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Abstract

Recent advances in Generative Adversarial Networks

(GANs) have made it possible to conduct multi-domain

image-to-image translation using a single generative net-

work [7]. While recent methods such as Ganimation

[24] and SaGAN [34] are able to conduct translations on

attribute-relevant regions using attention, they do not per-

form well when the number of attributes increases as the

training of attention masks mostly rely on classification

losses. To address this and other limitations, we introduce

Attribute Manipulation Generative Adversarial Networks

(AMGAN) for fashion images. While AMGAN’s genera-

tor network uses class activation maps (CAMs) to empower

its attention mechanism, it also exploits perceptual losses

by assigning reference (target) images based on attribute

similarities. AMGAN incorporates an additional discrimi-

nator network that focuses on attribute-relevant regions to

detect unrealistic translations. Additionally, AMGAN can

be controlled to perform attribute manipulations on specific

regions such as the sleeve or torso regions. Experiments

show that AMGAN outperforms state-of-the-art methods us-

ing traditional evaluation metrics as well as an alternative

one that is based on image retrieval.

1. Introduction

Attribute manipulation involves making transla-

tions/adjustments to images based on the target attributes.

For fashion products, attributes of interest relate to visual

qualities such as sleeve length, color and pattern while

attribute values correspond to certain labels such as long

sleeve, red color and plain pattern. Being able to manip-

ulate attributes of images is especially useful in a variety

of situations including a user not satisfied with some

attributes. Recently, this task was studied from an image

retrieval perspective which involved retrieving the target

images in a dataset after conducting attribute manipulation

[37, 2, 1, 4]. However, the image retrieval approach is

Input Red Color Black Color
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Short Sleeve Input Red Color Short Sleeve Hood Collar

Figure 1: Multi-domain image-to-image translation examples of

the proposed AMGAN using images from the Deepfashion [20]

and Shopping100k [3] datasets.

limited by the dataset size and the increasing number of

attributes.

Since the introduction of Generative Adversarial Net-

works (GANs) [10], the task of image generation has re-

ceived significant attention. Along with many computer

vision tasks, GANs can be applied for the image-to-image

translation problem [14, 39]. The StarGAN [7] architecture

has shown to be able to perform multi-domain image-to-

image translations with a single generative network. More

recently, several approaches that incorporate an attention

mechanism on the generative network have emerged such

as Ganimation [24] and SaGAN [34]. Having an atten-

tion mechanism is especially useful when attribute manipu-

lation needs to be performed on attribute-relevant regions

while others remain the same. However, as the number

of attributes increases, these attention-based methods be-

come unstable as the attended regions are mostly learned

through classification losses. Additionally, the discrimina-

tor network can also benefit from an attention mechanism

and force the generative network to perform more realistic

attribute manipulations.

In this paper, we propose Attribute Manipulation Gen-

erative Adversarial Networks (AMGAN) which focuses on
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the multi-domain image-to-image translation problem for

fashion images enabling users to conduct attribute manipu-

lations. While the current image-to-image translation net-

works are mostly meant for face images, AMGAN achieves

this for the less rigid objects such as fashion images. Fig-

ure 1 illustrates some examples of attribute manipulation on

the Deepfashion [20] and Shopping100k [3] datasets. As

shown, AMGAN has the ability to translate input images

into new ones based on changes to target attributes while

preserving the other attributes.

The proposed AMGAN incorporates an attention mech-

anism for attribute manipulation without leveraging on any

information about the attribute location. In attribute ma-

nipulation, the objective is to locate those regions with the

attribute of interest so that they can be translated into new

ones. Therefore, it is crucial for the generative network to

correctly localize regions based on the attributes to be ma-

nipulated. Class activation maps (CAMs) extracted from a

Convolutional Neural Network (CNN) can be used to cor-

rectly localize the discriminative region of an attribute. By

using CAMs as an attention loss, AMGAN’s generator net-

work is able to generate attention masks correctly which

consequently improves its attribute manipulation ability.

While different previous works [7, 24, 34] use a single dis-

criminator for the whole image, AMGAN uses an additional

discriminator network that focuses on attribute-relevant re-

gions to detect unrealistic attribute manipulations to im-

prove image translation performance.

For unpaired image-to-image translation, there is no ref-

erence (target) image according to the input image and at-

tribute manipulation, making it infeasible to use perceptual

losses [8, 9, 16]. We fix this issue by assigning a refer-

ence image based on attribute similarities. Consequently,

AMGAN benefits from a perceptual loss function which is

based on features from the same CNN that extracts CAMs.

With the perceptual loss, AMGAN is able to generate more

realistic images while the ability to match the attribute ma-

nipulation is boosted. In addition to conventional image-

to-image translation, AMGAN can be adapted to conduct

attribute manipulations on specific regions by intervening

with attention masks. For example, AMGAN can be ad-

justed to perform “red color“ attribute manipulation on the

sleeve region by replacing its attention mask with a mask for

“sleeveless” attribute manipulation. This ability is useful to

automate the region-specific attribute manipulation.

The key contributions of AMGAN are:

• Empowering attention mechanism of the generative

network with CAMs extracted from the same CNN

that is used to enable perceptual losses based on at-

tribute similarities.

• Incorporating an additional discriminator that focuses

on attribute-relevant regions.

• Enabling attribute manipulations on specific regions.

• Detailed experiments on two fashion datasets are pre-

sented to show the superior performance of AMGAN

over state-of-the-art methods. We also introduce a new

method based on image retrieval to test the success of

attribute manipulation.

2. Related Work

Generative Adversarial Networks (GANs). GANs intro-

duced by Goodfellow et al. [10] have demonstrated remark-

able success in many computer vision problems includ-

ing image generation [25, 28], image-to-image translation

[14, 7], image inpainting [18, 23]. GANs consist of gener-

ator and discriminator networks where they compete with

each other in a minimax game. While the generator tries

to produce realistic samples, the discriminator attempts to

distinguish the fake samples for the real ones. Networks are

trained jointly with an adversarial loss.

Conditional GANs (cGANs). GANs can be modified to

generate images based on several conditions. The condi-

tional generation of samples can be from the class infor-

mation [21, 22], text descriptions [27, 35, 32], etc. Us-

ing encoder-decoder architecture, the conditions can be ap-

plied to conduct domain changes on images such as image

inpainting [23], image editing [6]. AMGAN uses condi-

tions to signal attribute manipulations and performs multi-

domain image-to-image translations.

Image-to-Image Translation. The aim of this task is to ap-

ply certain changes to the input image. Based on cGANs,

pix2pix [14] used paired data to train the generative network

based on pixel similarity and adversarial loss. CycleGAN

[39] removed the obligation of the paired data and intro-

duced a novel cycle consistency loss function for image-

to-image translation. The main drawback of CycleGAN

[39] is that it can only operate between two domains at a

time. This issue is addressed by the StarGAN architecture

[7] which includes auxiliary classification losses and trains

a single generator network for multi-domain translations.

Following StarGAN [7], several architectures that involve

attention mechanism emerged [24, 34, 36]. However, these

methods mostly rely on classification losses in order to pro-

duce an attention mask and only benefit from an attention

mechanism on the generator network.

GANs in Fashion. Generative networks have also been

widely applied on various fashion-related tasks such as vir-

tual try-on [15, 12, 30, 26] and fashion design/generation

[19, 31, 29]. Similar to our task, FashionGan [40] is intro-

duced to conduct text-based image manipulation e.g., short

sleeve to long sleeve while preserving the person wearing

the clothing. In contrast, AMGAN focuses on attributes

which are more accessible in many datasets and proposes
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Figure 2: Overview of the proposed AMGAN architecture. Given input image xI and attribute manipulation m, the generator G produces

two outputs: generated image z and attention mask α where the final output x∗

I is generated through a blending operation. Class activation

mapping (CAM) technique is used to assist the attention mask generation. For illustration purposes, the nested form of xI and α∗ is shown.

Both discriminators DI , DC serve as real/fake and attribute classifiers. While the inputs of DI are from the whole images, DC ’s inputs

are the attribute localized images estimated from α. Based on attribute similarities, a reference image xref is used for the perceptual loss.

several innovations. Additionally, AMGAN does not re-

quire any segmentation/annotation maps.

3. AMGAN

In this section, we describe AMGAN which is able to

carry out the multi-domain image-to-image translation (at-

tribute manipulation). Next, we show how AMGAN can be

adjusted to perform region-specific attribute manipulations.

Problem definition. The proposed AMGAN architecture

consists of a generator G and two discriminator networks

DI , DC as shown in Figure 2. The aim of G which is based

on an encoder-decoder structure is to translate an input im-

age xI by applying an attribute manipulation m to an output

image x∗
I , G(xI ,m) → x∗

I . All possible attribute manipu-

lation operations can be encoded into m = {m1, ...mN , r}
where N is the number of attribute values (e.g., long sleeve,

red color, etc.) and r indicates the attribute that is being

manipulated (e.g., sleeve, color, etc.) so that the genera-

tor focuses on a specific attribute for each training iteration.

Both r and m are represented by one-hot encodings.

3.1. Network Construction

The input image xI is fed together with the attribute ma-

nipulation m into G which has two outputs: generated im-

age z and attention mask α. The attention mask is combined

with input and output images as in [12, 24, 33] where only

specific regions are subject to attribute manipulations while

the other regions are not changed. The final output x∗
I is

obtained as follows:

x∗
I = α⊙ z + (1− α)⊙ xI (1)

By feeding xI into the CNN that is pre-trained with at-

tributes of interest, a guidance mask α∗ is calculated using

class activation mapping (CAM) method [38] in order to

assist G on which regions to focus with the attention loss.

Additionally, based on attribute similarities, a reference im-

age xref which demonstrates the expected attributes after

attribute manipulation is assigned for the perceptual loss.

Discriminator networks are used to distinguish the real sam-

ples from the fake ones and provide the classification loss.

While DI focuses on the whole image, the aim of DC is to

focus on attribute manipulated regions. Inputs of DC de-

noted as x∗
C , xC are estimated from α. First, pixel values

of α that are above 50% of its maximum value are seg-

mented followed by estimating a bounding box that cov-

ers the largest connected region. Using bounding boxes,

x∗
C , xC are cropped from x∗

I , xI as shown in Figure 2.

3.2. Discriminators

Both discriminators DI , DC are based on a deep convo-

lutional network and have two outputs for adversarial and

classification losses.

Adversarial Loss. We denote the ouput of image xd as

Ddsrc
(xd) where d ∈ {I, C} indicates the discriminator

on whole image xI or cropped image xC . The purpose

of discriminators is to maximize Ddsrc
(xd) and minimize

Ddsrc
(x∗

d). Accordingly, the overall adversarial loss for D

is defined as:

LD
adv =

∑

d∈{I,C}

(

− Exd
[Ddsrc

(xd)] + Ex∗

d
[Ddsrc

(x∗
d)]+

λgpEx̃d
[(|| ▽x̃d

Ddsrc
(x̃d)||2 − 1)2]

)

(2)

The final term in Eq. (2) above is the Wasserstein GAN
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objective [5, 11] with gradient penalty λgp where x̃d is sam-

pled uniformly along a straight line between real and gen-

erated images.

Classification Loss. In addition to recognizing real/fake

samples with an adversarial loss, it is also crucial that dis-

criminators can classify the attributes of real/fake images.

Therefore, Dd has another output denoted as Ddcls
(m′|xd)

where m′ corresponds to the original attribute value before

the attribute manipulation. Using the cross-entropy loss

function, the overall classification loss for D is defined as:

LD
cls =

∑

d∈{I,C}

Exd
[−logDdcls

(m′|xd)] (3)

Combining both losses, the objective function to opti-

mize both discriminators can be written as:

LD = LD
adv + λclsL

D
cls (4)

3.3. Generator

AMGAN’s generator G aims to generate a new image

according to the attribute manipulation and consists of the

following loss functions:

Adversarial Loss. As it is crucial for G to generate realis-

tic samples, the following adversarial loss is used:

LG
adv =

∑

d∈{I,C}

−Ex∗

d
[Ddsrc

(x∗
d)] (5)

Classification Loss. In order to generate images with re-

spect to m, the generated images are fed into the discrim-

inators to estimate Ddcls
(m|x∗

d) and the classification loss

for G is defined as:

LG
cls =

∑

d∈{I,C}

Ex∗

d
[−logDdcls

(m|x∗
d)] (6)

when d = C, attribute localized images are fed into DC

which forces G to generate more realistic samples with the

correct attribute value on the attended region.

Cycle Consistency Loss. We use cycle consistency loss

[39] to make sure that the contents of inputs are pre-

served while “irrelevant regions” remain unchanged. When

attribute manipulations m and m∗ are back-to-back per-

formed on xI , the generated image is expected to be the

same as xI . Therefore, cycle consistency loss is defined as:

LG
cyc = ExI

[||xI −G(G(xI ,m),m∗)||1] (7)

Attention Loss. It is possible to have plausible attention

masks with the loss functions defined above where the clas-

sification loss would drive attention masks toward attribute

relevant regions. However, as the number of attributes in-

creases or when images exhibit challenging pose variations,

attention masks may become unstable, hence affect attribute

manipulation results. As it is not possible to have a ground

truth mask for every attribute, we propose to use class acti-

vation mapping (CAM) [38] technique to guide the gener-

ator network on the attribute location. By using CAM, the

attention loss is included in G as follows:

Class Activation Mapping (CAM). First, the input image

xI is passed to the CNN which produces convolutional fea-

tures fk. Class activation map of xI for the original attribute

m′ at spatial location (i, j) is estimated as follows:

Mm′(xI , i, j) =
∑

k

wm′

k fk(xI , i, j) (8)

where wm′

k is the weight variable of attribute m′ associ-

ated with k′th feature map. The values of Mm′(xI , i, j)
are then normalized to the range of (0, 1) which correspond

to a guidance mask denoted as α∗. We adopt the L1 norm

and define the attention loss between the attention mask of

G and of CNN:

LG
a = ||α− α∗||1 (9)

After α∗ is calculated, one can choose to use it without

having an extra attention mask output on the generator. This

is troublesome because of two reasons: (1) while CAMs are

used to find where classification scores come from, the task

in AMGAN is to perform attribute manipulation where it

can benefit from the combination of all losses; (2) CAMs

sometimes may correspond to small regions which is prob-

lematic when the attribute to be manipulated involves the

entire clothing item (e.g., color). We use the attention loss

to contribute to AMGAN’s localization ability while not di-

rectly “mimic” CAMs.

Perceptual Loss. We use the perceptual loss that is based

on differences between feature representations of a CNN

which is defined as follows:

LG
p =

n
∑

j=1

||CNNj(xref )− CNNj(x
∗
I)||1 (10)

where j represent features extracted from the j’th layer of

the CNN. In the unpaired image-to-image translation task,

using this loss function may be confusing as it is unclear

how to choose the reference image xref without having a

paired match. In AMGAN, we propose to choose the refer-

ence image as the one which corresponds to attributes after

the attribute manipulation. Therefore, the rule of picking

xref is that all attributes should match with x∗
I as shown in

the example provided in Figure 2. Even though wearers and

their poses are different, x∗
I and xref are close to each other

in the feature space. While improving the quality of the

generated image z, the perceptual loss can also contribute

to the attention mechanism.

Finally, the objective function to optimize G can be

jointly written as:

LG = LG
adv + λclsL

G
cls + λcycL

G
cyc + λaL

G
a + λpL

G
p (11)
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Hyper-Parameters. λcls, λcyc, λa, λp are hyper-

parameters that control the importance of different terms.

In our experiments, we use the following setup; λcls =
1, λcyc = 10, λa = 10, λp = 20.

4. Region-specific Attribute Manipulation

AMGAN’s ability to perform attribute manipulation to-

wards specific regions is limited as it does not use any seg-

mentation ground truths. This can be overcome by allowing

the user to manually edit AMGAN’s attention mask which

is time intensive. In order to automate this process, we pro-

pose a method that enables attribute manipulations on spe-

cific regions such as the torso, sleeve, etc.

First, attribute manipulation is performed using the gen-

erator network. If say, the user wants to manipulate only

the sleeve or torso regions, an intervention must be made on

the attention masks as shown in Figure 3. In order to gen-

erate region-specific attention masks, “sleeveless” attribute

manipulation applied which would highlight the sleeve re-

gions denoted as α1. Before directly applying α1, we use

a threshold function to get rid of the pixel values that are

smaller than 0.9 to clear out the noisy values. The atten-

tion mask α∗
1

can now be applied to perform “orange color”

attribute manipulation on the sleeve or torso region as:

x∗
a = α∗

1
⊙ z + (1− α∗

1
)⊙ x (12)

x∗
b = (1− α∗

1
)⊙ z + α∗

1
⊙ x (13)

This method can also be used to show attention masks are

correlated with attribute manipulations. More variations of

this method are investigated in experiments.

5. Implementation Details

Network Architecture: For the generator network in

AMGAN, we use a structure similar to [39] and add an ad-

ditional convolutional layer with a sigmoid activation func-

tion which outputs a single channel attention mask. The in-

put of the generator is a tensor with “3+N+M” dimensions

where N is the number of attribute values and M corre-

sponds to the number of attributes. We use the masking

vector from [7] to perform the alternating training strategy

between the attributes. The PatchGAN architecture [14] is

used for both discriminator networks. For the second dis-

criminator network DC , the size of input images are halved

and two less convolutional layers are used.

For the CNN architecture, we use ResNet-50 [13] to ex-

tract CAMs and features. For each dataset, transfer learning

(fixed for AMGAN) is performed for attribute prediction.

The same network is employed for the feature extraction

using conv5 and avg pool layers.

G

m:
Sleeveless

G Threshold

α

1

α

∗

1

z

x

= ⊙ z +

(

1 −
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⊙ xx
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α
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1

=

(

1 −

)

⊙ z + ⊙ xx
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b
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∗

1
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∗

1
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x

∗

b

m: Orange
Color

Figure 3: Region-specific attribute manipulation is possible by us-

ing attention masks from the sleeve attribute. Note that we omitted

the generated image output from the sleeveless attribute manipu-

lation.

Training: We train AMGAN from scratch using Adam

optimizer [17] with β = 0.5, β = 0.999, set the learn-

ing rate to 0.0001 and use the mini-batch size of 16. For

each generator update, the discriminator is updated 5 times.

For the DeepFashion and Shopping100k datasets, we train

AMGAN for 80k and 50k iterations for each attribute which

takes about 1,5 and 2 days respectively with a GeForce GTX

TITAN X GPU. After the first half of the training is finished,

the learning rate is linearly decreased to zero.

6. Experiments

In this section, AMGAN is compared with several recent

methods using quantitative and qualitative experiments. We

also perform ablation experiments to investigate the effect

of each novel component.

6.1. Competing Methods

Following state-of-the-art architectures that have been

shown to successfully conduct multi-domain image-to-

image translations are chosen as competing methods:

StarGAN [7] uses a single generator network which trans-

lates an input image to the target attribute and is able to

perform the multi-domain image-to-image translations.

Ganimation [24] has a similar architecture to StarGAN but

contains an attention mechanism on the generator. We re-

place the regression loss with the classification loss.

SaGAN [34] also incorporates an attention mechanism but

the main difference with Ganimation is that it consists of

two generative networks to generate images and attention

masks. For multi-domain translations, we add attribute ma-

nipulation as a condition in order to have a single model for

all attributes.
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6.2. Datasets

Two fashion datasets which are rich in terms of the num-

ber of attributes are used for the experiments:

DeepFashion-Synthesis [40] dataset includes 78,979 im-

ages extracted from the DeepFashion dataset [20] and con-

sists of upper clothing images. This subset is a much more

clean version of the DeepFashion dataset and we choose to

use the following attributes: color (17), sleeve (4) which

corresponds to 21 attribute values.

Shopping100k dataset [3] includes 101,021 clothing im-

ages and we choose to use the following 6 attributes: collar

(17), color (19), fastening (9), pattern (16), sleeve length (9)

corresponding to 70 attribute values. We only use avg pool

layer to extract features with λp = 10 for this dataset.

All images are resized to 128x128 and 2,000 images are

randomly sampled for the test set, the rest is used in the

training. We choose to use mostly sensible attributes for

attribute manipulations from both datasets. While choos-

ing reference images, we additionally include category and

gender attributes to have more correct matches.

6.3. Evaluation Metrics

Classification Accuracy. In order to test if an attribute ma-

nipulation is successfully applied, we check the classifica-

tion accuracy for the attribute that is being manipulated. We

choose to train a ResNet-50 architecture [13] for attribute

classification with cross-entropy loss. All competing meth-

ods are tested with the same architecture and the higher

accuracy rates indicate that attribute manipulation is more

successful according to the network.

Top-k Retrieval Accuracy. We propose an image retrieval

based method to evaluate the success of the generated im-

ages. Top-k retrieval accuracy considers whether the search

algorithm finds a correct image in Top-k results or not. If the

retrieved image consists of the attributes demanded by the

input and attribute manipulation it will be a hit “1”, other-

wise a miss “0”. This metric can be applied for attribute ma-

nipulation, as we directly generate the desired image. More

specifically, we use ResNet-50 network and extract features

from avg pool layer for both generated images (Query) and

real images (Retrieval Gallery) and conduct comparisons

between Query and Retrieval Gallery.

User Study. In order to assess the generated images from

each competing method, we perform a user study consisting

of 20 participants. Before the study, each participant is in-

structed on each attribute value. Given an input image and

the attribute manipulation, participants were asked to pick

the best-generated image based on perceptual realism, qual-

ity of attribute manipulation, and preservation of an image’s

original identity from the four competing methods.

DeepFashion Shopping100k

Color Sleeve Avg. Collar Color Fasten Pattern Sleeve Avg.

StarGAN 69.19 61.76 65.47 26.37 46.76 23.36 22.82 59.58 35.76

Ganimation 67.77 67.17 67.47 21.73 17.31 18.47 11.75 45.87 23.02

SaGAN 68.59 63.16 65.87 18.21 30.03 17.56 10.51 47.07 24.68

AMGAN 77.01 81.94 79.48 45.84 64.52 29.07 43.59 64.42 49.49

AMGAN

w/o DC 74.23 73.86 74.05 40.51 59.66 21.60 35.53 58.46 43.15

AMGAN

w/o L
G
p , DC 70.19 69.49 69.84 30.70 50.84 21.61 21.95 52.25 35.47

AMGAN w/o

L
G
a , LG

p , DC 68.28 66.40 67.34 24.19 25.98 21.53 11.91 43.91 25.50

AMGAN,

CAMs as α 59.15 66.60 62.88 24.47 35.65 19.75 21.82 28.97 26.13

Table 1: Classification accuracy of manipulated attributes for

competing methods and ablation experiments.

6.4. Quantitative Experiments

Classification accuracy results with respect to attribute

manipulations are reported in Table 1 where AMGAN

achieves the best performance with 79.48%, 49.49% on av-

erage for DeepFashion and Shopping100k datasets respec-

tively. While all three competing perform close to each

other in DeepFashion dataset, StarGAN has a much bet-

ter performance on Shopping100k dataset and the reason

for this is mostly due to the higher number of attributes (21

vs 70). This points out the scaling issue of attention-based

methods with the increasing number of attributes and hav-

ing an attention mechanism does not necessarily bring extra

success for this evaluation metric. On the other hand, AM-

GAN is much more stable due to its novel components. A

thorough investigation of AMGAN’s components is made

on the ablation experiments.

According to Figure 4, AMGAN performs better than

the competing models with 0.657 and 0.403 average Top-

30 retrieval accuracy for DeepFashion and Shopping100k

datasets respectively. We also report the Top-30 retrieval

accuracy of each attribute in Table 2 for a more detailed in-

vestigation. These experiments show that AMGAN is not

only superior for the attribute manipulation but for keep-

ing the untouched attributes the same. We also report re-

sults of real images which means that features are extracted

from the input images without any attribute manipulation.

The fact that real images achieve the worst result by a large

margin proves that the ability to perform attribute manip-

ulation is very important for this metric. Both Ganima-

tion and SaGAN perform worse than StarGAN for Shop-

ping100k dataset which was the case in Table 1 showing the

correlation between two evaluation metrics. We believe that

Top-k retrieval accuracy is a good metric to observe the bal-

ance of “keeping the untouched attributes” and “enabling at-

tribute manipulations” for the generated images. These ex-

periments also suggest that AMGAN can be a good model

for image retrieval as well which is worth investigating for

future studies.

In Table 3, we show the results of the user study which
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(a) DeepFashion (b) Shopping100k

Figure 4: Average Top-K retrieval accuracy of attribute manipu-

lations. The number in the parentheses corresponds to the Top-30

retrieval accuracy.

DeepFashion Shopping100k

Color Sleeve Avg. Collar Color Fasten Pattern Sleeve Avg.

Real 0.209 0.061 0.135 0.061 0.092 0.138 0.078 0.064 0.087

StarGAN 0.724 0.413 0.568 0.263 0.453 0.153 0.205 0.333 0.282

Ganimation 0.720 0.465 0.592 0.303 0.218 0.220 0.143 0.398 0.257

SaGAN 0.725 0.449 0.587 0.260 0.300 0.188 0.126 0.358 0.247

AMGAN 0.766 0.550 0.657 0.439 0.547 0.276 0.305 0.447 0.403

Table 2: Top-30 retrieval accuracy of each attribute manipulation

using the generated images.

is based on preferences. AMGAN again achieves the best

performance for all attributes where other competing meth-

ods perform similarly to each other in both datasets. For the

Shopping100k dataset, StarGAN performs not as good as

shown in Table 1 especially with the sleeve attribute where

it had a good performance. The user study proves that hav-

ing high classification accuracy does not mean that a model

is performing visually good translations. An interesting

finding in Shopping100k dataset is that StarGAN has bet-

ter ability to perform attribute manipulations which involves

the whole image (color, pattern) compared to those which

correspond to a specific region (collar, fasten, sleeve). The

user study suggests that AMGAN’s attention mechanism is

more stable than Ganimation and SaGAN while perform-

ing more realistic translations. For the fastening attribute,

AMGAN has slightly lower score indicating this attribute

manipulation is more difficult than the others.

Ablation Experiments. We analyzed the performance of

AMGAN without the following: DC network, perceptual

loss, and attention loss as well as using CAMs directly as α

by using the classification accuracy results presented on the

lower side of Table 1.

AMGAN w/o DC: Removing DC from the AMGAN

architecture results in 5.43% and 6.34% average accuracy

drop for the Deepfashion and Shopping100k datasets re-

spectively. Therefore, the effect of DC cannot be ignored

as it directly forces the generator to produce more realistic

images with correct attributes on attended regions.

AMGAN w/o L
G
p , DC: Disabling the perceptual loss

(Eq. 10) in addition to removing DC reduces the aver-

DeepFashion Shopping100k

Color Sleeve Avg. Collar Color Fasten Pattern Sleeve Avg.

StarGAN 12.7 10.9 11.8 10.3 25.0 12.2 13.0 6.3 13.36

Ganimation 12.7 12.6 12.65 20.5 1.2 17.1 11.6 12.6 12.6

SaGAN 18.6 8.4 13.5 5.1 19.3 24.4 4.4 14.6 13.56

AMGAN 56.0 68.1 62.05 64.1 54.5 46.3 71.0 66.5 60.48

Table 3: User study results. Each column sums to 100.

age accuracy by 4.21% and 7.68% for the Deepfashion and

Shopping100k datasets compared to “AMGAN w/o DC”.

This shows that enabling the perceptual loss to guide AM-

GAN on the expected output image has a positive effect on

the ability to perform attribute manipulations.

AMGAN w/o L
G
a , LG

p , DC: Additionally, we disable

the attention loss (Eq. 9) compared to “AMGAN w/o LG
p ,

DC” which reduces the average accuracy by 2.50% and

9.97%. In this version, the generator network has prob-

lems on correctly localizing towards correct regions by not

having the extra assistance from CAMs. The difference is

evident especially for the Shopping100k dataset where the

number of attributes is much higher. As expected, AMGAN

without its novel components has a similar performance to

Ganimation [24] and SaGAN [34].

AMGAN, CAMs as α: For this model, we exclude the

attention mask output of AMGAN and directly use CAMs

(α∗) to compute Eq. 1. In order to compare “using CAMs

as an attention loss” vs “directly using CAMs”, DC net-

work and the perceptual loss are not included in the train-

ing. As shown in Table 1, “AMGAN, CAMs as α” performs

6.97% and 9.34% worse than “AMGAN w/o LG
p , DC” for

the Deepfashion and Shopping100k datasets. This finding

confirms our intuitive of using CAMs as a tool in the train-

ing rather than directly utilizing them. The aim of attention

loss is to contribute to AMGAN’s localization ability not

directly replicate CAMs.

6.5. Qualitative Evaluation

From Figure 5 which presents several attribute manipu-

lation examples, it is evident that AMGAN performs decent

translations in terms of performing attribute manipulation

and keeping contents of the original image. For the Deep-

Fashion dataset, it is evident that the competing methods

which apply color attribute manipulation have trouble fo-

cusing on the correct regions. With the “extra help” from

a deep neural network, AMGAN is able to generate more

accurate attention masks which result in having more real-

istic translations. Looking at the sleeve attribute, all meth-

ods seem to be applying translations on the correct regions;

however, AMGAN is able to perform more realistically as

the generated sleeve regions are more correlated with the

input image in terms of color and pattern similarity.

For the Shopping100k dataset, several examples are pro-

vided on the right side of Figure 5. Attribute manipulation

results by AMGAN are again more consistent and accu-
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DeepFashion

Input StarGAN Ganimation SaGAN AMGAN
Attribute

Manipulation

Gray 
Color 
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Color 
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Sleeve 
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Input StarGAN Ganimation SaGAN AMGAN
Attribute

Manipulation

Navy 
Color 

Color
Gradient
Pattern  

Long
Sleeve 

Short 
Sleeve 

V-neck
Collar 

Figure 5: Attribute manipulation examples on the DeepFashion and Shopping100k datasets. The first two columns show input image and

attribute manipulations while the other columns are images generated from each competing method. As can be seen, AMGAN consistently

generates better images. More examples can be found in the supplementary material along with attention mask outputs of G.

Blue  
Color 

Sleeve
MaskInput Color 

Gradient 
Red  
Color 

Sleeve
MaskInput Orange 

Color 

Shopping100kDeepFashion

Figure 6: Region-specific attribute manipulation examples for the

Shopping100k and DeepFashion datasets. Each attribute manipu-

lation provides the desired attribute of the sleeve region.

rate. This can easily be seen from the long sleeve attribute

manipulation in the third row where the competing meth-

ods only provide a silhouette of the desired attribute. AM-

GAN’s ability to perform more accurate realistic transla-

tions is mostly due to using an extra discriminator to attend

attribute specific regions and perceptual loss which guides

the generator on the expected outputs.

Region-specific Attribute Manipulation: For this case,

a set of examples with both datasets are provided in Figure

6. For the DeepFashion dataset, attention masks which are

obtained from “sleeveless” attribute value are used to per-

form regions-specific attribute manipulations. Following

that, we perform “red color” and “orange color” attribute

manipulations on sleeve masks using Eq. 12. Compared

to the Shopping100k dataset, it is more difficult to local-

ize towards clothing products due to the occlusion from the

wearer. In addition, since we are using a hard threshold

method, it may sometimes be problematic to find an opti-

mum value. Regardless, attribute manipulations are applied

successfully in the first two rows. For the last two rows, we

get decent results given the fact that we only use attributes

for this process.

For the Shopping100k dataset, it can be seen that atten-

tion masks which are obtained from “sleeveless” attribute

value can highlight the sleeve regions successfully. Follow-

ing that, we perform “blue color” and “color gradient pat-

tern” attribute manipulations. Looking at the final output,

the idea of mask intervention is successfully applied for the

region-specific attribute manipulation task. These experi-

ments also show the success of attention masks produced

by the generator network.

7. Conclusion

Attribute Manipulation Generative Adversarial Net-

works (AMGAN) for multi-domain image-to-image trans-

lation introduced in this paper has a major performance ad-

vantage over competing methods due to its improved at-

tention mechanism and attribute manipulation. The perfor-

mance boost is made possible by the guidance of CAMs and

perceptual loss as well as having an additional discriminator

network. By taking advantage of attention masks, AMGAN

is able to conduct attribute manipulations towards specific

regions. Through experiments conducted on the DeepFash-

ion and Shopping100k datasets, we show that AMGAN is

able to perform better than the state-of-the-art image-to-

image translation methods based on traditional metrics as

well as a new one that is based on image retrieval. An in-

teresting challenge for future work would be to extend AM-

GAN towards different domains or use it as a tool for image

retrieval after attribute manipulation task.
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