64× 64 200 100k / 10k 128 100k

Table 1: Experiment setup. Here, b is the batch size and K
is the total number of iterations used for all the methods.

In this family of methods, the quantized network can be ob-

tained either via a quantizing prior [1] or using the MAP

estimate on the learned posterior [40]. Interestingly, the

learned posterior distribution can be used to estimate the

model uncertainty and in turn determine the required pre-

cision for each network parameter [29]. Note that, even in

our seemingly different method, we learn a probability dis-

tribution over the parameters (see Sec. 2.2) and it would be

interesting to understand the connection between Bayesian

methods and our algorithm.

5. Experiments

Since neural network binarization is the most popular

quantization [10, 35], we set the quantization levels to be

binary, i.e., Q = {−1, 1}. However, our formulation is ap-

plicable to any predefined set of quantization levels given

sufficient resources at training time. We would like to point

out that, we quantize all learnable parameters, meaning,

all quantization algorithms result in 32 times less memory

compared to the floating point counterparts.

We evaluate our Proximal Mean-Field (PMF) algorithm

on MNIST, CIFAR-10, CIFAR-100 and TinyImageNet3 clas-

sification datasets with convolutional and residual architec-

tures and compare against the BC method [10] and the lat-

est algorithm ProxQuant (PQ) [4]. Note that BC and PQ

constitute the closest and directly comparable baselines to

PMF. Furthermore, many other methods have been devel-

oped based on BC by relaxing some of the constraints, e.g.,

layer-wise scalars [35], and we believe, similar extensions

are possible with our method as well. Our results show that

the binary networks obtained by PMF yield accuracies very

close to the floating point counterparts while consistently

outperforming the baselines.

5.1. Experiment Setup

The details of the datasets and their corresponding ex-

periment setups are given in Table 1. In all the exper-

iments, standard multi-class cross-entropy loss is mini-

mized. MNIST is tested using LeNet-300 and LeNet-5, where

the former consists of three fully-connected (FC) layers

3https://tiny-imagenet.herokuapp.com/

while the latter is composed of two convolutional and two

FC layers. For CIFAR and TinyImageNet, VGG-16 [39] and

ResNet-18 [16] architectures adapted for CIFAR dataset are

used. In particular, for CIFAR experiments, similar to [28],

the size of the FC layers of VGG-16 is set to 512 and no

dropout layers are employed. For TinyImageNet, the stride

of the first convolutional layer of ResNet-18 is set to 2 to

handle the image size [19]. In all the models, batch nor-

malization [22] (with no learnable parameters) and ReLU

non-linearity are used. Except for MNIST, standard data

augmentation is used (i.e., random crop and horizontal flip)

and weight decay is set to 0.0001 unless stated otherwise.

For all the algorithms, the hyperparameters such as the

optimizer and the learning rate (also its schedule) are cross-

validated using the validation set4 and the chosen parame-

ters are given in the supplementary material. For PMF and

PGD with sparsemax, the growth-rate ρ in Algorithm 1 (the

multiplicative factor used to increase β) is cross validated

between 1.01 and 1.2 and chosen values for each experi-

ment are given in supplementary. Furthermore, since the

original implementation of BC do not binarize all the learn-

able parameters, for fair comparison, we implemented BC

in our experiment setting based on the publicly available

code5. However, for PQ we used the original code6, i.e.,

for PQ, biases and last layer parameters are not binarized.

All methods are trained from a random initialization and the

model with the best validation accuracy is chosen for each

method. Our algorithm is implemented in PyTorch [34].

5.2. Results

The classification accuracies (top-1) on the test set of all

versions of our algorithm, namely, PMF, PGD (this is PGD

with the sparsemax projection), and PICM, the baselines

BC and PQ, and the floating point Reference Network (REF)

are reported in Table 2. The training curves for CIFAR-10

and CIFAR-100 with ResNet-18 are shown in Fig. 2. Note

that our PMF algorithm consistently produces better results

than other binarization methods and the degradation in per-

formance to the full floating point reference network is min-

imal especially for small datasets. For larger datasets (e.g.,

CIFAR-100), binarizing ResNet-18 results in much smaller

degradation compared to VGG-16.

The superior performance of PMF against BC, PICM and

PGD empirically validates the hypothesis that performing

“noisy” projection via softmax and annealing the noise is

indeed beneficial in the stochastic setting. Furthermore,

even though PICM and BC are theoretically equivalent in the

non-stochastic setting, PICM yields slightly better accura-

cies in all our experiments. We conjecture that this is due to

4For TinyImageNet, since the ground truth labels for the test set were

not available, validation set is used for both cross-validation and testing.
5https://github.com/itayhubara/BinaryNet.

pytorch
6https://github.com/allenbai01/ProxQuant

4877

Dataset Architecture REF (Float) BC [10] PQ [4]
Ours

REF - PMF
PICM PGD PMF

MNIST
LeNet-300 98.55 98.05 98.13 98.18 98.21 98.24 +0.31
LeNet-5 99.39 99.30 99.27 99.31 99.28 99.44 −0.05

CIFAR-10
VGG-16 93.01 86.40 90.11 88.96 88.48 90.51 +2.50
ResNet-18 94.64 91.60 92.32 92.02 92.60 92.73 +1.91

CIFAR-100
VGG-16 70.33 43.70 55.10 45.65 57.83 61.52 +8.81
ResNet-18 73.85 69.93 68.35 70.85 70.60 71.85 +2.00

TinyImageNet ResNet-18 56.41 49.33 49.97 49.66 49.60 51.00 +5.63

Table 2: Classification accuracies on the test set for different methods. Note that our PMF algorithm consistently produces

better results than other binarization methods and the degradation in performance to the full floating point network (last

column) is minimal especially for small datasets. For larger datasets (e.g., CIFAR-100), binarizing ResNet-18 results in much

smaller degradation compared to VGG-16. Even though, PICM and BC are theoretically equivalent in the non-stochastic

setting, PICM yields slightly better accuracies. Note, all binarization methods except PQ require exactly 32 times less memory

compared to single-precision floating points networks at test time.

0 50 100 150 200 250 300
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

REF
BC
PQ
PICM
PGD
PMF

0 50 100 150 200 250 300
Epochs

20

40

60

80

Va
lid

at
io

n
Ac

cu
ra

cy

REF
BC
PQ
PICM
PGD
PMF

0 50 100 150 200 250 300
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Tr

ai
ni

ng
 L

os
s

REF
BC
PQ
PICM
PGD
PMF

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

70

Va
lid

at
io

n
Ac

cu
ra

cy

REF
BC
PQ
PICM
PGD
PMF

Figure 2: Training curves for CIFAR-10 (first two) and CIFAR-100 (last two) with ResNet-18. For quantization methods, the

validation accuracy is always measured with the quantized networks. Specifically, for PMF and PGD, the hardmax projection

is applied before the evaluation. Notably, validation accuracy plots clearly illustrate the exploration phase of both PMF and

PGD, during which the accuracies are the worst. However, once β is “large enough”, the curves closely resembles high-

precision reference network while yielding very high accuracies. Furthermore, compared to BC and PICM, other methods are

less noisy suggesting the usefulness of optimizing over a convex domain.

the fact that in PICM, the training is performed on a larger

network (i.e., in the u-space).

To further consolidate our implementation of BC, we

quote the accuracies reported in the original papers here.

In [10], the top-1 accuracy on CIFAR-10 with a modified

VGG type network is 90.10%. In the same setting, even

with additional layer-wise scalars, (Binary Weight Network

(BWN) [35]), the corresponding accuracy is 90.12%. For

comprehensive results on network quantization we refer the

reader to Table 5 of [15]. Note that, in all the above cases,

the last layer parameters and biases in all layers were not

binarized.

6. Discussion

In this work, we have formulated NN quantization as

a discrete labelling problem and introduced a projected

stochastic gradient descent algorithm to optimize it. By

showing our approach as a proximal mean-field method,

we have also provided an MRF optimization perspective to

NN quantization. This connection opens up interesting re-

search directions primarily on considering dependency be-

tween the neural network parameters to derive better net-

work quantization schemes. Furthermore, our PMF ap-

proach learns a probability distribution over the network pa-

rameters, which is similar in spirit to Bayesian deep learn-

ing methods. Therefore, we believe, it is interesting to ex-

plore the connection between Bayesian methods and our al-

gorithm, which can potentially drive research in both fields.

7. Acknowledgements

This work was supported by the ERC grant ERC-

2012-AdG 321162-HELIOS, EPSRC grant Seebibyte

EP/M013774/1, EPSRC/MURI grant EP/N019474/1 and

the Australian Research Council Centre of Excellence for

Robotic Vision (project number CE140100016). We would

also like to acknowledge the Royal Academy of Engineer-

ing, FiveAI, National Computing Infrastructure, Australia

and Nvidia (for GPU donation).

4878

References

[1] J. Achterhold, J. M. Kohler, A. Schmeink, and T. Genewein.

Variational network quantization. ICLR, 2018. 7

[2] Thalaiyasingam Ajanthan. Optimization of Markov random

fields in computer vision. PhD thesis, Australian National

University, 2017. 1

[3] Thalaiyasingam Ajanthan, Alban Desmaison, Rudy Bunel,

Mathieu Salzmann, Philip H S Torr, and M Pawan Kumar.

Efficient linear programming for dense CRFs. CVPR, 2017.

3

[4] Yu Bai, Yu-Xiang Wang, and Edo Liberty. Proxquant: Quan-

tized neural networks via proximal operators. ICLR, 2019. 6,

7, 8

[5] Julian Besag. On the statistical analysis of dirty pictures.

Journal of the Royal Statistical Society., 1986. 2, 6

[6] Andrew Blake, Pushmeet Kohli, and Carsten Rother. Markov

random fields for vision and image processing. Mit Press,

2011. 1

[7] Stephen Boyd and Lieven Vandenberghe. Convex optimiza-

tion. Cambridge university press, 2009. 4

[8] Sébastien Bubeck. Convex optimization: Algorithms and

complexity. Foundations and Trends R© in Machine Learn-

ing, 2015. 5

[9] Chandra Chekuri, Sanjeev Khanna, Joseph Naor, and Leonid

Zosin. A linear programming formulation and approxima-

tion algorithms for the metric labeling problem. SIAM Jour-

nal on Discrete Mathematics, 2004. 2, 3

[10] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Binaryconnect: Training deep neural networks with

binary weights during propagations. NIPS, 2015. 1, 2, 6, 7,

8

[11] P. K. Dokania and P. K. Mudigonda. Parsimonious labeling.

ICCV, 2015. 1

[12] S. K. Esser, R. Appuswamy, P. A. Merolla, J. V. Arthur, and

D. S. Modha. Backpropagation for energy-efficient neuro-

morphic computing. NIPS, 2015. 6

[13] Marguerite Frank and Philip Wolfe. An algorithm for

quadratic programming. Naval research logistics quarterly,

1956. 3

[14] Y. Gong, L. Liu, and L. Bourdev. Compressing deep convo-

lutional networks using vector quantization. arXiv preprint

arXiv:1412.6115, 2014. 6

[15] Yunhui Guo. A survey on methods and theories of quantized

neural networks. arXiv preprint arXiv:1808.04752, 2018. 6,

8

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. CVPR, 2016.

7

[17] Geoffrey Hinton. Neural networks for machine learning.

Coursera, video lectures, 2012. 6

[18] Lu Hou, Quanming Yao, and James T Kwok. Loss-aware

binarization of deep networks. ICLR, 2017. 6

[19] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E

Hopcroft, and Kilian Q Weinberger. Snapshot ensembles:

Train 1, get m for free. ICLR, 2017. 7

[20] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks. NIPS,

2016. 6

[21] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Quantized neural networks:

Training neural networks with low precision weights and ac-

tivations. JMLR, 2017. 1, 5, 6

[22] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. ICML, 2015. 7

[23] R. Kindermann and J. L. Snell. Markov Random Fields and

Their Applications. American Mathematical Society, 1980.

2

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. ICLR, 2015. 3

[25] Jon Kleinberg and Eva Tardos. Approximation algorithms

for classification problems with pairwise relationships: met-

ric labeling and Markov random fields. Journal of the ACM,

2002. 3

[26] Vladimir Kolmogorov and Ramin Zabin. What energy func-

tions can be minimized via graph cuts? PAMI, 2004. 2

[27] Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and

Patrick Pletscher. Block-coordinate Frank-Wolfe optimiza-

tion for structural SVMs. ICML, 2012. 3

[28] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H S

Torr. SNIP: Single-shot network pruning based on connec-

tion sensitivity. ICLR, 2019. 7

[29] C. Louizos, K. Ullrich, and M. Welling. Bayesian compres-

sion for deep learning. NIPS, 2017. 7

[30] Andre Martins and Ramon Astudillo. From softmax to

sparsemax: A sparse model of attention and multi-label clas-

sification. ICML, 2016. 3, 4

[31] Pawan Kumar Mudigonda. Combinatorial and convex opti-

mization for probabilistic models in computer vision. PhD

thesis, Oxford Brookes University, 2008. 1

[32] George L Nemhauser and Laurence A Wolsey. Integer pro-

gramming and combinatorial optimization. Springer, 1988.

2

[33] Neal Parikh and Stephen P Boyd. Proximal algorithms.

Foundations and Trends in Optimization, 2014. 3

[34] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in PyTorch. 2017. 7

[35] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. ECCV, 2016. 1, 2, 7,

8

[36] Pradeep Ravikumar, Alekh Agarwal, and Martin J Wain-

wright. Message-passing for graph-structured linear pro-

grams: proximal projections, convergence and rounding

schemes. ICML, 2008. 5

[37] Herbert Robbins and Sutton Monro. A stochastic approxi-

mation method. Annals of Mathematical Statistics, 1951. 3

[38] Lorenzo Rosasco, Silvia Villa, and Bang Công Vũ. Con-

vergence of stochastic proximal gradient algorithm. arXiv

preprint arXiv:1403.5074, 2014. 3

4879

[39] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. ICLR,

2015. 7

[40] D. Soudry, I. Hubara, and R. Meir. Expectation backpropa-

gation: Parameter-free training of multilayer neural networks

with continuous or discrete weights. NIPS, 2018. 7

[41] Olga Veksler. Efficient graph-based energy minimization

methods in computer vision. PhD thesis, Cornell University

New York, USA, 1999. 1

[42] Martin J Wainwright, Michael I Jordan, et al. Graphical mod-

els, exponential families, and variational inference. Founda-

tions and Trends R© in Machine Learning, 2008. 1, 2, 5

[43] Penghang Yin, Shuai Zhang, Jiancheng Lyu, Stanley Os-

her, Yingyong Qi, and Jack Xin. Binaryrelax: A relaxation

approach for training deep neural networks with quantized

weights. SIIMS, 2018. 6

4880

